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Abstract

In this paper, we develop a toolkit to derive principles for the interpetabil-
ity logic of all reasonable theories by fine-tuning ILM and ILP proofs.

1 Introduction

1.1 Preludium

When, around 1987, the project of Interpetability Logic started, Dick
de Jongh, in collaboration with Frank Veltman, took responsibility for
the modal part of the project. The first fruit of this research was the
fundamental paper [dJV90]. From this time on, Dick actively worked on
the subject. His work can be found in such papers as [dJV91], [AdJH98],
[dJV99], [dJJ98]. We always enjoyed his remarkable style of doing modal
logic, where visualization of models plays such an important role.

Dick was not so active on the arithmetical side of the project. For
this reason, it seemed a good idea to show that arithmetical soundness
proofs can be given using modal methods. Perhaps, this will draw him
into arithmetical matters again.

In this paper, we use enriched versions of interpretability logic to ver-
ify arithmetically sound principles of ordinary interpretability logic. The
general methodology of using modal logic to study modal logic has always
been part of the strongly self-reflexive provability logic tradition. We just
remind the reader of the seminal paper [JJM91] in which the Solovay
result itself is proved in a modal logic.

The logics we study arise from well known logics by ‘diversifying’ the
modal operators. In another contribution to this Liber, Johan van Ben-
them discusses the idea of scattering. It seems to us that the auxiliary
logics presented in this paper are typical examples of such scattered logics.
This either proves the coherence of the Dutch tradition or the naturalness
of the idea.
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1.2 Contents of the paper

In this paper we present and explore a remarkable methodology. We want
to derive principles for he interpetability logic of all reasonable theories.
This logic is a sublogic both of ILM and ILP, but it is not the intersection
of ILM and ILP. (See [Vis97].) It turns out that one may derive principles
for the logic of all theories by fine-tuning proofs in ILM or ILP. In fact,
every principle we know can be derived both by fine-tuning an ILM and
an ILP proof.

The fine-tuning procedure is best mediated by auxiliary modal logics
that we present in Section 2 (for the ILM-case) and in Section 3 (for the
ILP-case). In Section 4, we put the methods developed in action, and
show how to derive a number of principles.

The phenomenon of having two different proofs for the same theorem is
always strange. In some cases different proofs reflect different underlying
concepts (like the two proofs of the commutativity of addition). In our
case the strangeness is increased: we do not just have two proofs, but two
natural classes of proofs for the same theorems. No different underlying
concepts are in sight. The only clear difference is a difference in scope:
the M-style proofs use sequentiality and the P-style proofs do not.

The explicit development of modal logics to analyze the methods
known so far to derive interpretability principles, has the following aim.
We hope that it will enable us to pin down precisely what principles can
be derived using M-style methods and which ones in the P-style. The
question which interpretability principles can be derived in P-style and
which in M-style becomes a modal question open to study with Kripke
models. Apart from this aim, we submitt that we found exciting and
intriguing modal systems.

At the present stage, it is not yet fully clear that our extended systems
are definitive. Do we have the right notions? Did we articulate all possible
principles for the chosen notions? Do we have to extend or restrict the
expressive power? More experimentation is necessary.

1.3 Convention

Interpretability will in this paper be theorems interpretability, i.o.w.

• k : U � V : ⇐⇒ ∀φ (2V φ → 2Uφk).

2 A logic for relativization to cuts

In this section, we present a logic that incorporates a number of principles
concerning provability predicates relativized to definable cuts. This logic
will enable us to fine-tune ILM-proofs.

In the present section, theories will be ∆b
1-axiomatized sequential the-

ories. We assume that every theory comes equiped with a designated
interpretation of I∆0 +Ω1. Quantifiers will range over the numbers given
by this interpretation. Arithmetized concepts will be implicitly relativized
to this interpretation. For example, suppose our theory is ZF and neumann
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is the von Neumann interpretation of number theory in ZF, then

ZF ` ∀x, y, z (x + y = z → 2ZFx + y = z)

means:

ZF ` (∀x, y, z (x + y = z → 2ZF(x + y = z)neumann))neumann.

We specify the promised logic, which we will call CuL, and its arithmetical
semantics. The logic will have two levels, the inner and the outer. We
specify the language. We have a set of propositonal variables p0, p1, . . ..
The meta-variables p, q, r, . . . will range over the propositional variables.
We have a set of cut-variables, I0, I1, . . .. We have one cut-constant id.
The meta-variables I, J, J ′, . . . will range over the cut-variables and id.
Outer formulas are the smallest class containing the propositional vari-
ables, closed under the formation rules corresponding to the propositional
connectives (incluiding ⊥ and >) and closed under the rule:

• if A and B are outer formulas, then so are 2IA and A � B.

We will write 2A for 2idA. Inner formulas are the smallest set containing
the propositional variables, closed under the formation rules correspond-
ing to the propositional connectives, such that

• if if A and B are outer formulas, then 2A and A � B are inner
formulas.

Our logic is specified as an extension of a suitable sequent system for
propositional logic for the modal language. The following rules are shared
by the inner and the outer system, but for the fact that, in the inner sys-
tem, formulas are constrained to be inner fomulas. Concretely, this means
that, for the inner system, we must delete the letter I in the statement of
the principles, as formulated below.

(→)J ` 2IA → 2A

LJ
1 ` 2I(A → B) → (2IA → 2IB)

LJ
2 ` 2IA → 2I2JA

LJ
3 ` 2I(2JA → A) → 2IA

JJ
1 ` 2(A → B) → A � B

JJ
2 ` (A � B) ∧ (B � C) → A � C

JJ
3 ` (A � C) ∧ (B � C) → A ∨B � C

JJ
4 ` A � B → (3A → 3B)

JJ
5 ` 3JA � A

NecJ ` A ⇒ ` 2IA

By a well-known trick, we can derive LJ
2 from LJ

3. Moreover, we can derive
LJ

2,in also from JJ
5 and JJ

4. The further rules are as follows.

MJ Γ, (A ∧ 2JC � B ∧ 2J′
C) `in D ⇒ Γ, A � B `in D

Here J must be a variable and J 6= J ′ and
J does not occur in Γ, A, B, D

IOJ Γ `in A ⇒ Γ `out A

OIJ `out A ⇒ `in 2A
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Note that NecJ
in follows from IOJ and OIJ.1

Inspection of the verifications of interpretability principles in Section 4,
reveals that we only use one cut-variable. So the restriction of our system
to one variable, say I0, is of some interest. Let us write ∆A for 2I0A and
∇A for ¬∆¬A. We get the following bimodal system.2 (We omitt some
superfluous principles.)

(→)J,1 `out ∆A → 2A

L1
J,1 ` 2(A → B) → (2A → 2B)

`out ∆(A → B) → (∆A → ∆B)

L2
J,1 ` 2A → 2∆A

`out ∆A → ∆∆A

L3
J,1 ` 2(∆A → A) → 2A

`out ∆(∆A → A) → ∆A

J1
J,1 ` 2(A → B) → A � B

J2
J,1 ` (A � B) ∧ (B � C) → A � C

J3
J,1 ` (A � C) ∧ (B � C) → A ∨B � C

J4
J,1 ` A � B → (3A → 3B)

J5
J,1 ` ∇A � A

MJ,1 Γ, (A ∧∆C � B ∧ 2C) `in D ⇒ Γ, A � B `in D
Γ, A, B, D must be ∆-free

NecJ,1 `out A ⇒ `out ∆A

IOJ,1 Γ `in A ⇒ Γ `out A

OIJ,1 `out A ⇒ `in 2A

We turn to the ‘arithmetical semantics’. Consider a sequential theory T
and let N be the designated interpetation of I∆0 + Ω1. For any formula
α of the language of T having at most x free, we define:

• cut(α) is the formula that expresses that α is an N -cut, i.e. that
{x | α} is a subset of {x | δN} and that {x | α} is closed under the
operations 0, S, +,×, ω1 and that {x | α} is downwards closed under
<.

• c(α) := (δN ∧ (cut(α) → α)).

It is easy to see that T ` cut(c(α)) and T ` cut(α) → (α ↔ c(α)). so if α
ranges over all formulas having at most x free, then c(α) ranges modulo
T -provable equivalence over all T -cuts.

Arithmetical realizations in a theory T are given by pairs σ, τ , where
σ sends the propositional variables to sentences of the language of T and
τ sends the cut-variables to formulas α of the language of T having only
x free. We demand that σ and τ take for all but finitely many arguments

1A possible strengthening of the principle MJ that we will not further explore in this paper
is:

MJ+ Γ, {(Ai ∧ 2JCi � Bi ∧ 2J′
i Ci) | i < n} `in D ⇒

Γ, {(Ai � Bi) | i < n} `in D
Here J must be a variable and J 6∈ {J ′0, . . . , J ′n−1} and
J may not occur in Γ, A0, . . . , An−1, B0, . . . , Bn−1, D

Alternatively, we could add an operation ∩ on cuts and formulate the appropriate axiom.
2Remember that 2 is definable from �.
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the value > resp. x = x, thus making σ and τ into finite objects. The
assignments σ and τ are extended to the full language in the usual way.
The main novelty is that we take, for a cut-variable I,

• (2IA)σ,τ := 2
c(τ(I))
T Aσ,τ .

The mapping A 7→ Aσ,τ can be arithmetized. A consequence of this is
that we can treat τ in the interpretation of inner formulas as a numerical
variable. This observation makes the definition of inner validity below
sensible. We define:

• Γ |=T,out A :⇔ ∀σ, τ T, Γσ,τ ` Aσ,τ ,

• Γ |=T,in A :⇔ ∀σ T ` ∀τ (
V

Γσ,τ → Aσ,τ ).

It is not hard to see that our principles do indeed hold w.r.t. the intended
notions of validity and that our rules are admissible. We will briefly
consider each prinple. The principle (→)J is a triviality. The principle LJ

1

reflects that concatenation of proofs in a cut, remains within this cut as
concatenation is approximately multiplication. The principle LJ

2 is Lemma
2.1. The principle LJ

3 is Löb’s theorem with cuts, as proved in Lemma
2.2. The principle JJ

5 follows from the formalized Henkin theorem. The
rule NecJ

out follows because, if we have a proof of Aσ,τ , then this proof is
standard and, hence, T -provably in every T -cut. The rule MJ follows from
Lemma 2.3. The rule IOJ is trivial. Since the verification of the validity
of `in can be formalized in I∆0 + Ω1, we have OIJ.

We write Form1
U for the set of U -formulas having at most x free.

Lemma 2.1. Consider any theories U , V with designated natural num-
bers. (U and V need not be sequential.) We have, for any V -sentence
α,

I∆0 + Ω1 ` ∀β ∈ Form1
V (2Uα → 2V 2

c(β)
U α).

Proof. Reason in I∆0+Ω1. We assume that proofU (p, α) for some p. Since
the sentence proofU (p, α) is in ∃Σb

1 we get, by verifiable ∃Σb
1-completeness,

that, for some p′, proofV (p′, proofU (p, α)). By the OBIS-principle3, we

have 2V (p ∈ c(β)). Ergo 2V 2
c(β)
U α. a

We note that LJ
2,out, follows because we have I∆0 + Ω1 on T -cut I. We

take U := T and V := T and we specialize β to the standard formula for
J , noting that its standard code will be T -provably in I. We get LJ

2,in by
noting that we have I∆0 + Ω1 in N , the designated numbers of T .

Lemma 2.2. Consider any theory U with designated natural numbers.
(U need not be sequential.) We have, for any U-sentence α,

I∆0 + Ω1 ` ∀β ∈ Form1
U (2U (2

c(β)
U α → α) → 2Uα.

Proof. We can do this in two ways. We can simply adapt the proof of
Löb’s Theorem, or, alternatively, we can use Löb’s Theorem. We follow

3OBIS stands for Outside Big Inside Small. The proof of the OBIS-principle consists in a
p-time transformation of a proof q of cut(c(β)) and of p into a proof of (p ∈ c(β)). We note
that the possible ‘non-standardness’ of β does not matter here.
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the second rooute here. Reason in I∆0 + Ω1. Fix β ∈ Form1
U . We have:

2U (2
c(β)
U α → α) → 2U2

c(β)
U (2

c(β)
U α → α)

→ 2U2
c(β)
U α

→ 2Uα.

a

The derivation of LJ
3,out and LJ

3,in is immediate. Inspecting the proof of
Lemma 2.2, we see that LJ

3,in follows from LJ
3,out plus the other principles

and rules.

Lemma 2.3. Suppose U and V are theories with designated numbers.
Suppose further that U is sequential. For any Σ1

0-sentence σ, we have:

I∆0 +Ω1 ` ∀β ∈ Form1
V (U �V → ∃γ ∈ Form1

U (U +σc(γ))� (V +σc(β))).

(Note our slightly sloppy notation: the function c depends on the desig-
nated natural numbers. So, it is not the same in both occurrences.)

Proof. This is a direct consequence of Pudlák’s Lemma. We proceed to
reason in I∆0 + Ω1 and suppose j : U � V and β ∈ Form1

V . We change
the designated numbers of V to those given by c(β). Pudlák’s Lemma
provides us with a U -cut c(γ) and an isomorphism h between c(γ) and
an initial segment of c(β). Now, let σ be ∃y σ0(y) with σ0 ∈ ∆0. We get

that 2U∀ y∈c(γ) (σ0(y) ↔ σ
j◦c(β)
0 (h(y))) and thus certainly

2U (σc(γ) → σj◦c(β)). (1)

The desired fact is now immediate. a

Using the modal principles given here, many interesting facts can be
derived. With A ≡ B we shall denote that A and B are mutually inter-
pretable. That is, (A � B) & (B � A).

Lemma 2.4. We have: CuL `in A ≡ A ∧ 2I¬A ≡ A ∨3JA.

Proof. Just copy the proofs from IL, replacing some regular principles
with the new principles relativized to a cut. Note that for the first mutual
interpretability, we do need to detour via the outer system. a

Lemma 2.5. CuL `in ¬(A � ¬C) → 3(A ∧ 2JC).

Proof. Reason internally in CuL. By contraposition we get that (sloppy
notation): 2(A → 3J¬C) → A � 3J¬C � ¬C. a

3 The approximating theory

In this section we develop a logic for fine-tuning ILP-proofs. Theories
in this section will be ∆b

1-axiomatized theories with a designated inter-
pretation of S1

2. (Since S1
2 is finitely axiomatizable, it is in this context

more convenient to use than I∆0 + Ω1. Of course, nothing substantial is
entailed by this choice.)
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3.1 The approximating theory defined

For finitely axiomatized theories V , we have: S1
2 ` U � V → 2S1

2
(U � V ),

because U � V is a ∃Σb
1-sentence. To mimic the P-style behavior for an

arbitrary theory V , we will modify V to a new theory V ′ approximating
V to obtain ` U � V → 2S1

2
(U � V ′). Of course, V ′ should be sufficiently

like V to be useful. Thus, we define a theory V ′ that is extensionally the
same as V , but for which U � V ′ is so simple that we can easily infer
2S1

2
(U � V ′).

The idea is as follows. Let us define the set of axioms V ′ as consisting
of just those axioms φ of V such that U ` φk. Note that, if k : U �V , then
V and V ′ have the same axioms. However, we cannot take this insight
with us when we proceed to reason inside a box. This idea works modulo
some trifling details. Firstly, the definition of the new axiom set does not
have the right complexity. Secondly, if the argument is not set up in a
careful way, we may seem to need both Σ1-collection and exp. We shall
use a variation of Craig’s trick so that our axiom set will be ∆b

1-definable.
The same trick makes the use of strong pinciples, like Σ1-collection and
exp, superfluous.

Definition 3.1. Let k be a translation of the right type. We define V [k]

as follows.

axiomsV [k](x) := ∃p (x = pϕ ∧ (p = p)q ∧

axiomsV (ϕ) ∧ proofU (p, ϕk)).

It is clear that axiomsV [k](x) is in poly-time decidable if axiomsV (x) and
axiomsU (x) are. Note that it is essential here that we work with efficient
numerals p.

Lemma 3.2.

1. S1
2 ` ∀k (id : V � V [k]).

2. S1
2 ` ∀k (k : U � V → id : V [k] � V ).

We see that S1
2 verifies that k : U � V implies that V and V [k] are exten-

sionally equal.

Proof. Ad (1). Reason in S1
2. We have to show: 2V [k]ϕ → 2V ϕ. This

is easily seen to be true, since we can replace every axiom ϕ ∧ (p = p)

of V [k] by a proof of ϕ ∧ (p = p) from the V -axiom ϕ. The resulting
transformation is clearly p-time.

Ad (2). Reason in S1
2. Suppose k : U � V and 2V ϕ. We have a proof p of

ϕ from axioms, τ0, . . . , τn. Let τ be the conjunction of these axioms. Note
that τ is bounded by p. Since, clearly, 2V τ , we may find, using k : U �V ,
a U -proof q of τk. We may use q to obtain U -proofs of qi of τi

k. Clearly,
|qi| is bounded by a term of order |q|2. We can now replace every axiom
occurrence of τi in p by

τi ∧ (qi = qi)

τi
∧E, l
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and obtain a V [k]-proof r of ϕ. We find that |r| is bounded by a term of
order |p| · |q|2. So r can indeed be found in p-time from the given p and
q. a

Note that, although we do have 2S1
2
(2V [k]ϕ → 2V ϕ) we shall, in general,

not have 2S1
2
(2V ϕ → 2V [k]ϕ).

Lemma 3.3. S1
2 ` ∀k (k : U � V [k]).

Proof. Reason in S1
2. Suppose p is a V [k]-proof of φ. We want to construct

a U -proof of φk. As a first step we transform p into a V -proof p′ as we
did in the proof of Lemma 3.2,(1). Next we transform p′, using k, into
a predicate logical proof q of φk from assumptions τk, where τ is a V -
axiom. It is well known that this transformation is p-time. Finally each
axiom τ extracted from p, comes from a V [k]-axiom τ ∧ (r = r), where
r is a U -proof of τk. So our final step is to extend q to a U -proof q′ by
prepending the U -proofs r above the corresponding τk. This extension
will at most double the number of symbols of q, so q′ ≈ q2. a

3.2 A modal logic for approximation

We proceed to articulate modal principles reflecting facts about approxi-
mations. We will call our modal system AtL. We first specify the language.
We have propositional variables p0, p1, p2 . . ., we will use p, q, r, . . ., and
we have interpretation variables k0, k1, k2, . . .. We have one interpreta-
tion constant id. the meta-variables k, `, m, . . . will range over the inter-
pretation variables and id. The modal language is the smallest language
containing the propositional variables, closed under the propositional con-
nectives, including > and ⊥, and closed under the following rule.

• If A, B are in the language and k is an interpretation term, then
2[k]A and A �[k] B are in the language.

We will write 2 for 2[id] and � for �[id].

(→ 2)k ` 2[k]A → 2A

(→ �)k ` A � B → A�[k]B

Lk
1 ` 2[k](A → B) → (2[k]A → 2[k]B)

Lk
2 ` 2[`]A → 2[k]2[`]A

Lk
3 ` 2[k](2[k]A → A) → 2[k]A

Jk
1 ` 2[k](A → B) → A�[k]B

Jk
2a ` (A � B) ∧ (B�[k]C) → A�[k]C

Jk
2b ` (A�[k]B) ∧ 2[k](B → C) → A�[k]C

Jk
3 ` (A�[k]C) ∧ (B�[k]C) → A ∨B �[k]C

Jk
4 ` A�[k]B → (3A → 3[k]B)

Jk
5 ` A �[k] 3[n]B → A �[n] B

Pk Γ, ∆, 2(A �[k] B) ` C ⇒ Γ, A � B ` C

Neck ` A ⇒ ` 2[k]A

Here Pk is subject to the following conditions4 :

4We realize that this formulation of Pk is not going to win a beauty contest. However,
the primary focus of this paper is to formulate systems that (i) are arithmetically correct
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1. k is an interpretation variable;

2. k does not occur in Γ, A, B, C;

3. ∆ consists of formulas of the form (E �[k] F → E � F ) and
(2E → 2[k]E).

We will call the licence to use (2E → 2[k]E) provided by Pk: (E2)k,
and we will call the licence to use (E �[k] F → E � F ): (E�)k.5 In our
verification of interpretability principles in Section 4, we use only one
interpretation variable, say k0. Thus, it could be a good idea to study the
bimodal system obtained by restricting AtL to one variable. We leave the
obvious formulation of the bimodal case to the reader.

We proceed to formulate the desired notion of arithmetical validity. Let
T be any theory with a designated interpretation, say N , of S1

2. Let α?

be a conjunction of T -axioms that implies (S1
2)

N .
Define, for any translation k of the language of T to the language of

T :

• s(k) := k〈(α?)k〉id.

Thus s(k) is the interpretation that is is equal to k in case α? and that is
the identity interpretation otherwise. We have, verifiably in S1

2, for any k,

• T ` (α?)s(k),

• T ` (α?)k → (φs(k) ↔ φk),

Thus, modulo T -provable equivalence, s(k) ranges precisely over all inter-
pretations of α?. We have:

Lemma 3.4. S1
2 ` ∀k 2T s(k)(S1

2)
N .

Proof. Reason in S1
2. Consider any k. We have a proof in T of (α?)s(k).

Hence, we have proofs of αs(k), for standardly finitely many T -axioms α
together implying (S1

2)
N . Clearly, T [s(k)] will imply each of these α, and,

hence, (S1
2)

N . a

We will take N as the designated interpretation of S1
2 in the T [k].

Our assignments for the arithmetical interpretation are pairs σ, τ ,
where σ maps the propositional variables to T -sentences and τ maps the
interpretation variables to translations from the language of T to the
language of T . We stipulate that the σ are > for all but finitely many
arguments and that the τ are id for all but finitely many arguments. The
σ, τ are lifted to the arithmetical language in the obvious way, taking:

• (2[k]A)σ,τ := 2T [s(k)]Aσ,τ ,

for the given interpretation, (ii) enable us to formalize the desired reasoning and (iii) are
as parsimonious as possible in expressive power. There is definitely work to do to obtain
formalizations of the systems fitting a good proof-theoretical format.

5We might wish to consider the following possible strengthening of Pk.

Pk+ Γ, ∆, {2(Ai �[k] Bi | i < n + 1)} ` C ⇒
Γ, {Ai � Bi | i < n + 1} ` C

We put the obvious conditions on occurrences of k and on ∆.

9



• (A �[k] B)σ,τ := (T + Aσ,τ ) � (T [s(k)] + Bσ,τ ).

Note that the interpretation s(k) is applied only at locations where it is
inside a provability. Thus, we can arithmetize its use in T . For this reason,
the following definition makes sense.

• Γ |=T A :⇔ ∀σ S1
2 ` ∀τ (

V
Γσ,τ → Aσ,τ ).

The iterated modalities make sense because of Lemma 3.4. Note that, if
we drop the superscripts in Jk

5, we get a formula that is equivalent over J1,
J2 to the ordinary version of J5. Moreover, in our system, we can derive:
` 3[k]A �[k] A.

We turn to checking the validity of our principles and rules. The principles
(→ 2)k and (→ �)k are immediate from Lemma 3.2. The principles Lk

1 to
Jk

4 are simple. The validity of Jk
5 follows from the observation that:

S1
2 ` ∀k, n (T [s(k)] + con(T [s(n)] + B)) � (T [s(n)] + B).

This follows by the usual formalization of Henkin’s Theorem.
We now consider Pk. Reason in S1

2. Suppose k? : (T + α) � (T + β).
Let k′ := k?〈α〉id be the translation that acts like k? if α and like id if ¬α.
Let k := s(k′). (This last move is only of an administrative nature, since,
in the present context, k′ and k will be the same in their behaviour as
interpretations.) Then, we have both k : T � T and k : (T + α) � (T + β).
By Lemma 3.3, we have 2T (k : T �T [k]). Also we have k : (T +α)�β, and,
hence, 2T (k : (T+α)�β). Combining, we find: 2T (k : (T+α)�(T [k]+β)).

By Lemma 3.2, we find that id : T ≡ T [k]. So, from 2T δ we will get
2T [k]δ. Moreover, Suppose m : (T + δ) � (T [k] + ε). It follows that:

T + ε
id- T [k] + ε

m- T + δ.

So, m : (T + δ) � (T + ε).

Finally, Neck is evident.

4 Arithmetical soundness results

In this section, we shall give arithmetical soundness proofs for inter-
pretability principles that hold in all reasonable arithmetical theories.
These principles should thus certainly hold in any finitely axiomatizable
and in any essentially reflexive theory. This means that the principles
should be provable both in ILP and ILM. We shall see that these two
modal proofs give rise to two different arithmetical soundness proofs. The
M-style proofs use definable cuts and find place is the modal system CuL.
The P-style proofs are based on the use of approximating theories. This
behavior is captured in te system AtL.

We now come to the soundness proofs of the following principles.

W ` A � B → A � (B ∧ 2¬A)
M0 ` A � B → (3A ∧ 2C) � (B ∧ 2C)
W∗ ` A � B → (B ∧ 2C) � (B ∧ 2C ∧ 2¬A)
P0 ` A � 3B → 2(A � B)
R ` A � B → ¬(A � ¬C) � B ∧ 2C
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The principles M0 and P0 both follow from R and W∗ follows from M0 and
W. So it would be sufficient6 to just prove the soundness of R and W.
However, we have decided to give short proofs for all principles. Like this,
the close match between the modal systems comes better to the fore. For
every principle we shall give a proof in ILP and in ILM. These proofs can
then be copied almost literally to yield arithmetical soundness proofs.

In CuL and AtL we will reason in an informal way, as if MJ and Pk were
fomulated with an existential quantifier. It is easy to see how to convert
this reasoning to the official format.

4.1 The principle W

We start with the ILP-proof of W.

Fact 4.1. ILP ` W.

Proof. We reason in ILP. Suppose A � B. Then, 2(A � B). Hence, (∗)
2(3A → 3B), and, thus, (∗∗) 2(2¬B → 2¬A).

Moreover, from A � B, we have A � (B ∧ 2¬A) ∨ (B ∧ 3A). So it is
sufficient to show: B ∧3A � B ∧ 2¬A. We have, by (∗),

B ∧3A � 3B by L3

� 3(B ∧ 2¬B)
� B ∧ 2¬B by (∗∗)
� B ∧ 2¬A.

a

Note that the proof of Fact 4.1, already works in ILPR, where:

PR ` A � B → 2(3A → 3B).

We turn to the ILM-proof of W.

Fact 4.2. ILM ` W.

Proof. We reason in ILM. Suppose A � B We find A∧2¬A � B ∧2¬A.
But A � A ∧ 2¬A, whence A � B ∧ 2¬A. a

P-style soundness proof of W We just follow the modal proof of
W in ILP. At some places, axioms are replaced by their counterparts that
deal with approximations.

Reason in AtL. Suppose that A � B. By Pk we have that, for some
k, 2(A �[k] B). Hence, by Jk

4, we have (∗) 2(3A → 3[k]B) and, so, (∗∗)
2(2[k]¬B → 2¬A).

Moreover, from A � B, we have A � (B ∧ 2¬A) ∨ (B ∧ 3A). So it is
sufficient to show B ∧3A � B ∧ 2¬A. We have, by (∗),

B ∧3A � 3[k]B by Lk
3

� 3[k](B ∧ 2[k]¬B) by Jk
5 and (E�)k

� B ∧ 2[k]¬B by (∗∗)
� B ∧ 2¬A.

6Originally in [JG04], a slightly different, but equivalent version of R was given. In the
contribution of Joosten and Goris to this volume, a new principle is given that is precisely W
and R together.
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M-style soundness proof of W We reason in inner CuL. We assume
A � B. By MJ, we may find a J such that A ∧ 2J¬A � B ∧ 2¬A. By
Lemma 2.4, A � A ∧ 2J¬A, whence A � B ∧ 2¬A. We may conclude
A � B ∧ 2¬A.

4.2 The principle M0

We start with the ILP-proof of M0.

Fact 4.3. ILP ` M0.

Proof. Reason in ILP. Suppose A � B. By P, we have:

2(A � B) →
2(3A → 3B) →
2(3A ∧ 2C → 3B ∧ 2C) →
3A ∧ 2C � 3B ∧ 2C →
3A ∧ 2C � 3(B ∧ 2C) →
3A ∧ 2C � B ∧ 2C

a

Note that the proof of Fact 4.3, already works in ILPR, We proceed with
the ILM-proof of M0.

Fact 4.4. ILM ` M0.

Proof. Reason in ILM. Suppose A � B. We find A∧2C � B ∧2C. But,
3A ∧ 2C � 3(A ∧ 2C) � A ∧ 2C, whence 3A ∧ 2C � B ∧ 2C. a

P-style soundness proof of M0 Reason in AtL. Suppose A�B. By
Pk, we have, for some k,

2(A �[k] B) → Jk
4

2(3A → 3[k]B) →
2(3A ∧ 2C → 3[k]B ∧ 2C) →
3A ∧ 2C � 3[k]B ∧ 2C → a.o. by Lk

2

3A ∧ 2C � 3[k](B ∧ 2C) → by Jk
5 and (E�)k

3A ∧ 2C � B ∧ 2C

M-style soundness proof of M0 We reason in inner CuL. Suppose
A�B. We have, for some J , A∧2JC �B∧2C. By LJ

2, and necessitation,
we also have 2(3A ∧ 2C → 3A ∧ 22JC), whence

3A ∧ 2C � 3A ∧ 22JC
� 3(A ∧ 2JC)
� A ∧ 2JC
� B ∧ 2C
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4.3 The principle W∗

We start with the ILP-proof of W∗.

Fact 4.5. ILP ` W∗.

Proof. We reason in ILP: Suppose A � B. Then:

2(2¬B → 2¬A) (2)

and
2(3A ∧ 2C → 3B ∧ 2C) (3)

Moreover, B∧2C�(B∧2C∧2¬A)∨(B∧2C∧3A). Thus, it is sufficient
to show B ∧ 2C ∧3A � B ∧ 2C ∧ 2¬A. We have:

B ∧ 2C ∧3A � 3A ∧ 2C by (3)
� 3B ∧ 2C by L3

� 3(B ∧ 2¬B) ∧ 2C by L2

� 3(B ∧ 2C ∧ 2¬B) by J5

� B ∧ 2C ∧ 2¬B by (2)
� B ∧ 2C ∧ 2¬A

a

Note that the proof of Fact 4.5, already works in ILPR, We proceed with
the ILM-proof of W∗.

Fact 4.6. ILM ` W∗.

Proof. We reason in ILM. Suppose A � B. We have:

B ∧ 2C � (B ∧ 2C ∧ 2¬A) ∨ (B ∧ 2C ∧3A).

So it sufficient to show, B ∧ 2C ∧3A � B ∧ 2C ∧ 2¬A. We have:

B ∧ 2C ∧3A � 3A ∧ 2C by L3

� 3(A ∧ 2¬A) ∧ 2C by L2

� 3(A ∧ 2C ∧ 2¬A) by J5

� A ∧ 2C ∧ 2¬A by M and A � B
� B ∧ 2C ∧ 2¬A

a

P-style soundness proof of W∗ Reason in AtL. Suppose A�B. By
Pk we obtain a k, such that we have:

2(A �[k] B) → by Jk
4

2(3A → 3[k]B) →
2(2[k]¬B → 2¬A) → (∗)
2(3A ∧ 2C → 3[k]B ∧ 2C) (∗∗)

By the usual reasoning, we only need to show:

B ∧ 2C ∧3A � B ∧ 2C ∧ 2¬A.
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We have:

B ∧ 2C ∧3A � 3A ∧ 2C by (∗∗)
� 3[k]B ∧ 2C by Lk

3

� 3[k](B ∧ 2[k]¬B) ∧ 2C by Lk
2

� 3[k](B ∧ 2C ∧ 2[k]¬B) by Jk
5 and (E�)k

� B ∧ 2C ∧ 2[k]¬B by (∗)
� B ∧ 2C ∧ 2¬A

M-style soundness proof of W∗ We reason in inner CuL. Suppose
A � B. By MJ, we have, for some J , A ∧ 2J(C ∧ ¬A) � B ∧ 2(C ∧ ¬A),
and, hence, by elementary reasoning (via the outer system),

A ∧ 2
JC ∧ 2

J¬A � B ∧ 2C ∧ 2¬A.

It is sufficient to show: B ∧ 2C ∧3A � B ∧ 2C ∧ 2¬A. We have:

B ∧ 2C ∧3A � 3A ∧ 2C by LJ
3

� 3(A ∧ 2J¬A) ∧ 2C by LJ
2

� 3(A ∧ 2JC ∧ 2J¬A) by JJ
5

� A ∧ 2JC ∧ 2J¬A
� B ∧ 2C ∧ 2¬A

4.4 The principle P0

We start with the ILP-proof of P0.

Fact 4.7. ILP ` P0.

Proof. Reason in ILP. Suppose A � 3B. Then, 2(A � 3B) and, so,
2(A � B). a

Fact 4.8. ILPR 0 P0.

Proof. It is easy to see that frames satisfying uRxRySuz → xRz are
sound for ILPR. And it is equally easy to provide such a model on which
P0 does not hold. a

Fact 4.8 nicely reflects that the frame condition for P0 essentially involves
new S-transitions. We proceed with the ILM-proof of P0.

Fact 4.9. ILM ` P0.

Proof. Reason in ILM.

A � 3B → A ∧ 2¬B �⊥
→ 2(A → 3B)
→ 22(A → 3B)
→ 2(A � 3B)
→ 2(A � B)

a

P-style soundness proof of P0 Reason in AtL. Suppose A � 3B.
We have, for some k, 2(A �[k] 3B).Hence, by Jk

5, A � 3B → 2(A � B).
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M-style soundness proof of P0 We reason in the inner system of
CuL. Suppose A � 3B. By MJ, we have, for some J , A ∧ 2J¬B � ⊥. It
follows that 2(A → 3JB) and, hence, 22(A → 3JB). We may conclude
2(A � 3JB). So, 2(A � B).

Note: the principle A � 3B → 2(A � 3B) is also provable in both ILM
and ILP. In [Vis97] it is shown that this principle is not valid in PRA. It
is nice to see where proof-attempts of this principle in our systems fail.

4.5 The principle R

Before we see that ILP ` R, we first prove an auxiliary lemma.

Lemma 4.10. IL ` ¬(A � ¬C) ∧ (A � B) → 3(B ∧ 2C).

Proof. We prove the logical equivalent (A�B)∧2(B → 3¬C) → A�¬C
in IL. But this is clear, as (A � B) ∧ 2(B → 3¬C) → A � 3¬C and
3¬C � ¬C. a

Fact 4.11. ILP ` R.

Proof. We reason in ILP. Suppose A � B. It follows that 2(A � B).
Using this together with Lemma 4.10 we get:

¬(A � ¬C) � ¬(A � ¬C) ∧ (A � B)
� 3(B ∧ 2C)
� B ∧ 2C

a

Fact 4.12. ILPR 0 R.

Proof. By providing a countermodel as in the proof of Fact 4.8. a

Fact 4.13. ILM ` R.

Proof. In IL, it is easy to see that ¬(A � ¬C) → 3(A ∧ 2C). Reason in
ILM. Suppose A � B. Then,

¬(A � ¬C) � 3(A ∧ 2C)
� A ∧ 2C
� B ∧ 2C

a
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P-style soundness proof of R Reason in AtL. We first show that
(A �[k] B) ∧ ¬(A � ¬C) → 3[k](B ∧ 2C). Suppose that A �[k] B and
2[k](B → 3¬C), then, by Jk

2b, A �[k] 3¬C. Thus, by Jk
5, we find A �¬C.

By necessitation,

2((A �
[k] B) ∧ ¬(A � ¬C) → 3

[k](B ∧ 2C)). (4)

We now turn to the main proof. Suppose A � B. Then, for some k, we
have 2(A �[k] B) and, thus,

¬(A � ¬C) � ¬(A � ¬C) ∧ (A �[k] B) by (4)

� 3[k](B ∧ 2C) by Jk
5 and (E�)k

� B ∧ 2C.

M-style soundness proof of R Reason in te inner system of CuL.
Suppose that A � B. Then, for some J , we have A ∧2JC � B ∧2C. By
Lemma 2.5, we find that, without assumptions: ¬(A�¬C) → 3(A∧2JC).
Hence, 2(¬(A �¬C) → 3(A∧2JC)) and, so, ¬(A �¬C) � 3(A∧2JC)
We have:

¬(A � ¬C) � 3(A ∧ 2JC)
� A ∧ 2JC
� B ∧ 2C.
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