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Abstract

This paper investigates the semantics of the intuitionistic proposi-
tional logic (IPL) extended with subtraction, also known as the Heyting-
Brouwer logic or biIPL. It introduces and extends some basic concepts
and theorems in the Kripke semantics of intuitionistic propositional logic
to obtain new results on the exact models of fragments in the bidirectional
case. The paper also includes results of the computations in fragments of
biIPL, based on some of these exact models.

1 Introduction

Apart from it’s philosophical interest, intuitionistic logic has attracted researchers
for it’s information oriented flavor. The underlying idea that formulas describe
the way an idealised mathematician acquires new mathematical knowledge, can
be generalised for example to include the description of the changes in the in-
formation state of a database.

The intuitionistic logic especially describes such changes in the ’essential’
part of our knowledge: once such an ’essential’ truth is established it will be
part of all following information states.

Even if one respects the expanding nature of intuitionistic logic, it could be
interesting to study a logic which can also take into account previous information
states and would allow moving forward and backward between such states.

One such an extension of the intuitionistic propositional logic is the propo-
sitional Heyting-Brouwer logic, obtained by extending the intuitionistic propo-
sitional logic IPL with a new connective dual to the implication. The rule for
this subtraction operator \ is:

A\B ` C ⇔ A ` B ∨ C
The semantic definition of subtraction in Kripke models of IPL is:

m |= A\B ⇔ ∃l ≤ m (l |= A and l 6|= B)

The logic biIPL was introduced in [19] and has been studied, at least to some
extend, in [4], [5], [9], [20], [21], [22] and [24]. In these papers several names
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can be found for the logic (Heyting-Brouwer logic, logic with coimplication,
bidirectional intuitionistic logic, dual intuitionistic logic) and for subtraction
(coimplication, pseudo-difference).

Compared to the usual semantics of IPL the semantics of biIPL is bidi-
rectional. Because of the semantics of the subtraction operator, the truth of a
formula in a certain world m no longer only depends on the situation in m and
the worlds above m, but may also depend on the worlds below m.

This paper investigates the consequences of the bidirectional semantics of
biIPL for some basic notions that have been introduced in the semantics of
IPL in the research on exact models and computations of fragments (see [10],
[11]).

2 Preliminaries

The language of the propositional logic in this paper uses connectives in the set
{∧,∨,→, \}. The rules for biIPL are the usual ones for IPL plus the \-rule

A\B ` C ⇔ A ` B ∨ C

We will assume ¬A is defined as A → ⊥ and that A↔B is a shorthand for
(A→ B)∧(B → A). Similarly we introduce a dual for the negation, A = >\A.
To reduce the number of parentheses in formulas we will assume the following
order of preference: = ¬ > ∧ > ∨ > → = \.

For example the formula (((A∧B)→ (C∨¬(D)))\( (¬(E)))) will be written
as (A ∧B → C ∨ ¬D)\ ¬E.

In a fragment of biIPL the number of atoms and connectives in the language
is restricted. For the derivability relationship in such a fragment we use the
derivability in biIPL. The notation for these fragments consists of the list of
connectives in the restricted language, written between square brackets, and a
superscript number at the end indicating the number of atoms in the fragment.
Hence [∧, \]2 consists of all formulas build from two atoms with conjunction and
subtraction alone.

The reader is assumed to be acquainted with the Kripke semantics for in-
tuitionistic propositional logic (see for example [6] for details). In the sequel
the frames 〈W,≤〉, on which our Kripke models 〈W,≤, atom〉 are based, will be
(usually finite) partial ordered sets (not necessarily rooted). The function atom
defines for each world in m ∈ W the atomic formulas p in the language true in
m, so atom(m) = {p atomic | m |= p}.

In the Kripke semantics for intuitionistic propositional logic the important
constraint on this function is that [[p]] = {m ∈ W | m |= p} = {m ∈ W | p ∈
atom(m)} should be an upward closed subset (a cone) of W . I.e. p ∈ [[m]] and
m ≤ l (for l ∈W ) then p ∈ atom(l).

As the focus of this paper is mainly on the semantics of biIPL we usualy
will not refer to a specific proof system for this extension of IPL. If the reader
would be in need of such a system, the following set of rules will do. The format
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of these rules has been chosen to clarify the duality principle in biIPL (see
fact 28).

Let Γ and ∆ be finite sets of formulas. A sequent Γ ` ∆ can informally be
read as ‘from the assumptions in Γ one can derive one of the conclusions of ∆’.

In the sequel we will, as usual, often write Γ, A for Γ∩{A} if A is a formula
and Γ a set of formulas.

The structural rules for this calculus are:

(Ax) Γ ∩∆ 6= ∅ ⇒ Γ ` ∆
(Weak) Γ′ ⊆ Γ and ∆′ ⊆ ∆ and Γ′ ` ∆′ ⇒ Γ ` ∆
(Cut) Γ ` A,∆ and Γ, A ` ∆ ⇒ Γ ` ∆

Let A and B be formulas. For each of the connectives in {∧,∨,→, \} we now
introduce a rule:

(∧) Γ, A ∧B ` ∆ ⇔ Γ, A,B ` ∆
(∨) Γ ` A ∨B,∆ ⇔ Γ ` A,B,∆
(→) Γ ` A→ B,∆ ⇔ Γ, A ` B,∆ (∆ = ∅)
(\) Γ, A\B ` ∆ ⇔ Γ, A ` B,∆ (Γ = ∅)

Leaving out the \-rule, the above proof system can be proved to be equivalent
to other, more usual, sequent calculi for IPL. The conditions on the→-rule and
the \-rule are essential for biIPL. Lifting these would result in a calculus for
the classical propositional logic (CPL).

The above rules, akin to those of Ketonen in [18], suggest that one could try
to add new connectives like:

Γ, A ◦B ` ∆ ⇔ Γ ` A,B,∆
Γ ` A ◦B,∆ ⇔ Γ, A,B ` ∆.

These connectives can however be defined in biIPL as:

>\(A ∨B) ` ∆ ⇔ ` A,B,∆
Γ ` ¬(A ∧B) ⇔ Γ, A,B `

(again, lifting the conditions on ∆ or Γ in these rules would yield CPL).
As, obviously, Γ ` B → A ⇔ Γ, B ` A (and likewise for the \-rule), the

logic biIPL is in a sense complete for this type of rules defining connectives.

3 Basic semantics

This section introduces some basic notions for the semantics of biIPL. Some
of these notions, like situations, semantic types and exact Kripke models may
not be as standard as for example bisimulation. Neither is our approach in
this section, based on fragments of biIPL with restricted nesting of both the
implication and the subtraction the most common, and maybe not even the
most economical, way to present the semantics of a propositional logic.
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The non-standard approach in this section offers us the opportunity to show
how these concepts, that have been developed for IPL and modal logics in
previous research in co-operation with Dick de Jongh, are related and how they
can be extended to cover the semantics of biIPL.

The following lemma, stating the soundness of the Kripke semantics of bi-
Ipl as described in the introduction section, will be the starting point of our
investigation into the semantics of biIPL.

Lemma 1 biIPL, defined as IPL extended with the \-rule,

A\B ` C ⇔ A ` B ∨ C,

is sound for the usual Kripke models of IPL, where m |= A\B is defined as:

m |= A\B ⇔ ∃l ≤ m.l |= A and m 6|= B

Proof. As we already know IPL is sound (and complete) for the Kripke models
of IPL, basically, what has to be proved is that the \-rule is valid with the given
interpretation of A\B. Hence A\B |= C ⇔ A |= B ∨ C.

Let A\B |= C and m |= A. If m 6|= B then m |= A\B and hence by
assumption m |= C. So in this case m |= B ∨ C. If on the other hand m |= B
then obviously m |= B ∨ C. Hence, A\B |= C ⇒ A |= B ∨ C.

For the other direction, let A |= B ∨ C and m |= A\B. By definition, there
is a l ≤ m such that l |= A and l 6|= B. By assumption l |= C. As a conse-
quence, m |= C and hence m |= B∨C. Which shows A |= B∨C ⇒ A\B |= C. a

The proof of the completeness theorem is postponed until after the intro-
duction of situations.

The following lemma introduces the notion of restricted nesting of implica-
tion and subtraction, the language of formulas with this nesting restricted to
a certain number k, and the theory in this restricted language for a node in a
Kripke model.

Definition 2 Let L be the language of biIPL and m a node in a Kripke model
M . Define

– δ(A) = 0 if A atomic

– δ(A ◦B) =
{

max{δ(A), δ(B)} if ◦ ∈ {∧,∨}
max{δ(A), δ(B)}+ 1 if ◦ ∈ {→, \}

Lk = {A ∈ L | δ(A) ≤ k}
Thk(m) = {A ∈ Lk | m |= A}

In the sequel of this section we will assume that the fragments of biIPL are
based on a finite number of atoms, n. To be more precise, we would have to
show this n in our notation and write for example Lnk and Thnk (m) in stead of
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Lk and Thk(m). For simplicity and readability however we will omit this n if
there is no risk of confusion.

Note that, as a consequence of our definitions of ¬ and , we have δ(¬A) =
δ( A) = δ(A) + 1.

Lemma 3 For each finite n and finite k, the the number of equivalence classes
in the fragment Lnk of biIPL is finite.

Proof. The proof proceeds by induction on k. Note that Ln0 = [∧,∨]n, which
has a finite number of equivalence classes.

Next, observe that each equivalence class in Lnk+1 is either a class in Lnk , in
{A→ B | A,B ∈ Lnk}, or in {A\B | A,B ∈ Lnk}. Clearly each of these sets has
a finite number of equivalence classes (by the induction hypothesis). a

3.1 Situations

In [14] Dick de Jongh proved that for each nodem in a finite Kripke modelM one
can find two formulas, say A(m) and B(m), that in a sense define the semantic
situation of m precisely. In fact if l |= A(m) then the submodel generated by l,
the cone ↑l, is bisimular to a generated submodel of ↑m, the cone generated by
m. Dually, if l 6|= B(m), ↑m is bisimular to a generated submodel of ↑l. So if
l |= A(m) and l 6|= B(m), the nodes m and l are bisimular.

Here we first generalise this idea, introducing pairs 〈A,B〉 as situations
(where A will be true and B false) and then use a specific kind of situa-
tions to prove the completeness theorem for biIPL. In subsection 3.2 we will
prove a special version of the above mentioned theorem (also known as the De
Jongh/Jankov/Fine theorem) in the context of biIPL by relating the so called
maximal situations to semantic types.

Definition 4 Define

• A situation (in L) is a tuple of formulas, 〈A,B〉 in L.

• A situation 〈A,B〉 is consistent if A 0 B.

• A situation 〈A,B〉 is prime if for all C (in L) A 0 C ⇔ A,C ` B
• A situation 〈A,B〉 is called maximal if for each formula C (in L) it is

true that A 0 C ⇔ C ` B.

The following definitions link the situations defined above to Kripke seman-
tics.

Definition 5 If M is a Kripke model and m a node in M define

• m |= 〈A,B〉 ⇔ m |= A and m 6|= B.

• [[〈A,B〉]]M = {m | m |= 〈A,B〉}
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• 〈A,B〉 ` 〈C,D〉 ⇔ [[〈A,B〉]]M ⊆ [[〈C,D〉]]M
• ALk(m) =

∧{C ∈ Lk | m |= C}
• BLk(m) =

∨{C ∈ Lk | m 6|= C}
• σLk(m) = 〈ALk(m), BLk(m)〉 is called the k-situation of m (in L).

If there is no risk of confusion, we will omit mentioning L or the Kripke
model M and for example simply write Ak(m), σk(m) and [[〈A,B〉]].

Lemma 6 The k-situation of a node m in a Kripke model M is a maximal
situation in Lk.

Proof. For each C ∈ Lk either m |= C and Ak(m) ` C or m 6|= C and
C ` Bk(m). So we have indeed for each C ∈ Lk: Ak(m) 0 C ⇔ C ` Bk(m).a

The following facts are easy to prove.

Facts 7

1. If [[〈A,B〉]]M 6= ∅ for some Kripke model M then 〈A,B〉 is consistent.

2. Prime situation are consistent and maximal situations are prime.

3. If m a node in a Kripke model M , then σk(m) is a maximal situation in
Lk.

4. A prime situation 〈A,B〉 is maximal if A→ B ` B.

5. If 〈A,B〉 is prime in L and A → B is a L-formula, then 〈A,A→ B〉 is
maximal in L.

6. If 〈A,B〉 is prime in L and C,D,C ∨ D are formulas in L, then A `
C ∨D ⇔ A ` C or A ` D

7. 〈A,B〉 ` 〈C,D〉 ⇔ A ` B ∨ C and A ∧D ` B
8. Thk(m) = {C ∈ Lk | Ak(m) ` C}
9. Bk(m) =

∨{C ∈ Lk | Ak(m) 0 C}

Note that, as Lnk has finitely many equivalence classes, there are, up to
equivalence in biIPL, finitely many k-situations in Lnk . We can define a partial
ordering of these k-types.

Definition 8 Define σk(m) ≤ σk(l) ⇔ Ak(l) ` Ak(m).

The following lemma shows that we could also have used the Bk(m) part of
the σk(m) for this definition.
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Lemma 9 Let m and l be nodes in a Kripke model M , then

σk(m) ≤ σk(l) ⇔ Bk(l) ` Bk(m)

Proof. Let σk(m) ≤ σk(l). By definition Ak(l) ` Ak(m) and as Ak(l) 0 Bk(l)
also Ak(m) 0 Bk(l). As σk(m) is maximal, this proves Bk(l) ` Bk(m).

For the other direction, let Bk(l) ` Bk(m). So Ak(m) 0 Bk(l) and, by max-
imality of σk(l), Ak(l) ` Ak(m). Which proves σk(m) ≤ σk(l). a

The following fact is a simple consequence of lemma 9

Fact 10 Let 〈A,B〉 be a maximal situation in Lk and m a node in a Kripke
model M . Then m |= A and m 6|= B ⇔ σk(m) = 〈A,B〉

We will now prove a completeness theorem for fragments of biIPL with
restricted nesting of → and \, using the partial ordering of all the k-situations
in Lnk as a finite Kripke model.

This proof is akin to the construction of finite Henkin-Kripke models. The
following lemma will play the role normally played by the Lindenbaum Lemma.

Let us fix n for Lnk and in the sequel simply write Lk.

Lemma 11 For each consistent situation 〈A,B〉 in Lk, there exists a maximal
situation 〈A′, B′〉 in Lk such that A′ ` A and B ` B′.

Proof. The proof is in fact a construction similar to that in the usual proof of
the Lindenbaum Lemma.

Enumerate all equivalence classes in Lk and let each be represented by a
formula Ci in Lk. Let A0 = A and B0 = B and define:

〈Ai+1, Bi+1〉 =
{ 〈Ai ∧ Ci, Bi〉 if Ai, Ci 0 Bi
〈Ai, Bi ∨ Ci〉 otherwise

After a finite number of steps, say l, the list of Ci’s is exhausted and define
〈A′, B′〉 = 〈Al, Bl〉.

From this definition of 〈A′, B′〉 it easily follows that 〈A′, B′〉 is a maximal
situation and A′ ` A and B ` B′. a

Definition 12 Define MLk as the partial ordering of all the maximal situations
in Lk with the valuation atom(〈A,B〉) = {p atomic | A ` p}

On can easily check that MLk is indeed a Kripke model (for IPL and hence
for biIPL).

The next lemma shows that each maximal situation in Lk reflects precisely
its situation in MLk .

Lemma 13 If 〈A,B〉 is a maximal situation in MLk then σk(〈A,B〉) = 〈A,B〉.
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Proof. We will prove that for each 〈A,B〉 in MLk and each C ∈ Lk:

〈A,B〉 |= C ⇔ A ` C ⇔ C 0 B

Note that the last part of this statement is a simple consequence of the
definition of a maximal situation.

As an immediate consequence we have that 〈A,B〉 |= A and 〈A,B〉 6|= B.
By fact 10 this proves that σk(〈A,B〉) = 〈A,B〉.

The proof that 〈A,B〉 |= C ⇔ A ` C proceeds by induction on the
complexity of the formula C. If C is atomic, the statement is true by definition.
〈A,B〉 |= C ∧ D iff both 〈A,B〉 |= C and 〈A,B〉 |= D. By induction

hypothesis this is true iff A ` C and A ` D. Which is equivalent to A ` C ∧D.
For the case of C ∨ D the prove is similar, using the fact that maximal

situations are prime and hence A ` C ∨D ⇔ A ` C and A ` D.
Now let 〈A,B〉 |= C → D and assume A 0 C → D. This would imply

that A ∧ C 0 D and hence 〈A ∧ C,D〉 is a consistent situation. By lemma 11
there would be a maximal 〈A′, B′〉 such that A′ ` A ∧ C and D ` B′. So by
induction hypothesis 〈A′, B′〉 |= C and 〈A′, B′〉 6|= D. But from A′ ` A one
infers that 〈A,B〉 ≤ 〈A′, B′〉, contradicting 〈A,B〉 |= C → D. Which proves
〈A,B〉 |= C → D implies A ` C → D.

For the other direction, assume A ` C → D. Let 〈A,B〉 ≤ 〈A′, B′〉. If
〈A′, B′〉 |= C, then by induction hypothesis A′ ` C. As also A′ ` A (because
〈A,B〉 ≤ 〈A′, B′〉) one may conclude A′ ` D and hence 〈A′, B′〉 |= D by the
induction hypothesis. Which proves 〈A,B〉 |= C → D.

Let 〈A,B〉 |= C\D. So, for some maximal situation 〈A′, B′〉 ≤ 〈A,B〉 (hence
where A ` A′) we have 〈A′, B′〉 |= C and 〈A′, B′〉 6|= D. In other words: A′ ` C
and D ` B′

Assume A 0 C\D, then C\D ` B and hence C ` D ∨ B. Now we would
have A′ ` D ∨B and hence, as D ` B′, A′ ` B. But as A ` A′ this would yield
A ` B, a contradiction. Which proves A ` C\D.

For the other direction, let A ` C\D. As a consequence C\D 0 B and hence
C 0 D ∨ B. By lemma 11 there is a maximal 〈A′, B′〉 such that A′ ` C and
D ∨ B ` B′. From B ` B′ infer that 〈A′, B′〉 ≤ 〈A,B〉. Using the induction
hypothesis one easily proves 〈A′, B′〉 |= C and 〈A′, B′〉 6|= D. Which proves
〈A,B〉 |= C\D. a

As a simple consequence of lemma 13 and the construction of the model MLk
each maximal situation in a fragment of biIPL with a finite number of atoms
and restricted nesting of both implication and subtraction is the k-situation of
a node in a (finite) Kripke model.

In combination with lemma 11 this almost immediately provides us with a
proof of a completeness theorem for biIPL.

Theorem 14 If T be a finite set of formulas in biIPL and A a formula in
biIPL such that T 0 A, then for some node m in a finite Kripke model M it is
true that m |= T and m 6|= A.
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Proof. If T 0 A, there is a Lnk such that both
∧
T and A are formulas of Lnk . In

this fragment 〈∧T,A〉 is a consistent situation. According to lemma 11 there
is a maximal situation 〈A′, B′〉 covering the situation 〈∧T,A〉. I.e. A′ ` ∧T
and A ` B′. The node 〈A′, B′〉 in the model MLk for the fragment Lnk is the
required node m. a

3.2 Semantic types

In [11] the notion of a semantic type was introduced (see [10] for more details
on semantic types in IPL).

Definition 15 Define the semantic k-type of m, tk(m) as

tk(m) =
{

atom(m) if k = 0
〈tk−1(m), {tk−1(l) | m ≤ l}, {tk−1(l) | l ≤ m}〉 if k > 0

If t is a semantic k-type, then τ0(t), τ1(t), and τ2(t) are defined by stipulating
t = 〈τ0(t), τ1(t), τ2(t)〉

As a consequence of this definition, if m ≤ l and k > 0 then both τ1(tk(l)) ⊆
τ1(tk(m)) and τ2(tk(m)) ⊆ τ2(tk(l)).

Lemma 16 If t is a semantic k-type and k > 0 then τ1(t) ∩ τ2(t) = {τ0(t)}
Proof. Let t = t1(m) then ∀l ≥ m.atom(m) ⊆ atom(l) and ∀l ≤ m.atom(l) ⊆
atom(m). So {atom(l) | l ≥ m} ∩ {atom(l) | l ≤ m} = {atom(m)}. Which
proves the lemma for k = 1.

Now assume the lemma to hold for k. By definition it is true that tk(m) ∈
τ1(tk+1(m)) ∩ τ2(tk+1(m)). If t = tk(l) for some l and t ∈ τ1(tk+1(m)) ∩
τ2(tk+1(m)) then there is a l′ ≥ m such that tk(l′) = t and a l′′ ≤ m such
that tk(l′′) = t.

So τ1(t) = τ1(tk(l′)) ⊆ τ1(tk(m)) ⊆ τ1(tk(l′′)) = τ1(t) and we may con-
clude that τ1(t) = τ1(tk(m)). Similarly one proves τ2(t) = τ2(tk(m)). Applying
the induction hypothesis now yields τ0(tk(m)) = τ0(t). Hence t = tk(m) and
τ1(tk+1(m)) ∩ τ2(tk+1(m) = {tk(m)} = {τ0(tk+1(m))}. a

Corollary 17 If t1 and t2 are semantic k-types and τ1(t1) = τ1(t2) and τ2(t1) =
τ2(t2) then t1 = t2.

The corollary above justifies the following definition.

Definition 18 Let t1 and t2 be semantic k-types. Define

t1 ≤ t2 ⇔
{
t1 ⊆ t2 if k = 0
τ1(t2) ⊆ τ1(t1) and τ2(t1) ⊆ τ2(t2) otherwise

One can easily check that the defined order on the semantic k-types respects
the order in the Kripke models. That is, if m ≤ l then tk(m) ≤ tk(l). This fact
is used in the following lemma.

9



Lemma 19 Let m and l be nodes in a Kripke model M , then:

tk+1(m) ≤ tk+1(l) ⇒ tk(m) ≤ tk(l)

Proof. Using definition 18 and the above mentioned fact, t ∈ τ1(tk+1) implies
t ≤ tk(m). Similarly, t ∈ τ2(tk+1) ⇒ t ≥ tk(m). So, if tk+1(m) ≤ tk+1(l)
then τ1(tk+1(l) ⊆ τ1(tk+1(m). The later implies tk(l) ∈ τ1(tk+1(m) and hence
tk(m) ≤ tk(l). a

Corollary 20 If m and l nodes in a Kripke model M then tk(m) ≤ tk(l) implies
atom(m) ⊆ atom(l)

Proof. If k = 0 then the statement is trivial. So let tk+1(m) ≤ tk+1(l). Ac-
cording to the lemma above this implies tk(m) ≤ tk(l), which by induction
hypothesis implies atom(m) ⊆ atom(l). a

As a consequence, the partial order of a set of k-types is a Kripke model if
one defines atom(tk(m)) = atom(m).

Theorem 21 If m and l nodes in a Kripke model M then the following are
equivalent:

1. Thk(m) ⊆ Thk(l)

2. σk(m) ≤ σk(l)

3. tk(m) ≤ tk(l)

Proof. Note that for k = 0 the theorem is trivial. By induction on k we will
proof the general case. So, let k > 0 and assume the theorem to be true for
j-theories, j-situations and j-types with j < k.

(1 ⇒ 2) Ak(m) ∈ Thk(m) ⊆ Thk(l) implies Ak(l) ` Ak(m) which by
definition implies σk(m) ≤ σk(l).

(2 ⇒ 3) Let t ∈ τ1(tk(l)), then for some w ≥ l it will be true that
tk−1(w) = t. As a consequence, l 6|= Ak−1(w) → Bk−1(w), and, as σk(l) is
maximal, one may conclude that Ak−1(w) → Bk−1(w) ` Bk(l). As we as-
sume σk(m) ≤ σk(l), Bk(l) ` Bk(m) and hence Ak−1(w)→ Bk−1(w) ` Bk(m).
Which implies m 6|= Ak−1(w) → Bk−1(w). So for some w′ ≥ m it will be true
that w′ |= Ak−1(w) and w′ 6|= Bk−1(w). By fact 10 this implies σk−1(w) =
σk−1(w′) and by the induction hypothesis this implies tk−1(w) = tk−1(w′) ∈
τ1(tk(l)). Which proves τ1(tk(m)) ⊆ τ1(tk(l)).

Let t ∈ τ2(tk(m)). For some w ≤ m it will be true that tk−1(w) = t. As a
consequence, m |= Ak−1(w)\Bk−1(w), and Ak(m) ` Ak−1(w)\Bk−1(w). From
the assumption that σk(m) ≤ σk(l) it follows that Ak(l) ` Ak(m). Which
implies that Ak(l) ` Ak−1(w)\Bk−1(w).

By definition then l |= Ak−1(w)\Bk−1(w). So for some w′ ≤ l it will be
true that w′ |= Ak−1(w) and w′ 6|= Bk−1(w). By fact 10 this implies σk−1(w) =
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σk−1(w′) and by the induction hypothesis this implies tk−1(w) = tk−1(w′) ∈
τ2(tk(m)). Which proves τ2(tk(l)) ⊆ τ1(tk(m)).

Combining τ1(tk(m)) ⊆ τ1(tk(l)) and τ2(tk(l)) ⊆ τ2(tk(m)), one thus obtains
tk(m) ≤ tk(l).

(3 ⇒ 1) Assuming tk(m) ≤ tk(l), we will prove by induction on the com-
plexity of A ∈ L (IH2) that m |= A ⇒ l |= A.

In the case that A is atomic, one can apply the corollary 20. For the other
cases:

If m |= A ∧ B, then m |= A and m |= B. Using the induction hypothesis
(IH2) this implies l |= A and l |= B and hence l |= A∧B. Similarly m |= A∨B
implies l |= A ∨B.

If m |= A → B, then both A and B are formulas in Lk−1. Assume that
l 6|= A → B, then there would be a w ≤ l such that w |= A and w 6|= B. Now
tk−1(w) ∈ τ1(tk(l)) and τ1(tk(l)) ⊆ τ1(tk(m)), so tk−1(w) ∈ τ1(tk(m)). Which
would imply there is a w′ ≥ m such that tk−1(w) = tk−1(w′). By the (original)
induction hypothesis Thk−1(w) = Thk−1(w′), from which one could conclude
that m 6|= A→ B, clearly a contradiction. Which proves l |= A→ B.

If m |= A\B, again A and B are formulas in Lk−1. Now for some w ≤ m it
will be true that w |= A and w 6|= B. So w ∈ τ2(tk(m)) ⊆ τ2(tk(l)). Hence there
also is a w′ ≤ l such that tk−1(w) = tk−1(w′). Again by the (original) induc-
tion hypothesis, one may conclude that Thk−1(w) = Thk−1(w′) and l |= A\B. a

Corollary 22 (A De Jongh/Jankov/Fine theorem for biIPL)
If m and l are nodes in finite Kripke models then:

• l |= Ak(m) ⇔ tk(m) ≤ tk(l)

• m 6|= Bk(l) ⇔ tk(m) ≤ tk(l)

Proof. By definition l |= Ak(m) implies Ak(l) ` Ak(m). Which by definition
yields σk(m) ≤ σk(l). By theorem 21 this implies tk(m) ≤ tk(l). For the other
direction, use theorem 21 to conclude σk(m) ≤ σk(l) from tk(m) ≤ tk(l). By
definition this implies Ak(l) ` Ak(m) and hence l |= Ak(m).

If m 6|= Bk(l) then Bk(l) ` Bk(m) which implies σk(m) ≤ σk(l) according
to lemma 9. Again, by theorem 21 it follows that tk(m) ≤ tk(l). For the other
direction, if tk(m) ≤ tk(l), use theorem 21 to conclude σk(m) ≤ σk(l), which by
lemma 9 implies Bk(l) ` Bk(m) and hence m 6|= Bk(l). a

Usually the De Jongh/Jankov/Fine theorem is stated in terms of bisimula-
tion (or p-morphism) between generated submodels of the nodes m and l. In
the case of fragments with restricted nesting (in the modal equivalent of the the-
orem, nesting of 2, otherwise nesting of implication) one would expect layered
bisimulations (sometimes called bounded bisimulation). Such a layered bisimu-
lation can easily be defined for biIPL too and it is not difficult to prove that
tk(l) = tk(m) iff l and m are k-bisimular.
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3.3 Construction of exact models in biIPL

Theorem 21 relates the k-situations in the model MLk constructed in the proof
of lemma 13 to the semantic types in the Kripke models for Ll.

The model MLk not only contains all maximal situations in Lk, but also all
semantic k-types. Hence we can use the computation of all semantic k-types to
obtain the model MLk , which is a special case of a so called exact Kripke model.

Definition 23 Let M be a Kripke model and F a fragment (in biIPL). M is
called the exact Kripke model of F , Exm(F) if:

M is universal for F For all formulas A and B in F :
A ` B ⇔ M |= A→ B

M is differentiated for F For each upward closed subset X in M , there is a
formula A such that [[A]] = X.

Exact Kripke models (for the [∧,→]n and [∧,→,¬]n fragments of IPL)
where first introduced by N.G. de Bruijn in [2]. Exact models as ordered sets
of semantic types for other fragments of IPL can be found in [10].

Computer programs based on exact models can be used as fast theorem
provers and have been applied for example in the research of fragments of logics
(like in [11] and [12]).

Theorem 24 The model MLnk constructed in the proof of lemma 13 is the ex-
act Kripke model of Lnk , the fragment of biIPL with n atoms and nesting of
implication and subtraction restricted to k.

Proof. That MLk is a universal model for Lk is an immediate consequence of
(the construction in the proof of) lemma 11.

In MLk each maximal situation 〈A,B〉 generates a cone for [[A]], i.e. [[A]] =
↑〈A,B〉. As obviously 〈A′, B′〉 |= A then by lemma 11 A′ ` A and hence
〈A,B〉 ≤ 〈A′, B′〉.

On the other hand, each upward closed subset X of MLk is generated by a
finite number of maximal situation 〈Ai, Bi〉 that are minimal in X in the order-
ing of MLk . It easy to check that X = [[

∨
Ai]]. a

The construction of Exm(L0) is rather trivial. The 0-types are sets of atoms
that can be ordered by the inclusion relation to obtain the exact model. Note
that this is in fact the exact model of [∧,∨]n as described in [10]. More pre-
cisely, we would have to take out the maximal element (the set of all atoms) as
otherwise we would not have a formula for the empty set (as required according
to the definition of exact Kripke model).

To construct Exm(Lk+1) we use the model Exm(Lk).

• Recall that each k + 1-type t is of the form 〈τ0(t), τ1(t), τ2(t)〉, where
τ0(t) is a k-type and both τ1(t) and τ2(t) are sets of k-types. Moreover,
τ1(t) ⊆ {t′ | τ0(t) ≤ t′} in Exm(Lk) and, dually, τ2(t) ⊆ {t′ | τ0(t) ≥ t′}.
This defines a finite search space for the construction of all k + 1-types.
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• If k > 1 then for each k+1 type t we have a constraint (TC) on the choice
of k-types in τ1(t) and τ2(t) as:
τ1(τ0(t)) = {τ0(t′) | t′ ∈ τ1(t)} and τ2(τ0(t)) = {τ0(t′) | t′ ∈ τ2(t)}.

One can easily turn the recipe of the above construction into a computer
program constructing all semantic k + 1-types and order these into a model
Exm(Lk+1).

Such a program computed the exact model of L1
1 for the fragment with one

atomic formula as:

t t��� t t���AAAp p

3 4

1 2

Using this exact model one can let the computer calculate all equivalence
classes in L1

1, using the fact that the model is universal for this fragment. In
the simple case of L1, one can still check by hand that the irreducible elements,
the A(m) of the 1-situations are:

1 p ∧ p
2 ¬p
3 p
4 p

Even the Exm(L2
1) can still be constructed by hand.

Figure 1 The exact model of biIPL2
1.

t t�
��
t t�
��t t�

��
t t�
��

@
@@
@

@@

@
@@
@
@@

t t�
��
t t�
��t t�

��
t t�
��

@
@@
@

@@

@
@@
@
@@

tt
t tt

t
t��� t@@@

@
@

@
@

@

@
@

@
@

@

@
@
@
@

@

@
@
@
@

@

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

p

p

p

p q

q

q

q

p, q

p, q p, q

p, q

p, q

p, q p, q

p, q

Reducing the model above by disregarding the τ1(t) part of the semantic
types results in the dual of the exact model of IPL2

1 (see [10]), the exact model
of [∧,∨, \, ]21:

13



t t�
��
t t�
��t t�

��
t t�
��

@
@@
@

@@

@
@@
@
@@

tt tt

@
@

@
@

@

�
�
�
�
�
�
��

@
@@
@
@@

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
��

tp

p q

q

p, q

p, q p, q

p, q

p, q

p, q p, q

p, q

To prove that the types obtained by the recipe above are indeed all k + 1-
types, i.e. that for each such a constructed t there is a node m in a finite Kripke
model such that t = tk+1(m), we sketch a procedure to construct such a node
step by step.

Lemma 25 Let m be a node in a finite Kripke model M . If m ≤ l and t =
〈τ0(m), τ1(m)\ tk(l), τ2(m)〉 is a type construction for which the constraint TC,
defined above, holds then there is a node m′ in a finite Kripke model M ′ such
that tk+1(m′) = t.

Proof. For the proof we sketch the construction of M ′ from M . First take a
copy of M where we remove ↑l. Let this new model be N . Next take the union
of a disjunct copy of M and N and connect all maximal nodes in N that are
’new’, i.e. do not correspond to maximal nodes in M with all successors of l in
M excluding l itself.

To check that the node m′ in N corresponding to m in M has the k+1-type
t can be proved by a simple induction on k. a

Corollary 26 Let m be a node in a finite Kripke model M . If m ≤ l and
t = 〈τ0(m), τ1(m), τ2(m) \ tk(l)〉 is a type construction for which the constraint
TC, defined above, holds then there is a node m′ in a finite Kripke model M ′

such that tk+1(m′) = t.

Proof. Simply dualise the proof of lemma 25. a

A computer program designed according to the construction as sketched
above computed the exact models of L1

2 and L1
3 (biIPL1

2 and biIPL1
3).

Figure 2 The exact model of L1
2.
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t t��� t t���AAA
t t��� t t���AAA

�
��
p p

p p

7 8

5 6
3 4

1 2

The corresponding formulas are:

1 p ∧ p 2 ¬ p
3 p ∧ p 4 p
5 ¬p ∧ ¬p 6 ¬¬p ∧ p
6 ¬p 7 p\¬p

The model Exm(L1
3), with 32 nodes, is already too complicated for a simple

drawing. Compared to the famous Rieger-Nishimura lattice that can be used
as (an infinite) exact model for IPL (to be precise: after removing the minimal
element for p→ p), this shows that even the fragment of biIPL with one atomic
formula is much more complex than the corresponding fragment in IPL.

4 Fragments of biIPL

Fragments of IPL have been extensively studied, for example in [10]. Many
results on the fragments of IPL can be extended to fragments of biIPL using
the duality between [∧,→,¬] and [∨, \, ].

Definition 27 Define the following translation between formulas of biIPL:

dpe = p if p atomic
d>e = ⊥
d⊥e = >
dA ∧Be = dAe ∨ dBe
dA ∨Be = dAe ∧ dBe
dA→ Be = dBe\dAe
dA\Be = dBe → dAe
dΓe = {dCe | C ∈ Γ}

The following fact can easily be proved by checking that the steps in a proof
of A ` B can be replaced by their duals, to obtain a proof of dBe ` dAe and
vice versa.
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Fact 28 If A and B are formulas in biIPL then

A ` B ⇔ dBe ` dAe

As a consequence, the Lindenbaum Algebra, i.e. the partial ordering of all
equivalence classes, of a fragment is isomorphic to the Lindenbaum Algebra of its
dual. For example, it is known that the IPL fragments [∧,→,¬]n and [∨,∧,¬]n

are finite for any finite number of atoms n, i.e. have a finite Lindenbaum Algebra
(see [10] or [16] for details).

Example 29 The exact Kripke model of [∧,→,¬]2 is:
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1 p q

6 7 8 9 10 11 12 13 14 15

The corresponding formulas (the A(m) ∈ [∧,→,¬]2) are:
1. p ∧ q 8.¬(p→ q)
2. p ∧ ¬¬q 9. (q → p) ∧ (¬q → p) ∧ (¬¬q → q)
3. p ∧ ¬q 10. (p↔ q) ∧ ¬¬p
4. q ∧ ¬p 11. (p→ q) ∧ (¬p→ q) ∧ (¬¬p→ p)
5. q ∧ ¬¬p 12.¬(q → p)
6.¬¬q ∧ ((p→ q)→ p) 13. (¬¬p→ q) ∧ ((¬¬p→ p)→ q)
7. (¬¬q → p)∧ 14.¬¬p ∧ ((q → p)→ q)

((¬¬q → q)→ p) 15.¬p ∧ ¬q

Dually both [∨, \, ]n and [∧,∨, ]n (and their subfragments) will be finite.
It turns out that if F is a fragment in biIPL that has an exact Kripke model

MF , the exact Kripke of the dual fragment F̆ can be constructed by changing
the direction of the arrows and taking atom(m)̆ = {p atomic | p ∈ F and p 6∈
atom(m)}.
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Example 30 The exact Kripke model of [∨, \, ]2 is:
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tBBB
B
B
BB

�
�
�
�
�
��

tBBB
B
B
BB

�
�
�
�
�
��

tBBB
B
B
BB

�
�
�
�
�
��

tBBB
B
B
BB

�
�
�
�
�
��

tBBB
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
�
�
�
�
��

b
b

b
b

b
b

b
b
b

b

"
"
"
"
"
"
"
"
"
"

14

1 2 3 4 5 6 7 8 9 10

11 12 13 14q q p p

The fragments in biIPL that are dual to fragments in IPL with an infinite
Lindenbaum Algebra are obviously infinite. So the fragments containing [∧, \]
are infinite. The more interesting fragments are the mixed ones, like [¬, ].

Example 31 A model with infinitely many classes in [¬, ].

tt AAA ��� tt AAA ��� tt AAA ��� tt AAA ��� tt AAA ���p
1 3 5 7 9

2 4 6 8 10

. . .

In example 31 one can easily check that:

[[p]] = {1}
[[ ¬p]] = {1, 2, 3}
[[ ¬ ¬p]] = {1, 2, 3, 4, 5}

Or, more in general, if A1 = p and Ak+1 = ¬Ak, then one can easily show
that [[Ak]] = {1, . . . , 2 ∗ k − 1}. Which proves that there are infinitely many
different equivalence classes in [¬, ]1.

Excluding all fragments that either contain [¬, ], a subfragment of IPL
which is known to be infinite, or the dual of such a fragment, the ordering of
the remaining fragments in biIPL generated by a subset of the set of connectives
{∧,∨,→,¬, \, } is pictured in figure 3.
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Figure 3 The ordering of finite fragments in biIPL.
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[¬] [ ]

[→] [∧] [∨] [\]

[∧,→] [∧,∨] [∨, \]

[→,¬] [∧,¬] [∨,¬] [\, ][∨, ][∧, ]

[∧,→,¬] [∧,∨,¬] [∧,∨, ] [∨, \, ]

As the maximal elements in this ordering, [∧,→,¬], [∧,∨,¬] and their duals
[∨, \, ] and [∧,∨, ] are fragments with a finite number of equivalence classes
(once we fix a finite number of atomic formulas as generators), figure 3 shows
all finite fragments in biIPL with connectives in the set {∧,∨,→,¬, \, }.

Apart from the fragments with connectives in the set of ’normal’ connectives,
{∧,∨,→,¬, \, }, one can define new connectives, like ↔, ¬¬ and their duals.
As we know that for example the fragments [↔,¬]n and [∧,→,¬¬]n are finite,
so will their duals.

The following tabel shows the finite fragments in the [∧,∨, \, , ]n frag-
ment of biIPL for n ∈ {1, 2, 3, 4}. These are the duals of the fragments in IPL
studied in [10] and [16]).
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fragment n = 1 n = 2 n = 3 n = 4
[∧] 1 3 7 15
[∨] 1 3 7 15
[∧,∨] 1 4 18 166
[ ] 3 6 9 12
[ ] 2 4 6 8
[∧, ] 7 385 > 270

[∨, ] 5 23 311 66 659
[∧,∨, ] 7 626 > 270

[∧, ] 2 9 40 281
[∨, ] 2 8 26 80
[∧,∨, ] 2 19 1 889
[→] 2 14 25 165 802 2623 662 965 552 393

−50 331 618
[∧, \] 2 ∞ ∞ ∞
[∨, \] 2 18 623 662 965 552 330
[∧,∨, \] 2 ∞ ∞ ∞
[\, ] 6 518 3× 22 148 − 546
[∨, \, ] 6 2 134 D
[\, ] 4 252 3× 2689 − 380
[∧, \, ] 5 ∞ ∞ ∞
[∨, \, ] 4 676 > 26 383

[∧,∨, \, ] 5 ∞ ∞ ∞

The number D is approximately 26 385 and the 1 923 digits of D have been
calculated by a computer program of G.R. Renardel de Lavalette who dedicated
this number to our mentor in research in propositional logics, Dick de Jongh.
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