THE INEXHAUSTIBLE CONTENT OF MODAL BOXES

Johan van Benthem

1 Introduction: the good old days

Dick de Jongh has been a long-time friend and colleague, ever simaetwethose
late sixtieswhenthe world wasyoung. It is a pleasureto think back of the many
things, both domestic and exotic, that we have done togethan Bus note,l want
to focus on just one special interest that ties us together, viz.

Léb's axiom [(p —p) —0p

in provability logic. When my predecessor Martin Lob arrived in Amsterdterteft

it to Dick to explain his seminal theorem,encodedin this axiom, to us eager
graduate students. In nmgcollection,this markedthe beginningof an active modal
logic period, including a wonderful joint seminar on intuitionistic logic and
provability logic by Dick and Craig Smorynski,a creativeand unusualAmerican
visitor whose work we had already learnt abouhmclassef Anne Troelstra.By

then, | had just started working emodal frame correspondenctheory— andL6b's
Axiom wasa nice challengesinceit doesnot fit the usualaxiomsin the S4 or S5
pattern.I remembercoming up one day with a direct semanticargumentthat it

correspondegreciselyto the conjunctionof well-foundednessf the alternative
relation plus the first-order condition of transitivity:

Fact Lo6b's Axiom is true at point s in a frarke= (W, R) iff
(a) F is upwardR-well-founded starting frors, and
(b) F is transitive as, i.e.,F, s |= ¥Y(Rxy— vz(Ryz— Rxz)).

The latter clausewasa bit strangeasthe S4axiom[]p — [][]Jp correspondingo
transitivity was postulatedseparatelyn provability logic. It took Dick just one day
to come up with a beautifiglyntacticderivationof the transitivity axiom from Léb's
Axiom, one of the many elegant proofs that form his 'signature’ in the' area.

! Later, Wim Blok — another participant in olagic milieu — found the more complexderivation
of [p — [p from Grzegorczyk'shAxiom (the counterparof Lob's Axiom on reflexive frames),
using algebraicmethods.Cf. van Benthem& Blok 1978. This was to have beenone of many
illustrations in our planned joint book annectiondetweenmodallogic anduniversalalgebra,
commissionedy Anne Troelstrafor "Studiesin Logic" asa sort of mergeof our dissertations

This book unfortunately never happened, although chapter drafts are still lying around.



Despiteour early encounterspick and|l havegone separatevays. His road took

him to the study of provability andinterpretabilityin arithmeticaltheories,whereas
my interests were in genenaodallogic andits connectionswith first- and higher-
order logic. In particular, whenever | look at results in provadiigyc, | ask myself
— to the exasperation of many colleagues, | fear: — how much of thgeiseralfact

of logic, and what reflects special featuresof arithmetic such as induction and

numerical coding power? In the same spirit, | often womdezthersomekey result
in modallogic is really more generalthan stated.Indeed,| once managedo drag

Dick into a bit of researchalong theselines, on the more generalmodel theory
behindthe De Jongh-Sambirfixed-PointTheorem.We found that it holds for

large non-modalclassesf generalizedjuantifierson well-foundedorderings(see
Section 3 below). There was no joint paper: just a brief repan Benthem1987,
which usedsuch fixed-point resultsin analyzing 'semanticautomata'computing
guantifiers in natural languagéfter that,| haveoccasionallytried to lure Dick, or

his students and colleagu@so systemsof generalinterpretabilityand other meta-
logic of first-order modetheory— without any specialrole for numbersand coded
proof predicates. All my attempts met with a remarkable lack of suécess.

But it is too lateto changemyself! My presentoffering is againa bunchof logical
observations in a general perspective, all taking Lob's Axiom as their starting point.

2 Scattering modal axioms
Perhaps the primordial frame correspondence concerns the&baxiem.

Fact [Jp —=[l[lp istruein a fram& = (W, R)(i.e., true at all worlds
under all valuations) ifF's accessibility relatioR is transitive.

Local versions osuchcorrespondencesork in eachworld s separatelybut | will
use global versionsfor convenienceBehind the Fact lies a general result by
Sahlgvist, discovered independently in my dissertation. Here is just one version:

Theorem There is an algorithm computing first-order frame correspondents
modal formulasx—p with an antecedemt constructed from atonysossibly
prefixed by universal modalities, conjunction, disjunction, and existential
modalities, and the consequ¢ntiny syntactically positive modal formula.

2 Albert Visser has informed me, though, about much ongoing spin-off of provability logic,

which strikes out for greater logical generality in a number of new directions.



The algorithm works as follows:

(@ translate the modal axiom into its canonical first-order form,
prefixed with monadic set quantifiers for proposition letters:
vx: vP: translation@)(P, x),
(b)  pull out all existential modalities in the antecedent, and
turn them into bounded universal quantifiers in the prefix,
(c)  compute a first-ordeminimal valuationfor the proposition
letters making the remaining portion of the antecedent true,
(d)  substitute this definable valuation for the proposition letters
occurring in the body of the consequent — and if convenient,
(e)  perform some simplifications modulo logical equivalence.

For detailsof this 'substitutionalgorithm'and a proof of its semanticcorrectness,
cf. Blackburn, de Rijke &Venema 2000.

Example For the modal transitivity formuldp — [][lp ,

(a) yieldsvk: ¥P: ¥xy (Rxy— Py) = vz (Rxz— ¥u (Rzu— Pu)),

(b) is vacuous, while (c) yields the minimal valuati#s):= Rxs— and then
(d) substitution yields’x: ¥Xy(Rxy— Rxy) = ¥z(Rxz— vu(Rzu— Rxu)).
The latter simplifies to the usual forirx: ¥z (Rxz— vu (Rzu— Rxu)). &

Now we make a simple observation. Notice that the very gaotedurevould also
work if all these modalities were entirehdependentas in the following formula:

Fact [1]p — [2][3]p also has a first-order frame correspondent, computed
in exactly the same fashion, vizx: ¥z (Rxz — vu (Rzu— Rxu)).

Definition ~ The scatteredversionof a modalformula ¢ arisesby marking each
modality in¢ uniquely with an index for its own accessibility relation. &

Evidently, the conditiong the SahlgvistTheoremapply to the scatteredrersionof
any implication of the sort describedabove.The reasonis that these conditions
make statementsabout individual occurrencesthey do not require pairwise co-
ordinationof occurrencesThis sort of condition is very frequentin logical meta-
theorems, and hence many results have more general scattered Versions.

3 Scattering makes sense in other formal languages, too — but we stick with the modal case here.
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Now let us takehis notion to a typically non-first-ordermodal principle like L6b's
Axiom. We findthatit still makessensethere,leadingto the following generalized
frame correspondence result for the scattered version.

Fact The modal formul@l]([2]p — p) — [3]p is equivalent on frames
F = (W, R, R, R) to the conjunction of the relational conditions
(@R;; (R) <R, (with (R) the reflexive-transitive closure dy)

(b) upward well-foundedness in the following sense: no werld
starts an infinite upward sequence of worldR, v, R, Y, R, ; ...

| forego a proof here, but it should not be difficult to cognoscenti of the origitmal
correspondencé. E.g., if conditions (a) and (b) hold but (c) failsenthe valuation
makingp false onlyon the infinite y-sequencavill falsify the scattered_6b Axiom

at the world x. This successfulgeneralizationrmight suggestthat scatteringkeeps
modal formulas more or less the same qua expressive power — but this is not true.

Fact There are first-order frame-definable modal formulas
whose scattered versions are not first-order definable.

Proof Considerthe first-order definable modal formula which conjoins the
transitivity axiom with the so-called McKinsey Axiom (cf. van Benthem 1983):

(Op = 00p) & ([d<>p — <>[Ip)

Evenits partly scatteredrersion([1]p — [1][1]p) & ([2]<2>p — <2>[2]p) s
not first-order definable. In any frame, taking the universal reldtipiRR, will verify
the left conjunct, and seubstitutingthese the purportedtotal first-order equivalent
would become a first-order equivalent for the McKinsey axiguad non &

Scattering seems of general interest to fmeseveralreasonslt focusesthe search
for most generaVersionsof modalresults,it fits with pluriform provability logics
where each box stands for a different arithmetical theory, and finallytérplay of

many modalities fits with the current trend towaeadnbining logics

“ This observation arose out of an email correspondence with Chris Steinsvold from CUNY
New York, who had looked at the axiofh]([2]p — p) — [1]p. The above Fact about the

scattered version of L6b's Axiom has also been found independently by Melvin Fitting.



3 Frame conditions in fixed-point logic

Now let's go back to standardcorrespondence’. Lob's Axiom seemstypically

beyond the syntactiangeof the SahlgvistTheorem,asits antecedenhasa modal
box over an implication. But still, its frame-equivalentof transitivity plus well-

foundednessthough not first-order, is definable in a natural extension— viz.

LFP(FO): first-order logic withfixed-point operator¢Ebbinghaus & Flum 1995).

Fact Thewell-founded parbf any binary relatioRR is definable as a smallest
fixed-point of the monotone set opera{d(X) = {y | ¥z(Ryz— z= X)}.

The simple proof is, e.g.,in Aczel 1977. The well-foundedpart is written in the
language of. FP(FO) as the smallest-fixed-point formula

HP, xs ¥y (Rxy— Py)

How can we find modal frame equivalents of this extendd(FO)-definableform
as systematicallyasfirst-order frame conditions?.6b's Axiom suggestsa general
principle, as the minimal valuation stepin the substitutionalgorithm still works.
Considerthe antecedenf]([J[p — p). If this modal formula holds anywherein a
modelM, x, then there must be a smallest predi€ater p makingit true at M, x —
because of a set-theoretic property guaranteeing a minimal verifying predicate:

Fact If [J([lp ; — p) holds at a world for alliel,
then[]([]P — P) holds axforP =, [[p ]]

This fact is easy to check. Here is the more general notion behind this observation.

Definition A first-order formula ¢(P, Q) has the intersectionproperty if, in
every modeM, whenevegg(P, Q) holdsfor all predicatesn somefamily {P, [iel},
it also holds for the intersection, thathé; P, |= ¢(P, Q). &

Now, the Lob antecedent displays a typical syntactical fowhath ensureghat the
intersection property must hold. We can specify this more generally as follows.

Definition A first-orderformulais a PIA condition — short-handfor: 'positive
antecedent implies atom' — if it has the following syntactic form:

X(p(P, Q, X) = Px)  with P occurring only positively im(P, Q, x). )

® The following section summarizes the main results of my paper 'Minimal
Predicates, Fixed-Points, and Definability’, ILLC Tech Report PP-2004-01.



The Lo6b antecedent then has the first-oflérform
vy ((Rxy & ¥z(Ryz— Pz)) — Py)

Example Horn clauses
A simpler caseof the PIA format is the universalHorn clause defining modal
accessibility via the transitive closure of a relafton

PxAvyvz (Pya Ryz)— Pz))
The minimal predicat® satisfying this consists of all poirfsreachable fronx. &
For the Lob antecedent itself, such an explicit description is a bit more complex.

Example Computing the minimal valuation for L6b's Axiom
Analyzing []([IJp —p) a bit more closely, the minimal predicate satisfying the
antecedent of L6b's Axiom at a wordlescribes the following set of worlds:

{y | ¥z (Ryz>Rxz)& no infinite sequence d?-successors starts frogh

Then,if we plug this descriptioninto the Lob consequenf]p, preciselythe usual,
earlier-mentioned conjunctive frame condition will result automatically. &

Here are a few factsaboutthe generalsituation. First, by way of backgroundwe
have a preservatiaimeoremshowingthat PIA-conditionsare expressivelycomplete
for the intersection behaviour guaranteeing unique existence of minimal predicates:

Theorem The following are equivalent for all first-order formulaéP, Q):
@  #P,Q) has the Intersection Property w.r.t. prediéate
(b)  #(P,Q) is definable by a conjunction BIA formulas.

This resultinvolves a pleasantlycomplexmodel-theoreticonstructionput it is not
relevantto our further concernshere.More to the point is that minimal predicates
defined through intersections are definable in an ordinary fixed-point fogic:

Fact The minimal predicates fétlA-conditions are definable Id-P(FO).

Plugging these into the proof of the Sahlqvist Theorem yields the correspondents:

® The technicaPIA link here is that the minimal fixed-point of the monotone operd®)

defined by &-positive formula is the intersection of all 'pre-fixed poiMtsvith F(X)cX.



Corollary Modal axiomswith PIA antecedentand syntactically positive conse-
guents have their corresponding frame conditions definaldl€R(FO).

This generalized correspondence covers much more than just Léb's Axiom:

Fact Themodalaxiom(<>p A [lJ(p — [lp)) — p hasa PIA antecedentvhose
minimal valuationyields the LFP(FO){rame-conditionthat, wheneverRxy
X can be reached froynby some finite sequence of succesghaeps’

The complexity of the required substitutionscan still vary considerablyhere,
depending on the complexity of reachitihg smallestfixed-point for the antecedent
via the usualbottom-upordinal approximationprocedure E.g., obtaining the well-
founded part of a relation may take asrglinal up to the size of the model.But for
Horn clauseswith just atomic antecedentsthe approximation procedure will
stabilize uniformly in any model by stage, and the definitions will be simpler.

Thus, LAb's Axiom suggests a drastic extension of modal correspondence methods.
Even so, there are limits. Not every modal axiom yields to the fixed-point approach!

Fact The tense-logical axiom expressing Dedekind Continuity
is not definable by a frame conditionLifP(FO).

The reason is that Dedekind Continuity holddi®y <) and fails in(Q, <), whereas
these two relational structures are equivalent WFR(FO)-sentences.

Conjecture  The McKinsey Axiom{]<>p — <>[]p , with its typically non-
PIA antecedenfi<>p , has nd_FP(FO)-definable frame correspondeht.

4 Excursion: provability logic in the modal gt—calculus

A conspicuoudrend in contemporarymodal logic has beenthe strengtheningof
modallanguagedo removeexpressivedeficits of the baselanguagewith just [],

<>, Often, this reflects a desire for optimal logic design, tryingoget stuck with
peculiarities of some language just because it was the first to occur to our ancestors.

’ Yet another illustration of this extended correspondence is the scattered Léb Axiom of

Section 2, whose frame correspondent was a conjunction of tiyfiBéFO)-conditions.

8 Normally, one views the Lob' antecedB(fip —p) and the McKinsey anteceddit>p as
being at the same level of complexity, beyond Sahlqvist forms. But in the present generalized

analysis of minimizable predicates, the latter is much more complicated than the former!



One such extended languagghe modal —calculus— the naturalmodal fragment
of LFP(FO), and at the sametime, a natural extensionof propositionaldynamic
logic. Harel, Kozen& Tiuryn 2000 hasa quick tour of its syntax, semanticsand
axiomatics. This formalism can define smallest fixed-points in the format

upe o(p), provided thap occurs only positively ip.

This adds general syntactic recursion, with no assumptidneaccessibilityorder.
In any modeM, the formulag(p) defines an inclusion-monotone set transformation

Fs (X)={seM [ (M, p:=X), s |=¢}

By the Tarski-Knaster Theorem, the operafign musthavea smallestfixed-point.
This can be reached bottom-up by ordinal approximation stages

R A L R &,
with ¢° = &, ¢ = F, (¢"), and¢® = U, ¢°

The smallestfixed-point formula ppe ¢(p) denoteshe first stagewhere ¢* = ¢**'.
This candefine,e.g.,a typical transitive closure modality from dynamic logic like
'someg-world is reachable in finitely marfy-steps'":

<a’>¢ =ppe ¢ v<a>p.

Also included are greatest fixed poimf® ¢(p), definable as upes —¢(-p). Smallest
and greatestfixed-points neednot coincide,and othersmay be in between.The
p—calculus is decidable, and its validities are axiomatized by two simple proof rules:

() upe9(p) <> p(upe H(p))
(i) if |- ¢() = @, then |upe ¢(p) —> &

This modal fixed-point logic captures many facts of interest here.

Fact The smallest fixed-point formulape [Jp defines the well-founded
part of the accessibility relation fgrin any modal model.

Now, we can extenf], <>- based provabilityogic to a g—calculuswith fixed-point
operatorsandtherebyrestoresomeharmonybetweenthe modal languageand its
frame-correspondencianguage.In particular, dualizing the above <a’>¢ gives
dynamiclogic-style modalities[] "¢ sayingthat ¢ is true at all worlds reachablein
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the transitiveclosureof the accessibilityrelationR for single[] . Thenwe canplay
with explicit versions of correspondence arguments, and variations on Lob's Axiom.

Example Scattered L6b Revisited.

Basic correspondence arguments go through in this sétffing.instanceyecall the
scattered_0b Axiom in Section2. One of the two conjunctsdefining its was the
condition thaR, ; (R,)" £ R,, which corresponds to the modal axiom

[1lp — [3]2°]p

In the right dynamic language this is indeed derivable from a scattered L6b Axiom:

@  [1([2][2 Jp = [27]p) = [3] [27]p) scattered Lob axiom

b [2lpep&[227]p fixed-point axiom for

© p— (2027l - [27]p) consequence of (b)

(d) [1lp —= [1](2][12 "Ip — [27]p) consequence of (c)

(e) [llp - [3l27]p from (a), (d) *

But there are also other versions of Lob's Axiom now. For instance,
Fact []'(lp —p)— [] p defines just upward well-foundednes$ot°

Thus, transitivity would now needan explicit K4-axiom, separatinghe two aspects
of provability logic explicitly. But this ca@also be donein anothermatter,using the
p-calculus definability of upward well-foundedness:

Fact Lo6b's Logic is equivalently axiomatized by the two principles
@ Op—0dp, (b) upelp

This version seemguite illuminating to me. First, it is easyto derive Lob's Axiom
from (a) and(b), using the aboveproof principlesfor smallestfixed-points. And
also, unpacking these two principles tbe specificcaseof upe [Jp, we seethat (i)
drops out, while (ii) becomes the induction rule that, [f & «, then |«.

As a final observation, we castthe close connectionbetweenprovability logic and
fixed-point logics yet differently.

® Many modal definability results have extensions to richer fragments of second-order logic.
E.g., Sahlqvist consequents could be just any syntactically positive second-order formula.
° This is related to the partly scattered forn{al{{2]p — p) — [1]p, whose correspondent can

be obtained by earlier methods. In particular, its '(a)-clause' now amounts'R) jRtc R,'.
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Proposition Lo6b's Logic can be faithfully embedded into grecalculus.
Proof The translatiordoing this works as follows:

(@  replace eveny] in a formulag by its transitive closure versigp
(b)  for the resulting formulég)’, take the implicatioppe [| p— (¢) .

It is straightforwardto checkthat a plain modal formula ¢ is valid on transitive
upward well-founded models iffps [] p— (¢)" is valid on all models. »

It should be fun to explorethe consequencesf this. E.g., decidability of Lob's
Logic now follows from that of the g—calculus. And the latter's uniform
interpolationpropertiesmay also be significant. Or, thinking vice versa: can we
extend the arithmetical interpretation of provability logic to the whslealculus?

5 Fixed-points and fixed-points

But there are other fixed-point results in modal logidiis final sectionis merelya
discussion of 'the right linkage/hich hasintrigued me for a long time. It may just
show my ignorance, and perhaps some reader can set me right and clarify it all.

A special fixed-point theorem  Here is a celebratedresult on defining modal
notions in provability logic, due to De Jongh and Samibiis the modal versionof
the arithmetical Fixed-Point Lemma from the proof of Godel's Theorem.

Theorem Consider any modal formula equivalenceg(p, g) in which the
propositionletter p only occursin the scopeof at leastone box, while q is
some sequence of other proposition letters. There exists a fogfg)lauch
that y(q) < ¢(y#Q)), q) is provablein the Lob's Logic, and moreover,any
two solutions to this fixed-point equation w.tiare provably equivalent.

Smorynski 1984 gives a simple algorithm for computing the fixed-point yAq).
Typical outcomes are the following fixed points:

Example equation: solution:
p < [lp p=T
p< =lp p=-[L
p« (Ip —0) p=(la —a)

More complex iteratively obtainedsolutions arise when the body of the modal
equation has multiple occurrencesof )
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Now, letus look at the connectionbetweerthis resultandthe generalfixed-points
of Sections 3, 4, definable in logical languages such gs-twculus oL FP(FO).

What does the Fixed-Point Theorem really do? There are two aspects to the result:

(@ existence and uniqueness of the predicate defined
(b)  explicit definability within the modal base language.

As to thefirst, existenceand uniquenes®f the abovepredicatep is just a general
property ofrecursivedefinitions over a well-foundedordering— of the type shown
correctin elementarysettheorytexts. But we also get the further information that

this recursive predicate can be defined inside the original modal language, without
or y-operators for modal fixed-points. Let's first look at the unique existence.

Comparing De Jongh-Sambin fixed-points and g-calculus In generalfixed-point
logics, one defining formula may producesmallestand greatestfixed-points, and
others in between. But we can compidretwo approachedn particular,the results
of the general approximation procedureof Section 4 and the special-purpose
algorithm mentionegust now. For a start, evidently, definitions gzpe ¢(p) with only
positive boxed occurrencesin ¢ fall under both approaches.

Example The fixed-point for the modal equatiqgne []p

In any modal model, the-calculus formulape [Jp defined the well-foundegart
of the accessibilityorderingR. Thus,in well-foundedmodels,it definesthe whole
universe — which explains the earlier solufioftrue’). »

But the De Jongh-Sambin Theorem also allows&gativeoccurrence®f p in the
defining equation. These fall outside of general fixed-point logics.

Example The fixed-point for the modal equatigne —[]p

Here,in generalthe approximationsequenceor the set operatorF_;, canfail to
yield any fixed pointwith an approximationsequencescillatingall the way. E.g.,
in the mode[N, <), that sequence &, N, & N, ... &

Actually, the situation in general fixed-poiigic is a bit more complex. Formulas
with mixed positive and negative occurrence can sometimes be admissible.

Example The mixed-occurrence formula <> (p v —[]p)
In this case,the approximationsequencewill be monotonically non-decreasing,
becausef theinitial disjunctp. So, therewill be a smallestfixed-point! We can



12

evencomputeit in this particularcase.The sequencestabilizesat stage2, yielding
<>T. There is also a greatest fixed-point, which is the whole set defined by

Note that this formula falls outsidbe scopeof the De Jongh-Sambimheorem,as
thefirst occurrenceof p in p v =[Jp is not boxed.But then, thereis no unique
definability in this extendediormat, sincethe smallestand greatesfixed-pointsare
different here.In generalfixed-pointlogic, this examplemotivatesan extensionof
the monotonic framework (cf. (Ebbinghaus & Flum 1995).

Definition Inflationary fixed-points for arbitrary formulas ¢(p, q) without
syntactic restrictions on the occurrencesof p are computedusing an ordinal
approximation sequence which forces upward cumulation:

¢! = ¢™ u ¢(¢™), taking unions again at limit ordinals. &

There is no guarantee that aRathere this stabilizes & fixed-point for the modal
formulag(p, g). It is rather a fixed-point for the modified formyda- ¢(p, ).

Combining the two sorts of fixed-point But comparisonmay also mean
combination. Wouldddinggeneral monotongéxed-pointsextendthe scopeof the
De Jongh-Sambin result? The answer is no.

Fact Any p-positive formulaupe ¢(p) with ¢(p) having unboxed occurrences
of p is equivalent to one in which all occurrencep otcur boxed.

Proof Without loss of generality, we can take the formula to be of the form
upe (p&A) vB with only boxed occurrences pin A, B

Let ¢* be the approximationsequencdor ¢ = (p&A) v B, and let B* be such a
sequence executed separately for the forfBul&e have the following collapse:

Claim ¢*=B* for all ordinals

This is proved by induction. The zero and limit cases are obvious. Next,

P! (¢ & A(¢) v B(¢)

(B* & A(B%) v B(B%)

where by the fact thdt,; is monotoneB* < B(B¥), and henc&® ~ A(B*) < B(B%)
= B(B%)
= BG—I—]

Thus, the same fixed-point is computed by the boxed forapsl&. &
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Thus, to some extent, adding:@alculus to provability logic has no effett.

Hereis anotherquestionconcerningthe interplay of the two formatsfor inductive
definitions. Canwe fit De Jongh-Sambirrecursionsinto the generalformat of
fixed-point logic? Note that theotion of well-foundedorderitself hasan inductive
character: it was the smallest fixed-point for the operator matching the modal box:

X)) ={y | ¥vz(Ryz— zeX}.

And on well-founded orders, this meansthat the whole universeis eventually
computed through the monotonically increasing ordinal approximation stages

D’ DY, .., I, ...

of the modalfixed-pointformula gre [Jr . Now we cannot computesimilar stages
for the above fixed-point formula ¢(p, ), since it may have both positive and

negative occurrencesof the proposition letter p. But we can define the related
monotonicsequencef inflationary fixed-points,definedabove.As we noted, this

need not lead to a fixed-point f@fp, ) per se. But this timeye do havemonotone
growth within theD-hierarchy, as thé's stabilize inside its stages:

Fact ¢*'n D* = ¢* 1 D*

Thus a generdixed-point procedurefor solving De Jongh-Sambirequationsuns
monotonically when restricted &pproximationstagedor a well-foundeduniverse.
This prediction pansut for the usualmodal exampledike the above[]p, -[]p , or

[Ip — g. Their fixed-point is indeedeasilyfound by referenceto the D-stages?

We will not provethis here,aswe will redescribehe situationnow. Recallthat the
well-founded part of a relation was found as the smallest fixed-peifi .

Fact De Jongh-Sambin fixed-points can be found by the
following simultaneousnductive definition:
r o [Ir

p < [Ir& ¢(p,g)

1 still, it may make sense to extend the languiagthis way, asin Section4. But to makethat
interesting,modelsshouldhave an underlyingaccessibilityrelationthat is no longer necessarily
transitive. This is more natural anyway, e.g., when we study modal logics of finite trees.
2| have tried to make this whole definitisgintactically positivdoy a trick of introducing two

proposition lettersp, for p andp, for -=p. But so far, this does not seem to do the job right.
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Here we compute the approximation stagepfaorsimultaneously:

(ra-f-I, pa-f-I)
(™, p*) = (Va1 Yan P limits

{re Or*A ¢ p*) SUCCessors

Note that the conjunglr (rather thary') for p makessurethatthe next stageof p
is computedoy referenceo the new valueof r. In fact we can provethe following
relation between the stages, written here with some abuse of notation:

Lemma If B<e, then p*a rf = 1%
Note that this implies monotonicityif <, thenp? — p*.

Proof The main induction is bestdoneon «, with an auxiliary one on . The
inductive casesof 0 and limit ordinals & are straightforward.Now considerthe
successostep. We make use of the following two auxiliary facts. The first is a
version of the invarianceof modal formulas for generatedsubmodels,and the
second an immediate consequence of the approximation procedure for

) M, P.x|=¢(p) iff M,PRx], x|= ¢(p)

(i)  LetR[x] be all points reachable frorby some finite
number ofR-steps. Ifx e 1% thenR[x] < U,

Now we compute - again with some beneficial abuse of notation:

X |= p**ia rft iff

X |= 1= A ¢(p*) A rf*! iff

X |= ¢ (p%) A rP¥ iff (by (i), (ii))

X|= ¢ (p*Arf) arft iff (ind. hyp.)

X|= ¢ (pP) Arf iff

x|= pf &

What isthe real scope of explicit definability? Still, this analysisdoesnot explain
why the De Jongh-Sambirfixed-points are explicitly modally definable Indeed,
| do not understandhe generalreason.First, in my joint work with Dick in the
1980s, we found that this explicit definability is not specific to the modal language.

Theorem Explicit definability for fixed-point equations with all occurrencé® in
the scopeof some operator holds for all propositional languageswith
generalized quantifierQp over sets of worlds satisfying
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(a) the above property (iQ(P) is true ak iff Q(PR) is true ak
(b)  the Heredity PropertyQp — [] Qp

This includes first-ordequantifiersQ like "in at mostfive successorsor second-
order ones like "irmostsuccessorsf eachsuccessor'Cf. van Benthem1987 for
the simple argument, generalizing the proof of the De Jongh-Sambin Theorem.

But still, the general principle behind théstendedexplicit definability eludesus. **
Oneimportantfactor is the transitivity of accessibility.E.g., the Godel fixed-point
equationp <> —[Jp has no explicit modal solution on finite treggh the immediate
successorelation.But there are other factors, too, such as the specific operators
availablein the language* Here is yet anothertake. Smorynskiproved the De
Jongh-Sambimheoremvia a Beth theoremfor L6b's Logic. Could there be some
general Beth theorem the backgroundherefor first-orderlanguagesandtheories
with frame conditions in suitable fragments of monadic second-order lbgit?

6 Conclusion

This note has shown how various aspectsro¥ability logic, high-lightedby Lob's
Axiom, suggestexploring a broaderbackgroundn modaland classicallogic, with
fixed-point languagesas a running thread.*” My observationsare mainly about
possibleconnectionsand work yet to be done.*® But such as it is, this is my
offering to Dick on the occasion of his retirement, which we all regret.

8 Incidentally, this reduction of all inductive notions to the original base language seems

a flaw, rather than a virtue, at least from gfemeralperspective of fixed-point languages

4 E.g., the preceding theorem suggests that 'explicit fixed-point theorems' might arise

when we add enough 'modal operators' to the language for generalized quantifiers.

> Smallest and greatest fixed points for a first-order forma(Pa coincide if$(P) implies

an explicit definition foP. The converse is true as well, by Beth's Theorem, as observed

by Martin Otto, and Craig Smorynski. Such explicit first-order definitions even arise
uniformly by some fixed finite approximation stage (Barwise-Moschovakis Theorem).

6 Albert Visser and Giovavva d'Agostino have pointed out that there may also be a deeper
analysis of these phenomena in terms of ideas from Hollenberg 1998, using uniform interpo-
lation properties of thg-calculus and its associated languages bighmulation quantifiers

7 Another running theme could be scattered versions of fixed-point results. E.g., multiple
occurrences of a fixed-point variable suggest coordination, and hence resistance to shattering.

8 Thanks to Giovanna d'Agostino and Albert Visser for their useful and lively comments!
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