
The simplest computability-logic completeness

proof

Giorgi Japaridze∗

To Dick de Jongh, my cherished mentor and friend; the man whom I admire
not only for being a prominent logician, but also for being an outstanding human
with an incredibly pure soul...

Abstract

The paper presents a soundness and completeness proof for a propo-
sitional system that axiomatizes one of the most basic fragments of com-
putability logic — the approach introduced by the author in [Annals of
Pure and Applied Logic 123 (2003), pp. 1-99]. This proof is significantly
simpler than the proofs of any other similar results generated so far within
the framework of computability logic. This is due to the fact that complete-
ness here is understood as completeness with respect to uniform validity
rather than the weaker concept of validity.

1 Introduction and preliminaries

The recently initiated approach called computability logic is a logical theory of
interactive computation. It understands computational problems as games played
by a machine against the environment, and uses logical formalism to describe the
valid principles of computability. The foundational paper [1] on computability
logic, which introduced the subject only semantically, set the goal of exploring
possible axiomatizations of the new logic. A significant progress has been made
since then towards this goal: several nontrivial fragments of the logic have been
successfully axiomatized, and more — incrementally strong — results in the same
style are apparently still to come in the near future. The corresponding sound-
ness and completeness proofs tend to be very long (so far the longest one taking
a few dozen pages) and hard. The present paper is also devoted to a sound-
ness/completeness proof for a fragment of computability logic. Technically its
main theorem follows from some already known, significantly stronger results.
However, the virtue of this contribution is that the completeness proof presented

∗This material is based upon work supported by the National Science Foundation under
Grant No. 0208816

1



in it is the only short and easy-to-comprehend one in the pipeline of similar re-
sults. Hence, familiarity with the present proof might be a good or even necessary
starting point for someone (especially for a student) who wants to deeper explore
computability logic in a step-by-step fashion.

This article is not self-contained and can only be understood by a reader
familiar with [1], as it fully relies on the terminology and notation established in
[1]. The latter contains and index which can be used to find any terms or notation
not explained in the present paper.

Henceforth by “formula” we always mean a propositional, elementary-base,
finite-depth formula of the universal language. For any such formula F , every
interpretation ∗ is F -admissible, so we can safely omit the word “admissible”
before “interpretation”. Note also that F ∗ is unistructural, which means that the
valuation parameter can be safely ignored when we talk about what runs of F ∗

are legal.
In what follows, the letters E, F, G, H, L will be exclusively used as a metavari-

able for formulas, α, β for moves, ∗ for interpretations and e for valuations.
We will be using the notation

‖F‖

for the elementarization of F . For a given valuation e and interpretation ∗, the
classical model induced by e and ∗, denoted

CLM∗
e ,

is the true/false assignment for atoms where an atom p is true iff the predicate
p∗ (which, note, may depend on some “hidden” variables) is true at valuation e;
this assignment extends to all elementary formulas in the standard classical way.

The following lemma can be verified by straightforward induction on the com-
plexity of F :

Lemma 1.1 WnF∗

e 〈〉 = > iff ‖F‖ is true in CLM∗
e (all F , e, ∗).

Now we define a function that, for a formula F and a surface occurrence O in
F , returns a string α called the F -specification of O, which is said to F -specify O.
In particular:

• The occurrence of F in itself is F -specified by ε (the empty string).

• If F = ¬G, then an occurrence that happens to be in G is F -specified by
the same string that G-specifies that occurrence.

• If F is G1 ∧ . . . ∧ Gn, G1 ∨ . . . ∨ Gn or G1 → G2, then an occurrence that
happens to be in Gi is F -specified by i.α, where α is the Gi-specification of
that occurrence.

2



Example: The second occurrence of ptq in F = r∨(ptq)∨¬(p → (r∧(ptq)))
is F -specified by the string “3.2.2.”.

The following lemma can be easily verified by induction on the complexity of
F , the routine details of which we omit:

Lemma 1.2 For all F , α and ∗:
a) 〈⊥α〉 ∈ LrF∗

iff α = βi, where β is the F -specification of a positive (resp.
negative) surface occurrence of a subformula G1u. . .uGn (resp. G1t. . .tGn) and
i ∈ {1, . . . , n}. In this case 〈⊥α〉F ∗ = H∗, where H is the result of substituting
in F the above occurrence by Gi.

b) 〈>α〉 ∈ LrF∗
iff α = βi, where β is the F -specification of a negative (resp.

positive) surface occurrence of a subformula G1u . . .uGn (resp. G1u . . .uGn) and
i ∈ {1, . . . , n}. In this case 〈>α〉F ∗ = H∗, where H is the result of substituting
in F the above occurrence by Gi.

Logic CL1, which we call the propositional, finite-depth, elementary-base frag-
ment of computability logic and which is a natural syntactic fragment of (the more
expressive) logic FD introduced in [1], is given by the following two rules:

Rule (a): ~H ` F , where F is stable and ~H is the smallest set of formulas sat-
isfying the following condition: If F has a positive (resp. negative) surface
occurrence of a subformula G1 u . . . u Gn (resp. G1 t . . . t Gn), then, for
each i ∈ {1, . . . , n}, ~H contains the result of replacing this occurrence in F
by Gi.

Rule (b): H ` F , where H is the result of replacing in F a negative (resp.
positive) surface occurrence of a subformula G1u. . .uGn (resp. G1t. . .tGn)
by Gi for some i ∈ {1, . . . , n}.

Axioms are not explicitly stated, but note that the set of premises of Rule (a)
may be empty, in which case the conclusion of that rule acts as an axiom. It is a
very easy job to verify that a formula (in our present sense) is provable in CL1
iff it is provable in FD.

The rest of this paper is devoted to a proof of the soundness and completeness
of CL1 with respect to uniform validity.

2 Soundness

Theorem 2.1 If CL1 ` F , then F is uniformly valid (any F ).

PROOF Assume CL1 ` F . Let us fix a particular CL1-proof of F . We will
be referring to at as “the proof”, and referring to formulas occurring in the proof
as “proof formulas”. We construct the EPM M which works as follows. At the

3



beginning, this machine creates a record E to hold proof formulas, initializes it to
F , and then follows the following interactive algorithm:

Procedure LOOP: Act depending on which of the two rules was used
to derive E in the proof:

Case of Rule (a): Keep granting permission until the adversary makes
a move αi, where α E-specifies a positive (resp. negative) surface
occurrence of a subformula G1 u . . . u Gn (resp. G1 t . . . t Gn) and
i ∈ {1, . . . , n}. Let H be the result of substituting the above occurrence
by Gi in E. Then update E to H , and repeat LOOP.

Case of Rule (b): Let H be the (only) premise of E in the proof. H
is the result of substituting, in E, a certain negative (resp. positive)
surface occurrence of a subformula G1 u . . .uGn (resp. G1 t . . .tGn)
by Gi for some i ∈ {1, . . . , n}. Let α be the E-specification of that
occurrence. Then make the move αi, update E to H , and repeat
LOOP.

Pick an arbitrary valuation e and an arbitrary e-computation branch B of M.
Let Γ be the run spelled by B. Our goal is to show that B is fair and, for every
∗, WnF∗

e 〈Γ〉 = >, so that M |= F ∗. Consider the work of M along B. Let Ei

denote the value of the record E at the beginning of the ith iteration of LOOP.
Evidently Ei+1 is always one of the premises of Ei in the proof, so that LOOP is
iterated only a finite number of times. Fix l as the number of iterations of LOOP,
and let L = El. The lth iteration deals with the case of Rule (a), for otherwise
there would be a next iteration. This guarantees that M will grant permission
infinitely many times during that iteration, so that branch B is indeed fair. And
the fact that L is derived by Rule (a) implies that

L is stable. (1)

For each i with 1 ≤ i ≤ l, let Θi be the sequence of the (correspondingly
labeled) moves made by the players by the beginning of the ith iteration of LOOP.

For all ∗ and 1 ≤ i ≤ l, either Θi is a ⊥-illegal position of F ∗,

or Θi ∈ LrF∗
and 〈Θi〉F ∗ = E∗

i .
(2)

This statement can be proven by induction on i. The basis case with i = 1 is
trivial. Now consider an arbitrary i with 1 ≤ i < l. If Θi is a ⊥-illegal position of
F ∗, then so is Θi+1 as the latter is an extension of the former. Suppose now Θi

is not a ⊥-illegal position of F ∗. Then, by the induction hypothesis, Θi ∈ LrF∗

and 〈Θi〉F ∗ = E∗
i . If the ith iteration of LOOP deals with the case of Rule (b),

then exactly one move α is made during that iteration, and this move is by the
machine, so that Θi+1 = 〈Θi,>α〉. In view of Lemma 1.2(b), 〈>α〉 ∈ LrE∗

i and
〈>α〉E∗

i = E∗
i+1. With the equalities Θi+1 = 〈Θi,>α〉 and E∗

i = 〈Θi〉F ∗ in mind,

4



the former then implies Θi+1 ∈ LrF∗
and the latter implies 〈Θi+1〉F ∗ = E∗

i+1.
Suppose now the ith iteration of LOOP deals with the case of Rule (a). Then
the machine does not make a move; if its adversary makes a move α that is not
⊥’s legal initial move for E∗

i = 〈Θi〉F ∗, then 〈Θi,⊥α〉 is a ⊥-illegal position of F ∗

and so will be Θi+1 as it will contain 〈Θi,⊥α〉 as an initial segment; otherwise, if
〈⊥α〉 ∈ LrE∗

i , arguing as in the previous case (only using 1.1(a) instead of 1.1(b)),
we can again conclude that Θi+1 ∈ LrF∗

and 〈Θi+1〉F ∗ = E∗
i+1.

For all ∗, either Γ is a ⊥-illegal run of F ∗, or WnF∗

e 〈Γ〉 = WnL∗

e 〈〉. (3)

To prove this statement, suppose Γ is not a ⊥-illegal run of F ∗. Θl is an initial
segment of Γ, so Θl is not ⊥-illegal, either. Then, according to (2), Θl is a legal
position of F ∗ and 〈Θl〉F ∗ = L∗, which implies that WnF∗

e 〈Θl〉 = WnL∗

e 〈〉. So,
it would now be sufficient to show that Θl = Γ. But indeed, as the lth iteration
of LOOP deals with the case of Rule (a), during that iteration > does not move;
if ⊥ makes a move α, it is clear from Lemma 1.2(a) that α should be an illegal
initial move for L∗ (otherwise there would be a next iteration), which, taking into
account that L∗ = 〈Θl〉F ∗, implies that 〈Θl,⊥α〉 is a ⊥-illegal position of F ∗;
but 〈Θl,⊥α〉 must be an initial segment of Γ, so that Γ is a ⊥-illegal run of F ∗,
contrary to our assumption. Thus, ⊥ does not make any moves during the last
iteration of LOOP either, and hence Γ = Θl.

To finish our proof of the theorem, consider an arbitrary interpretation ∗.
We want to show that WnF∗

e 〈Γ〉 = >. If Γ is a ⊥-illegal run of F ∗, we are done.
Suppose now Γ it is not an ⊥-illegal run of F ∗. Then, by (3), WnF∗

e 〈Γ〉 = WnL∗

e 〈〉.
Thus, it remains to show that WnL∗

e 〈〉 = >. Suppose, for a contradiction, that
WnL∗

e 〈〉 = ⊥. Then, according Lemma 1.1, ‖L‖ is false in CLM∗
e . But this is

impossible because, by (1), ‖L‖ is a tautology. 2

3 Completeness

In our completeness proof for CL1 we will employ the complementary logic CL1′

given by the following two rules:

Rule (a): ~H ` F , where F is instable and ~H is the smallest set of formulas
satisfying the following condition: If F has a negative (resp. positive) surface
occurrence of a subformula G1 u . . . u Gn (resp. G1 t . . . t Gn), then, for
each i ∈ {1, . . . , n}, ~H contains the result of replacing this occurrence in F
by Gi.

Rule (b): H ` F , where H is the result of replacing in F a positive (resp.
negative) surface occurrence of a subformula G1u. . .uGn (resp. G1t. . .tGn)
by Gi for some i ∈ {1, . . . , n}.

5



Lemma 3.1 CL1 6` F , then CL1′ ` F (any F ).

PROOF We prove this lemma by induction on the complexity of F . There
are two cases to consider:

Case 1: F is stable. Then there must be a CL1-unprovable formula H that is
the result of replacing in F some positive (resp. negative) surface occurrence of
a subformula G1 u . . . u Gn (resp. G1 t . . . t Gn) by Gi for some i ∈ {1, . . . , n}
(otherwise, F would be CL1-derivale by Rule (a)). By the induction hypothesis
CL1′ ` H , whence, by Rule (b), CL1′ ` F .

Case 2: F is instable. Let ~H be the smallest set of formulas satisfying the
following condition: If F has a negative (resp. positive) surface occurrence of a
subformula G1 u . . . u Gn (resp. G1 t . . . t Gn), then, for each i ∈ {1, . . . , n},
~H contains the result of replacing this occurrence in F by Gi. None of the el-
ements of ~H is CL1-provable (otherwise F would be derivable in CL1 by Rule
(b)). Therefore, by the induction hypothesis, each element of ~H is CL1′-provable,
whence, by Rule (a), CL1′ ` F . 2

Theorem 3.2 If CL1 6` F , then F is not uniformly valid (any F ).

PROOF Assume CL1 6` F . Then, by Lemma 3.1, CL1′ ` F . Let us
fix a particular CL1′-proof for F . We will be referring to at as “the proof”, and
referring to formulas occurring in the proof as “proof formulas”. We construct the
EPM N that works as follows. At the beginning, this machine creates a record
E to hold proof formulas, initializes it to F , and then follows the interactive
algorithm described below:

Procedure LOOP: Act depending on which of the two rules was used
to derive E in the proof:

Case of Rule (a): Keep granting permission until the adversary makes
a move αi, where α E-specifies a negative (resp. positive) surface
occurrence of a subformula G1 u . . . u Gn (resp. G1 t . . . t Gn) and
i ∈ {1, . . . , n}. Let H be the result of substituting the above occurrence
by Gi in E. Then update E to H , and repeat LOOP.

Case of Rule (b): Let H be the (only) premise of E in the proof. H
is the result of substituting, in E, a certain positive (resp. negative)
surface occurrence of a subformula G1 u . . .uGn (resp. G1 t . . .tGn)
by Gi for some i ∈ {1, . . . , n}. Let α be the E-specification of that
occurrence. Then make the move αi, update E to H , and repeat
LOOP.

Note the similarity between N and the EPM M from Section 2. The descrip-
tions of the algorithms that these two machines follow are exactly the same, only
with the words “positive” and “negative” interchanged. In view of the perfect

6



symmetry between M and N , between CL1 and CL1′ and between clauses (a)
and (b) of Lemma 1.2, arguing as in the previous section, we can conclude that,
in each computation branch of N , LOOP will be iterated only a finite number of
times and that N is fair.

Let us fix an arbitrary HPM H and an arbitrary valuation e. Let Γ be the H
vs C run on e (see Definition 20.5 of [1]). Since N is fair, such a run is well-defined.
Thus, Γ is the run cospelled by the (N , e,H)-branch which, according to Lemma
20.4 of [1], is an e-computation branch of N .

Let L denote the value the record E of N at the beginning of the last iteration
of LOOP in the (N , e,H)-branch. The following two statements can be proven in
a way fully symmetric to the way statements (1) and (3) were proven in Section
2:

L is instable. (4)

For all ∗, either Γ is a >-illegal run of F ∗, or WnF∗

e 〈Γ〉 = WnL∗

e 〈〉. (5)

The instability of L means that ‖L‖ is not a tautology. Let us fix any classical
model M in which ‖L‖ is false. Let ∗ be the interpretation such that, for any
atom p,

p∗ =
{

> if p is true in M ;
⊥ if p is false in M .

It is rather obvious that then M = CLM∗
e . Therefore, by Lemma 1.1, WnL∗

e 〈〉 =
⊥. Consequently, by (5), either Γ is a >-illegal run of F ∗, or WnF∗

e 〈Γ〉 = ⊥. In
either case we have WnF∗

e 〈Γ〉 = ⊥. This means that H does not win F ∗ against
N (see [1], Definition 20.7). This, in turn, by Proposition 20.8 of [1], implies that
H does not win F ∗.

Thus, for every HPM H there is an interpretation ∗ such that H does not win
F ∗. This means nothing but that F is not uniformly valid. 2

References

[1] G.Japaridze, “Introduction to computability logic”. Annals of Pure and
Applied Logic 123 (2003), pp. 1-99.

7


