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Abstract

In this note we investigate modal logics of submaximal and nodec
spaces when the modal diamond is interpreted as the closure operator of
a topological space. We axiomatize the modal logic of nodec spaces. We
show that the modal logic of submaximal spaces is a proper extension of
the modal logic of nodec spaces, axiomatize it, and prove that it coincides
with the modal logics of door spaces and I-spaces. We also show that the
modal logic of maximal spaces is a proper extension of the modal logic
of submaximal spaces, axiomatize it, and prove that it coincides with the
modal logic of perfectly disconnected spaces.

1 Introduction

In [16] McKinsey and Tarski suggested to interpret the modal diamond as the
closure operator of a topological space, and showed that under such interpre-
tation, the basic modal logic of all topological spaces is S4. One of the main
results of [16] states that S4 is complete with respect to any metric separable
dense-in-itself space. In particular, S4 is complete with respect to the real line
R, the rational line Q, or the Cantor space C.

To mention a few other topological completeness results, recall that a topo-
logical space X is called extremally disconnected if the closure of every open
subset of X is open; it is called scattered if every non-empty subspace of X con-
tains an isolated point; X is called weakly scattered if the set of isolated points of
X is dense in X.1 We call X a McKinsey space if the set of dense subsets of X
forms a filter. Also, X is called irresolvable if X is not the union of two disjoint
dense subsets of X, and it is called hereditarily irresolvable (HI) if every subspace
of X is irresolvable. Then it is known that S4.2 = S4+32p → 23p is the logic
of all extremally disconnected spaces [12], and that S4.1 = S4 + 23p → 32p
is the logic of all McKinsey spaces, which coincides with the logic all weakly
scattered spaces [12, 5]. Moreover, S4.Grz = S4 + 2(2(p → 2p) → p) → p is
the logic of all HI spaces, and it coincides with the logic of all scattered spaces,
the logic of all ordinal spaces, or the logic of any ordinal α ≥ ωω [9, 1, 5].

The aim of this paper is to add to the abovementioned topological complete-
ness results. In particular, we will consider the class of nodec spaces, its subclass

0Keywords: modal logic, topology, submaximal spaces, nodec spaces
Mathematics Subject Classification: Primary 03B45, 54A10; Secondary 06E25, 54G05,

54G12
1Weakly scattered spaces are sometimes called α-scattered (see, e.g., [18]).
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of submaximal spaces, and such subclasses of submaximal spaces as the classes
of door spaces, I-spaces, maximal spaces, and perfectly disconnected spaces. We
axiomatize the modal logic of nodec spaces; show that the modal logic of sub-
maximal spaces is its proper normal extension, axiomatize it, and prove that it
coincides with the modal logics of door spaces and I-spaces. We also show that
the modal logic of maximal spaces is a proper normal extension of the modal
logic of submaximal spaces, axiomatize it, and prove that it coincides with the
modal logic of perfectly disconnected spaces.

2 Submaximal and nodec spaces

We recall that a topological space X is called submaximal if every dense subset
of X is open, and that X is called nodec if every nowhere dense subset of X is
closed. Different equivalent conditions for a space to be submaximal are given in
[3, Theorem 1.2], and the ones for a space to be nodec in [6, Fact 1.14] and [17,
Corollary to Proposition 4].2 In particular, they imply that every submaximal
space is nodec. The converse is not true: any trivial topology on a set with
more than two elements is nodec, but not submaximal. This example shows
that there exist nodec spaces that are not T0. On the other hand, it is known
(see, e.g., [5, Remark 2.6]) that every submaximal space is T0.3

We point out that in Theorem 1.2 of [3], the conditions (d) and (f) require
that the space X under consideration be T1. We remove this restriction by
adding an extra condition to both (d) and (f). Throughout I, C, and d will
denote the interior, closure, and derived set operators, respectively. The com-
plement of a set A will be denoted by Ac.

Theorem 2.1 The following conditions are equivalent:

1. X is submaximal.

2. CA−A is closed for each A ⊆ X.

3. For each A ⊆ X, if IA = ∅, then A is closed and discrete.

4. CA−A is closed and discrete for each A ⊆ X.

Proof. (1) ⇔ (2) is the equivalence (g) ⇔ (e) of [3, Theorem 1.2].
(2) ⇒ (3) Suppose IA = ∅. Then

Ac = Ac ∪ IA = Ac ∪ (C(Ac))c = (A ∩ C(Ac))c = (C(Ac)− (Ac))c

is open since C(Ac) − (Ac) is closed. So A is closed. Thus, dA ⊆ A. We show
that dA = ∅. Let x ∈ A. Since IA = ∅, we also have that I(A − {x}) = ∅.
Therefore, A−{x} is closed, and so {x}∪Ac is open. But then there is an open

2We point out that in [17] nodec spaces are called α-topologies.
3In fact, as follows from Corollary 2.4 below, every submaximal space is TD.
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neighborhood Ux = {x} ∪Ac of x such that Ux ∩ (A− {x}) = ∅. Thus, x /∈ dA.
It follows that dA = ∅. Therefore, A is closed and discrete.

(3) ⇒ (4) Since

I(CA−A) = ICA ∩ I(Ac) = ICA ∩ (CA)c = ∅

we have that CA−A is closed and discrete.
(4) ⇒ (2) Obvious. a

To this end, we call closed and discrete sets simply clods. We recall that
the Hausdorff residue ρ(A) of a subset A of a space X is defined as ρ(A) =
A ∩ C(CA−A).

Lemma 2.2 For A ⊆ X the following hold.

1. CA−A is closed iff ρ(A) = ∅.

2. CA−A is clod iff d(dA−A) = ∅.

Proof. (1) If CA−A is closed, then

ρ(A) = A ∩ C(CA−A) = A ∩ (CA−A) = ∅

Conversely, if ρ(A) = ∅, then C(CA−A) ⊆ Ac. We also have that C(CA−A) ⊆
CA. Therefore, C(CA−A) ⊆ CA ∩Ac = CA−A. So CA−A is closed.

(2) Since CA− A = (A ∪ dA)− A = dA− A, we have that CA− A is clod
iff dA−A is clod iff d(dA−A) = ∅. a

Corollary 2.3 The following two conditions are equivalent to the four condi-
tions of Theorem 2.1:

5. ρ(A) = ∅ for each A ⊆ X.

6. d(dA−A) = ∅ for each A ⊆ X.

Proof. It follows immediately from Theorem 2.1 and Lemma 2.2. a

We recall that a space X satisfies the TD separation axiom or is a TD-space
if every point in X is the intersection of an open and a closed subset of X.
Equivalently, X is TD iff ddA ⊆ dA for each A ⊆ X. It is well known that the
TD separation axiom is strictly in between the T0 and T1 separation axioms.

Corollary 2.4 1. If X is submaximal, then X is HI.

2. If X is submaximal, then X is TD.

Proof. (1) It follows from [5, Theorem 2.4] that X is HI iff ρ(A) ( A for each
nonempty subset A of X. Now if X is submaximal and A is a nonempty subset
of X, then ρ(A) = ∅ ( A. So X is HI.
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(2) Every HI space is TD. To see this, let x ∈ X. We need to show that
x is isolated in C(x). If not, then C(x) = C(C(x) − {x}). Therefore, {x} and
C(x)− {x} are disjoint dense subsets of C(x), implying that C(x) is reducible.
Now apply (1).4 a

The converse of Corollary 2.4 is not true: already any ordinal α ≥ ω2 + 1 is
not a submaximal space.

Theorem 2.5 The following conditions are equivalent:

1. X is nodec.

2. Each nowhere dense subset of X is clod.

3. For each A ⊆ X, if A ⊆ ICIA, then A is open.

4. For each A ⊆ X, if CICA ⊆ A, then A is closed.

5. dA ⊆ CICA for each A ⊆ X.

6. CA = A ∪ CICA for each A ⊆ X.

7. IA = A ∩ ICIA for each A ⊆ X.

Proof. For (1)⇔(2) see [6, Fact 1.14], and for (1)⇔(3) see [17, Corollary to
Proposition 4].

(3)⇔(4) is obvious.
(2)⇒(5) Let A ⊆ X. Since

IC(A− ICA) = IC(A ∩ (ICA)c) = IC(A ∩ CI(Ac)) ⊆ I(CA ∩ CI(Ac))
= ICA ∩ ICI(Ac) = ICA ∩ (CICA)c = ICA− CICA = ∅

we have that A − ICA is nowhere dense. Therefore, A − ICA is clod. Thus,
d(A − ICA) = ∅, and as dICA ⊆ CICA and dA − dB ⊆ d(A − B), we have
that

dA− CICA ⊆ dA− dICA ⊆ d(A− ICA) = ∅

It follows that dA ⊆ CICA.
(5)⇒(6) As A,CICA ⊆ CA, we have that A ∪ CICA ⊆ CA. Conversely,

CA = A ∪ dA ⊆ A ∪ CICA. Thus, the equality.
(6)⇔(7) is obvious.
(6)⇒(1) If N ⊆ X is nowhere dense, then CN = N ∪ CICN = N . So N is

closed. a

We recall that a space X is said to be a door space if every subset of X
is either open or closed. It is obvious that every door space is submaximal.
The converse however is not true: the spaces in [5, Proposition 3.4], where the

4We point out that if X is submaximal, then every point in X is in fact either open or
closed. To see this, if x ∈ X is not isolated, then {x}c is dense, so open, and so {x} is closed.
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original space is not a door space, are submaximal but not door. For more
examples see Lemma 3.1 below.

We also recall that a space X is called an I-space if ddX = ∅. It is pointed
out in [3] that for a space X the following three conditions are equivalent: (i)
X is an I-space; (ii) X is nodec and (weakly) scattered; (iii) X is submaximal
and (weakly) scattered. Examples of I-spaces that are not door are the ordinals
α ∈ [ω2 + 1, ω2]. For examples of door spaces that are not I-spaces, recall that
a space X is called filtral if the set τ − {∅} of nonempty open subsets of X is a
filter. Let X be an infinite filtral space, where τ −{∅} is a free ultrafilter. Then
X is a dense-in-itself door space [7], hence is not an I-space.

A space X is called maximal if every open subset of X is infinite and any
strictly finer topology on X contains a finite open set. It is known (see, e.g.,
[13, Theorem 24]) that every maximal space is submaximal. Since maximal
spaces are dense-in-itself and I-spaces are (weakly) scattered, the two classes
have the empty intersection. The filtral spaces, where the filter τ − {∅} is a
principal ultrafilter, serve as examples of door spaces that are not maximal. For
examples of maximal spaces that are not door, we note that it was shown in [13,
Theorem 13] (see also [6, Theorem 1.2(b)]) that there exist Hausdorff maximal
spaces. We point out that none of them can be door.

Closely related to the notion of maximality is the notion of perfectly discon-
nected spaces from [6]. We recall that a space X is called perfectly disconnected
if X is T0 and disjoint subsets of X have no common limit points. Equivalently,
X is perfectly disconnected iff X is T0 and dA∩d(Ac) = ∅ for each A ⊆ X. It is
shown in [6, Theorem 2.2] that if X is dense-in-itself, then X is maximal iff X
is perfectly disconnected. It follows that maximal spaces are perfectly discon-
nected. The Sierpinski space serves as an example of a perfectly disconnected
space that is not maximal. Since the class of maximal spaces does not intersect
with the class of I-spaces and since there exist maximal spaces that are not door,
it follows that there exist perfectly disconnected spaces that are neither door
nor I-spaces. The ordinal ω + 1 serves as an example of a door and an I-space
that is not perfectly disconnected. For more examples see Lemmas 3.1 and 3.5
below.

Proposition 2.6 If X is perfectly disconnected, then X is submaximal.

Proof. We first show that X is a TD-space. Suppose not. Then there exists
A ⊆ X such that ddA 6⊆ dA. Therefore, there is x ∈ ddA such that x /∈
dA. The latter implies that there is an open neighborhood Ux of x such that
Ux ∩ (A − {x}) = ∅. Consequently, Ux ⊆ Ac ∪ {x}. From x ∈ ddA it follows
that Ux ∩ (dA − {x}) 6= ∅. So there is y 6= x such that y ∈ Ux ∩ dA. We show
that y ∈ dA∩ d(Ac). That y ∈ dA follows from the selection of y. To show that
y ∈ d(Ac), we first show that y ∈ d(x). Let V be an open neighborhood of y. It
is sufficient to show that x ∈ V . We set U = V ∩Ux. Since y ∈ dA, we have that
U∩(A−{y}) 6= ∅. ¿From U ⊆ Ux ⊆ Ac∪{x} it follows that U∩(A−{y}) = {x}.
Thus, x ∈ U ⊆ V , implying that y ∈ d(x). Now since X is T0 and y ∈ d(x),
there must exist an open neighborhood Vx of x such that y /∈ Vx. Let V be an
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open neighborhood of y. We set O = V ∩ Ux ∩ Vx. Since x ∈ ddA and O is an
open neighborhood of x, we have that O∩ (dA−{x}) 6= ∅. So there exists z 6= x
such that z ∈ O ∩ dA. Since z 6= x and z ∈ O ⊆ V ∩ Ux ∩ Vx ⊆ Ux ⊆ Ac ∪ {x},
we have that z ∈ Ac. Clearly z 6= y as y 6∈ Vx. Therefore, z ∈ V ∩ (Ac − {y}).
It follows that for any open neighborhood V of y we have V ∩ (Ac − {y}) 6= ∅.
This implies that y ∈ d(Ac). Thus, y ∈ dA ∩ d(Ac), which is a contradiction
because X was assumed to be perfectly disconnected. Therefore, ddA ⊆ dA for
each A ⊆ X, and so X is TD.

To complete the proof, suppose X is not submaximal. Then by Corollary
2.3 there exists A ⊆ X such that d(dA − A) 6= ∅. Since d preserves ⊆ and X
is TD, we obtain that d(dA − A) = d(dA ∩ Ac) ⊆ ddA ⊆ dA and d(dA − A) =
d(dA ∩ Ac) ⊆ d(Ac). Therefore, ∅ 6= d(dA − A) ⊆ dA ∩ d(Ac), and so there
exists A ⊆ X such that dA∩ d(Ac) 6= ∅. Thus, X is not perfectly disconnected,
which is a contradiction. a

Therefore, we obtain the following relationship between the above six classes
of spaces:

Door
∩

Maximal ⊂ Perfectly disconnected ⊂ Submaximal ⊂ Nodec
∪

I-spaces

We conclude this section by a characterization of perfectly disconnected
spaces in terms of extremally disconnected spaces, which, in view of [6, Theorem
2.2], can be thought of as a generalization of the characterization of maximal
spaces given in [14, 15].

Theorem 2.7 A space X is perfectly disconnected iff X is submaximal and
extremally disconnected.

Proof. That perfectly disconnected spaces are submaximal follows from Propo-
sition 2.6; that they are extremally disconnected follows from [8, Theorem
6.2.26]. Conversely, suppose that X is submaximal and extremally discon-
nected. Because X is submaximal, X is T0. Moreover, for A ⊆ X, we have that
d(A−IA) = d(A∩(IA)c) = d(A∩C(Ac)) = d(C(Ac)−(Ac)) = d(d(Ac)−(Ac)) =
∅ by Corollary 2.3. Therefore, dA = d((A−IA)∪IA) = d(A−IA)∪dIA = dIA.
Similarly, d(Ac − I(Ac)) = ∅ and so d(Ac) = dI(Ac). Thus, dA ∩ d(Ac) =
dIA ∩ dI(Ac) = ∅ as X is extremally disconnected. It follows that X is per-
fectly disconnected. a
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3 Modal logics of submaximal and nodec
spaces

We recall that S4 is the least set of formulas of the basic modal language L
containing the axioms (i) 2(p → q) → (2p → 2q), (ii) 2p → p, and (iii)
2p → 22p, and closed under modus ponens, substitution, and necessitation
(ϕ/2ϕ). A topological model is a pair 〈X, ν〉, where X is a topological space
and ν is a valuation, assigning to each propositional variable of L a subset of
X. The connectives ∨,∧, and ¬ are interpreted in 〈X, ν〉 as the set-theoretical
union, intersection, and complement; and the modal operators 2 and 3 are
interpreted as the interior and closure operators of X. As usual, x |= ϕ denotes
that ϕ is satisfied in x ∈ X; we say that ϕ is true in 〈X, ν〉 if x |= ϕ for each
x ∈ X; that ϕ is valid in X if ϕ is true in 〈X, ν〉 for each valuation ν; and that
ϕ is valid in a class K of topological spaces if ϕ is valid in each member of K.

For a class K of spaces, let L(K) denote the set of formulas of L that are
valid in K. It is easy to verify that L(K) is a normal extension of S4. We call
L(K) the modal logic of K. Let T denote the class of all topological spaces; ED
the class of all extremally disconnected spaces; MK the class of all McKinsey
spaces; SCAT the class of all scattered spaces; WSCAT the class of all weakly
scattered spaces; ORD the class of all ordinal spaces; and HI the class of all
hereditarily irresolvable spaces. Then the completeness results for modal logics
mentioned in the introduction can be stated as follows:

1. S4 = L(T ) = L(R) = L(Q) = L(C).

2. S4.2 = L(ED).

3. S4.1 = L(MK) = L(WSCAT ).

4. S4.Grz = L(HI) = L(SCAT ) = L(ORD) = L(ωω).

Our goal in this section is to add to the above completeness results and axiom-
atize modal logics of the six classes of spaces described in Section 2.

We recall that a space X is called Alexandroff if the intersection of any
family of open subsets of X is again open. Equivalently, X is Alexandroff iff
every x ∈ X has a least open neighborhood. It is well known that Alexandroff
spaces correspond to S4-frames (see, e.g., [2]). Indeed, we recall that a S4-frame
is a pair F = 〈X, R〉, where R ⊆ X2 is reflexive and transitive. For a given F, a
subset A of X is called an upset of F if x ∈ A and xRy imply y ∈ A. Dually, A
is called a downset if x ∈ A and yRx imply y ∈ A. The topology on X is defined
by declaring the upsets of F to be open. Then the downsets of F turn out to be
closed, and it is routine to verify that the obtained space is Alexandroff, that
a least neighborhood of x ∈ X is R(x) = {y ∈ X : xRy}, that the closure of a
set A ⊆ X is

CR(A) = R−1(A) = {x ∈ X : ∃y ∈ A with xRy}
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and that the interior of A is

IR(A) = (R−1(Ac))c = {x ∈ X : (∀y ∈ X)(xRy ⇒ y ∈ A)}

For a topological space X, define the specialization order on X by setting xRy
iff x ∈ C(y). Then it is easy to check that the specialization order is reflexive
and transitive,5 and that the upsets of 〈X, R〉 are exactly the opens of X iff
X is Alexandroff. These observations immediately imply that there is a 1-1
correspondence between Alexandroff spaces and S4-frames, and hence every
Kripke complete normal extension of S4 is also topologically complete.

Let N denote the class of all nodec spaces; S the class of all submaximal
spaces; D the class of all door spaces; I the class of all I-spaces; PD the class
of all perfectly disconnected spaces; and M the class of all maximal spaces. It
follows from Section 2 that M $ PD $ S $ N , that D, I $ S, that M∩I = ∅,
and that M,D; D, I; PD,D and PD, I are pairwise incomparable. The rest of
this section is dedicated to showing that

1. L(N ) = S4.Zem = S4 + 232p → (p → 2p),

2. L(S) = L(I) = L(D) = S4 + p → 2(3p → p),

3. L(PD) = L(M) = S4.2 + p → 2(3p → p).

Let X be an Alexandroff space and R be the specialization order on X. Then
the opens of X are exactly the upsets of 〈X, R〉. We call 〈X, R〉 rooted if there
exists r ∈ X such that rRx for each x ∈ X. If this is the case, r is called a root
of 〈X, R〉. We call x ∈ X maximal if xRy implies x = y, and quasi-maximal
if xRy implies yRx; similarly, x ∈ X is called minimal if yRx implies y = x,
and quasi-minimal if yRx implies xRy. Let maxX and qmaxX denote the
sets of maximal and quasi-maximal points, and minX and qminX the sets of
minimal and quasi-minimal points of X. If R is a partial order, it is obvious
that maxX = qmaxX and minX = qminX. We call Y ⊆ X a quasi-chain if
for every x, y ∈ Y we have that xRy or yRx. If in addition xRy implies yR�x,
then Y is called a chain. Again the two notions coincide if R is a partial order.
A chain Y of X is said to be of length n if it consists of n elements. We say
that 〈X, R〉 is of depth n if there exists a chain in X of length n and every other
chain in X is of length ≤ n.

Lemma 3.1 Let X be an Alexandroff space with the specialization order R.

1. X is nodec iff 〈X, R〉 is of depth ≤ 2 and qminX − qmaxX ⊆ minX.

2. X is submaximal iff X is an I-space iff 〈X, R〉 is a partially ordered set of
depth ≤ 2.

3. X is door iff 〈X, R〉 is a partially ordered set of depth ≤ 2 such that either
maxX −minX or minX −maxX consists of just one point.

5It is a partial order iff X is T0.
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Proof. (1) Suppose X is nodec and there is a chain Y ⊆ X of length > 2. Let
xRyRz be three distinct elements from Y . Then zR�y and yR�x. So z /∈ R−1(y),
and so {y} is nowhere dense. However, it is not a downset as x /∈ R−1(y),
and hence {y} is not closed, contradicting to X being nodec. Therefore, 〈X, R〉
is of depth ≤ 2. Similarly, if there exist x, y ∈ qminX − qmaxX such that
xRy and yRx, then {y} is nowhere dense but not closed, which is again a
contradiction. Thus, qminX − qmaxX ⊆ minX. Conversely, suppose 〈X, R〉 is
of depth ≤ 2 and qminX − qmaxX ⊆ minX. Then N ⊆ X is nowhere dense
iff N ∩ qmaxX = ∅. Therefore, if N is nowhere dense, then N ⊆ minX, which
implies that N is a downset, hence closed.

(2) If X is an I-space, then X is submaximal. If X is submaximal, then X
is nodec, so (1) implies that 〈X, R〉 is of depth ≤ 2. Also, since submaximal
spaces are T0, 〈X, R〉 is a partially ordered set. Suppose 〈X, R〉 is a partially
ordered set of depth ≤ 2. Since maxX is the set of isolated points of X, we
have that ddX = d(X −maxX) = ∅. Therefore, X is an I-space.

(3) Suppose X is door. Then X is submaximal and (2) implies that 〈X, R〉 is
a partially ordered set of depth ≤ 2. If both maxX−minX and minX−maxX
consist of at least two points, then either there exist x ∈ maxX −minX and
y ∈ minX−maxX such that yR�x or all points in minX−maxX are R-related
to all points in maxX −minX. In either case, {x, y} is neither an upset nor a
downset. Hence, {x, y} is neither open nor closed, which contradicts to X being
door. Conversely, if 〈X, R〉 is a partially ordered set of depth ≤ 2 such that
either maxX −minX or minX −maxX consists of at most one point, then as
X = maxX ∪minX, it follows that X is door. a

As an immediate consequence we obtain the following.

Corollary 3.2 If X is an Alexandroff space with the specialization order R such
that 〈X, R〉 is rooted, then the following conditions are equivalent.

1. X is submaximal.

2. X is an I-space.

3. X is door.

4. 〈X, R〉 is a partially ordered set of depth ≤ 2.

Theorem 3.3 L(S) = L(D) = L(I) = S4 + p → 2(3p → p).

Proof. Since D, I ⊆ S, we have that L(S) ⊆ L(D), L(I). We show that
p → 2(3p → p) is valid in S. Suppose X is a submaximal space and ν is a
valuation on X. Denoting ν(p) by A and using the fact that ρ(A) = ∅ (see
Corollary 2.3), we obtain that

ν(p → 2(3p → p)) = Ac ∪ I((CA)c ∪A) = Ac ∪ (C(CA ∩Ac))c =
(A ∩ C(CA−A))c = (ρ(A))c = X
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Therefore, p → 2(3p → p) is valid in every submaximal space, hence it is
valid in S. It follows that S4 + p → 2(3p → p) ⊆ L(S) ⊆ L(D), L(I).
Now since S4 + p → 2(3p → p) is complete with respect to all finite rooted
partial orders of depth 2 (see, e.g., [19, 11]), it follows from Corollary 3.2 that
S4 + p → 2(3p → p) = L(D) = L(I) = L(S). a

Theorem 3.4 L(N ) = S4.Zem.

Proof. Suppose X is a nodec space and ν is a valuation on X. If we denote
ν(p) by A, and use the fact that IA = A ∩ ICIA (see Theorem 2.5), then

ν(232p → (p → 2p)) = (ICIA)c ∪Ac ∪ IA =
(ICIA ∩A)c ∪ IA = (IA)c ∪ IA = X

Therefore, 232p → (p → 2p) is valid in every nodec space. It follows that
S4.Zem ⊆ L(N ). To show the converse, recall from [19, Theorem 7.5] that
S4.Zem is complete with respect to all finite rooted frames of depth 2 with
a unique root. Since by Lemma 3.1(1) these are nodec spaces, we obtain that
L(N ) ⊆ S4.Zem, thus the equality. a

It follows that the modal logic of nodec spaces is S4.Zem, and that the
modal logic of submaximal spaces is S4 + p → 2(3p → p), which is one of
the five pre-tabular extensions of S4 described in [11]. Moreover, the latter
coincides with the modal logics of door spaces and I-spaces, and is a proper
normal extension of the former.

Lemma 3.5 Let X be an Alexandroff space with the specialization order R.

1. X is perfectly disconnected iff 〈X, R〉 is a partially ordered set of depth
≤ 2 such that (∀x, y, z ∈ X)(xRy &xRz) ⇒ (∃u ∈ X)(yRu & zRu).

2. X is not maximal.

Proof. (1) We recall that an Alexandroff space is extremally disconnected iff
(∀x, y, z ∈ X)(xRy &xRz) ⇒ (∃u ∈ X)(yRu & zRu) [12, Theorem 1.3.3]. Now
using Theorem 2.7 and Lemma 3.1 we obtain that X is perfectly disconnected
iff X is submaximal and extremally disconnected iff 〈X, R〉 is a partially ordered
set of depth ≤ 2 such that (∀x, y, z ∈ X)(xRy &xRz) ⇒ (∃u ∈ X)(yRu & zRu).

(2) Suppose X is a maximal Alexandroff space. Then X is submaximal. So
〈X, R〉 is a partially ordered set of depth ≤ 2. Therefore, maxX 6= ∅. Thus, X
has isolated points, contradicting to maximality of X. a

We are in a position now to show that the modal logics of perfectly discon-
nected and maximal spaces coincide and are equal to S4.2+p → 2(3p → p). We
point out that since the two element chain is the only frame among the rooted
frames of depth 2 that validate 32p → 23p, and since S4.2+ p → 2(3p → p)
is tabular, it is the logic of the two element chain.

Theorem 3.6 L(PD) = L(M) = S4.2 + p → 2(3p → p)
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Proof. As M ⊆ PD ⊆ S, we have that S4 + p → 2(3p → p) = L(S) ⊆
L(PD) ⊆ L(M). Since 32p → 23p is valid in X iff X is extremally dis-
connected and since perfectly disconnected spaces are extremally disconnected,
S4.2 + p → 2(3p → p) ⊆ L(PD). Moreover, as S4.2 + p → 2(3p → p) is the
logic of the two element chain, i.e. the logic of the Sierpinski space, which is
perfectly disconnected, we have S4.2 + p → 2(3p → p) = L(PD) ⊆ L(M).

To show that L(M) = S4.2 + p → 2(3p → p), it is sufficient to show
that the Sierpinski space is a continuous and open image of any maximal space,
and recall from [4, 12] that if Y is a continuous and open image of X, then
L(X) ⊆ L(Y ). Let X be a maximal space. To construct a continuous and open
map from X onto the Sierpinski space S = {u, v}, where {u} is open and {v}
is closed, pick any x ∈ X and set

f(y) =
{

v, if y = x
u, otherwise

It follows from the definition of f that it is a well-defined onto map. Since
maximal spaces are T1 and dense-in-itself, it is immediate that f is continuous
and open. Therefore, L(M) = L(PD) = S4.2 + p → 2(3p → p). a

Remark 3.7 Since both S4.Zem and S4+ p → 2(3p → p) have the same su-
perintuitionistic companion, viz. the superintuitionistic logic of all finite rooted
partially ordered sets of depth 2, the superintuitionistic logics of nodec, sub-
maximal, door, and I-spaces coincide, and can be axiomatized by adding to the
intuitionistic propositional logic Int the formula q ∨ (q → (p ∨ ¬p)). The ob-
tained logic is the least logic of the second slice of Hosoi, and is one of the three
pre-tabular superintuitionistic logics.

Similarly, the superintuitionistic logics of perfectly disconnected and maxi-
mal spaces coincide with the superintuitionistic logic of the two element chain,
and can be axiomatized by adding to Int the formulas q ∨ (q → (p ∨ ¬p)) and
(p → q) ∨ (q → p). This logic is the greatest logic of the second slice of Hosoi.

4 Further work

In the appendix to [16] McKinsey and Tarski suggested another interpretation
of 3; that is as the derived set operator d. For this interpretation, the basic
modal logic of all topological spaces becomes wK4 [10]. Since the derived set
operator has more expressive power than the closure operator, logics over wK4
can express such topological properties as being a TD-space [10], a dense-in-itself
space [20], or a scattered space [9]—the properties that logics over S4 are not
capable of expressing. Moreover, logics over wK4 distinguish between Q and
R, as well as between R and higher dimensional Euclidean spaces [20]. None
of this is distinguishable by logics over S4. In addition to this, we can show
that logics over wK4 are capable of distinguishing between all the six classes
of topological spaces considered in this paper. However, these results, together
with the finite d-axiomatization of these classes of spaces, will appear in the full
version of this paper, which will be published elsewhere.
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