
SET THEORY WITH AND WITHOUT URELEMENTS
AND CATEGORIES OF INTERPRETATIONS

Benedikt Löwe

We show that the theories ZF and ZFU are synony-

mous, answering a question of A. Visser.

Albert Visser introduced five different categories of interpretations be-
tween theories INT0 (the category of synonymy), INT1 (the category
of homotopy), INT2 (the category of weak homotopy), INT3 (the cat-
egory of equivalence), and INT4 (the category of mutual interpretabil-
ity) [Vis04]. The objects in these categories are first order theories,
the morphisms are interpretations up to some level of identification
between interpretations. The category of synonymy has the strictest
criteria for two interpretations to be the same, the category of mutual
interpretability the weakest. Visser proved that INT1 6= INT4 [Vis04,
§ 4.8.4.], but apart from that no separation results are known. One
particular question is [Vis04, Open Question 4.16]:

INT0

?

6= INT1.

Visser remarked that the theories ZF and ZFU are homotopic (i.e.,
isomorphic in INT1) and asked whether we can show that they are not
synonymous.

In this note we produce a synonymy between ZF and ZFU. The result
of this note is mentioned in [Vis04, p. 33sq ].

1. Fixing the notation I. Categories of Interpretations

We basically follow [Vis04] in the definitions. Since only the categories
INT0 and INT1 are relevant for our investigation, we shall only define
those.

In both categories, the objects are first order theories in a countable
language. A signature Σ is a triple 〈P, ar, =̇〉 where P is a finite
set of predicates, ar : P →

�
is the arity function and =̇ is a binary

1



2 BENEDIKT LÖWE

predicate representing the identity. Let Σ and Θ be signatures and Θ =
〈PΘ, arΘ, =̇〉 with PΘ := {p0, ..., pn}. We call τ a translation from Θ to
Σ if τ is a sequence 〈δ, 〈p0, ϕ0〉, ..., 〈pn, ϕn〉〉 where the ϕi are Σ-formulas
and ϕi has arΘ(pi) free variables. Using a relative translation τ , we can
define translations of Θ-formulas into Σ-formulas by recursion. For a
Θ-formula ψ, we denote its translation by τ with ψτ . If now S is a
Σ-theory and T is a Θ-theory, we call 〈T, τ, S〉 an interpretation of
T in S if τ is a translation from Θ in Σ and for all Θ-formulas ψ, we
have

T ` ψ implies S ` ψτ .

Now we define the morphisms in INT0 as equivalence classes of in-
terpretations with the equivalence relation ≡0 defined as follows: Let
Σ and Θ be signatures, Θ = 〈PΘ, arΘ, =̇〉 with PΘ := {p0, ..., pn},
τ = 〈δ, 〈p0, ϕ0〉, ..., 〈pn, ϕn〉〉 and τ ′ = 〈δ′, 〈p0, ϕ

′

0〉, ..., 〈pn, ϕ
′

n〉〉 be two
translations from Θ to Σ, T a Θ-theory and S a Σ-theory. Then we
define 〈T, τ, S〉 ≡0 〈T, τ

′, S〉 to hold if and only if

(s0) S ` δ(v0) ↔ δ′(v0), and
(s1) S ` δ(v0) & ... & δ(varΘ(pi)−1)

& ϕi(v0, ..., varΘ(pi)−1) ↔ ϕ′

i(v0, ..., varΘ(pi)−1)
(for 0 ≤ i ≤ n).

We define an equivalence relation ≡1 on interpretations in terms of a
morphism category INT

morph: two interpretations 〈T, τ, S〉 and 〈T, τ ′, S〉
are said to be ≡1-equivalent if they are isomorphic as objects in the
category INT

morph as defined in [Vis04, § 3.1]. The morphisms in INT1

are now the ≡1-equivalence classes of interpretations.

We concatenate morphisms as follows: If 〈T, τ, S〉 and 〈S, τ ′, R〉 are
two interpretations with

τ = 〈δ, 〈p0, ϕ0〉, ..., 〈pn, ϕn〉〉 and τ ′ = 〈δ′, 〈q0, ϕ
′

0〉, ..., 〈qm, ϕ
′

m〉〉,

we define the concatenation to be the (≡i-equivalence class of the)
interpretation induced by

τ̂ := 〈δ̂, 〈p0, ϕ̂0〉, ..., 〈pn, ϕ̂n〉〉

where

δ̂(v0) l δ′(v0) & (δ(v0))
τ ′

, and

ϕ̂i(~v) l (ϕi(~v))
τ ′

(for 0 ≤ i ≤ n).
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As usual in category theory, an isomorphism in a category is an
invertible morphism, i.e., a morphism K : T → S such that for some
other morphism L : S → T , we have K ◦ L = idS and L ◦K = idT .

For INT0, this means that if T is a Θ-theory where

Θ = 〈{p0, ..., pn}, arΘ, =̇〉,

K = 〈T, τ, S〉, and τ = 〈δ, 〈p0, ϕ0〉, ..., 〈pn, ϕn〉〉,

then K is an INT0-isomorphism (also called a synonymy) if there is
another morphism

L = 〈S, τ ′, T 〉 with τ ′ = 〈δ′, 〈q0, ϕ
′

0〉, ..., 〈qm, ϕ
′

m〉〉

such that (for 0 ≤ i ≤ n and 0 ≤ j ≤ m)

T ` δ′(v0) & (δ(v0))
τ ′

, S ` δ(v0) & (δ′(v0))
τ ,

T ` pi(~v) ↔ (ϕi(~v))
τ ′

, S ` qj(~v) ↔ (ϕ′

j(~v))
τ ;

in particular, δ′ must be T -provably equivalent to the trivial condition
and δ must be S-provably equivalent to the trivial condition.

2. Fixing the notation II. ZF and ZFU

In the following, ZF will be the standard axiom system of Zermelo-
Fraenkel set theory in a language with a binary predicate ∈̇, i.e., the
Axioms (or Axiom Schemes) of Extensionality, Pairing, Union, Power
Set, Aussonderung, Infinity, Foundation and Ersetzung. We denote
models of ZF by V = 〈V,∈〉. We shall use the variables x, y and z
for elements of a ZF-model. By the axiom of infinity, we have a set
of natural numbers in each model of ZF which we shall denote by

�
V.

For technical reasons, we choose the Zermelo natural numbers, i.e.,

{∅, {∅}, {{∅}}, {{{∅}}}, ...}

By the axiom scheme of Ersetzung, we have a welldefined transitive
closure operator in each model of ZF, and we write tclV(x) for the
⊆-smallest transitive set containing x as an element.

The language of ZFU will be a language with two binary relations
∈̇ and Ḟ and a unary relation U̇ . The unary relation describes the
urelements (i.e., u is an urelement if and only if U̇(u) holds). We shall

denote models of ZFU by W = 〈W, ∈̂, F̂ , Û〉. We shall use the variables
u, v and w for elements of a ZFU-model. The theory ZFU consists of the
standard axioms of ZF with the usual changes to Extensionality and
Foundation due to the existence of urelements plus axioms governing
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the character of the urelements (see below). Note that the axioms of ZF

give the existence of the set of natural numbers which is abbreviated
by

�
in the formal language and denoted by

�
W in a given model

W. Again, we are using the set of Zermelo numbers. Now, using this
notation, we can state the axioms governing the urelements:

∀u∀v(U̇(u) → ¬(v ∈̇ u)), and

∀u∀v(Ḟ (u, v) → (u ∈
�

& U̇(v))) &

∀v(U̇(v) → ∃u(Ḟ (u, v))) &

∀u∀v∀w((Ḟ (u, v) & Ḟ (u, w)) → v = w).

(The latter states that Ḟ describes a bijection between
�

and the set of
urelements.) We denote the (countable) set of urelements in W by � W

and the ith urelement (i.e., the value of i under the function described

by Ḟ ) by � i.
Again, by the axiom scheme of Ersetzung, we have a welldefined

transitive closure operator in each model of ZFU, and we write tclW(u)
for the ⊆-smallest transitive set containing u as an element. Note that
this allows the definition of a formula saying that a set is pure:

ΨPure(u) l ∀v(v ∈ tcl(u) → ¬(U̇ (v))).

3. Homotopy of ZF and ZFU

We remind the reader of the standard embeddings of ZF in ZFU and
vice versa:

3.1. Interpreting ZFU inside V. Given a model V |= ZF, we can
build a model of ZFU in it as follows: In the following, we work in V, so
all operations and sets (e.g., the ordered pair, the natural numbers, the
ordinals) are the operations and sets in V. Let U := {〈0, n〉 ; n ∈

�
}.

Define a class W by transfinite recursion as follows:

W0 := U ,

Wα+1 := {〈1, x〉 ; x ⊆ Wα} ∪Wα,

Wλ :=
⋃

α<λ

Wα (for limit ordinals λ).
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By the transfinite recursion theorem, there is a formula ΦW defining
the class W :=

⋃

α∈OrdWα. Now we define the following formulas:

Φ∈̇(x, y) l ∃z(〈1, z〉 = y & x ∈ z),

ΦU̇(x) l ∃n(n ∈
�

& x = 〈0, n〉),

Φ � (x) l function(x) & dom(x) =
�

& x(0) = 〈1,∅〉

& ∀n(n ∈
�
→ x(n+ 1) = 〈1, {x(n)}〉),

ΦḞ (x, y) l ∃z(Φ � (z) & ∃n(n ∈
�

& z(n) = x & y = 〈0, n〉)).

Then if you use the formulas Φ∈̇, ΦḞ and ΦU̇ to define binary and

unary relations ∈̂, F̂ , and Û respectively, then 〈W, ∈̂, F̂ , Û〉 |= ZFU.
Consequently,

TZFU,ZF := 〈ΦW , 〈∈̇,Φ∈̇〉, 〈Ḟ ,ΦḞ 〉, 〈U̇ ,ΦU̇〉〉

is translation that yields an interpretation of ZFU in ZF.

3.2. Interpreting ZF inside W. Now assume that W = 〈W, ∈̂, F̂ , Û〉
is a model of ZFU. As is well-known, the class of pure sets in a ZFU-
model is a model of ZF, so we take the formula ΨPure from above and
the formula

Ψ∈̇(u, v) l u ∈̂ v,

and get that
TZF,ZFU := 〈ΨPure, 〈∈̇,Ψ∈̇〉〉

is a translation that yields an interpretation of ZF in ZFU. We denote
the class of pure sets inside W with V W.

3.3. Homotopy. It is clear that neither TZFU,ZF nor TZF,ZFU can be
INT0-isomorphisms (synonymies) as neither ΨPure nor ΦW are the triv-
ial condition (in fact, ZFU-provably, there are sets u such that ¬ΨPure(u)
and ZF-provably, there are sets x such that ¬ΦW (x)).

However, it is easy to see that they are INT1-isomorphisms.1

4. Graphs representing sets

4.1. Definitions. A pointed graph is a triple 〈G,E, ν〉 such that
〈G,E〉 is a directed graph, and ν ∈ G, a labelled pointed graph
is a quadrupel 〈G,E, ν, `〉 such that 〈G,E, ν〉 is a pointed graph and
` : ω + 1 → G is a function.

We call a pointed graph 〈G,E, ν〉 a ZF-graph if it has the following
properties:

1Cf. [Vis04, p. 33].
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• the set G contains a subset N := {ni ; i ∈ ω} such that n0 is the
unique least element of 〈G,E〉 and for all i ∈ ω, the following
holds:

∀x ∈ G (xEni+1 ↔ x = ni),

• 〈G,E〉 is wellfounded,
• 〈G,E〉 is extensional, and
• G\tcl(ν) ⊆ N .

In analogy to the ZF-graphs, let’s define the corresponding ZFU-
graphs: Let 〈G,E, ν, `〉 be a labelled pointed graph. We call it a ZFU-
graph if it has the following properties:

• the function ` is a bijection between ω + 1 and the minimal ele-
ments of 〈G,E〉 (let us denote the image of ` by A),

• the set G contains a subset N := {ni ; i ∈ ω} such that `(ω) = n0,
and for all i ∈ ω, the following holds:

∀x ∈ G (xEni+1 ↔ x = ni),

• 〈G,E〉 is wellfounded,
• 〈G\A,E〉 is extensional, and
• G\tcl(ν) ⊆ N ∪ A.

If now V = 〈V,∈〉 |= ZF, and x ∈ V , then let Gx := tclV(x) ∪
�

V

and Ex := ∈ ∩ Gx × Gx. Then 〈Gx, Ex, x〉 is a ZF-graph. If W =

〈W, ∈̂, F̂ , Û〉 |= ZFU, and u ∈ W , then we define Hu := tclW(u) ∪
�

W ∪ � W, Eu := ∈̂ ∩Hu ×Hu and the function ` by `(ω) := ∅
W and

`(n) := � W

n . Then 〈Hu, Eu, u, `〉 is a ZFU-graph. Note that while we
gave the definitions informally, they can be given within the models V
and W, respectively, and we denote by GV

x and HW

u the elements of
V and W that are the ZF-graph associated to x and the ZFU-graph
associated to u, respectively.

Proposition 1. Let M = 〈M,∈0〉 or M = 〈M,∈0, F0, U0〉 be a model

of either ZF or ZFU, and let V,∈,W, ∈̂, F̂ , Û be definable subclasses
such that V := 〈V,∈〉 |= ZF and W := 〈W, ∈̂, F̂ , Û〉 |= ZFU. Let
G = 〈G,E, ν〉 ∈ M be a ZF-graph and H = 〈H,E, ν, `〉 ∈ M be a
ZFU-graph.

1) There are M-definable operations setM,V and isetM,W such that
setM,V(G) ∈ V and isetM,W(H) ∈ W , GV

setM,V(G)
is isomorphic

to G (as pointed graphs) and HW

isetM,W(H)
is isomorphic to H (as

labelled pointed graphs).
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2) The operations setM,V and isetM,W are injective up to isomor-
phism, i.e., if G0 and G1 are isomorphic as pointed graphs and H0

and H1 are isomorphic as labelled pointed graphs, then
setM,V(G0) = setM,V(G1) and isetM,W(H0) = isetM,W(H1).

3) If x ∈0 y, then Gx is a subgraph of Gy, and if G = 〈G,E, ν〉
is a ZF-graph and a subgraph of GV

x for some x ∈ V, then
setM,V(G) ∈ x.

4) Similarly, if u ∈0 v, then Hu is a subgraph of Hv, and if H =
〈H,E, ν, `〉 is a ZFU-graph and a subgraph of HW

u for some u ∈
W, then isetM,W(H) ∈̂ u.

Proof. The operations setM,V and isetM,W are defined by transfinite
recursion along the wellfounded relations ∈ and ∈̂ in the models V and
W in the obvious way by translating the elements of the graph into
elements of V or W and finally reading off the value by looking at the
value of ν (in the ZFU-case, we are assigning � W

i to the node n ∈ H
with `(i) = n and ∅

W to the node n with `(ω) = n). The assign-
ment function produced during this process serves as an isomorphism
between G and GV

setM,V(G)
, and H and HW

isetM,W(H)
.

The injectivity up to isomorphism follows immediately from the iso-
morphy of the original graph with the associated ZF- or ZFU-graph. �

4.2. Transforming graphs. Now we shall describe operations that
link ZF- and ZFU-graphs. We work in a model M of either ZF or ZFU.

Let G = 〈G,E, ν〉 be a ZF-graph with special subset N = {ni ; i ∈�
} ⊆ G. We split up the set N into an even part N0 := {n2i ; i ∈

�
}

and an odd part N1 := {n2i+1 ; i ∈
�
} and use N0 as the natural

numbers and N1 as the urelements in the definition of a ZFU-graph.
Define

nE∗n′ ⇐⇒ (n = n2i & n′ = n2i+2) or (n′ /∈ N & nEn′),

`(ω) = n0, and `(i) = n2i+1.

The following is obvious:

Proposition 2. If 〈G,E, ν〉 is a ZF-graph and E∗ and ` are defined as
above, then 〈G,E∗, ν, `〉 is a ZFU-graph. We denote it by zfu(G).

In words: In a ZF-graph, n0 takes the rôle of 0 = ∅ and ni+1 takes
the rôle of i + 1 = {i}. In order to make a ZFU-graph out of it,
we have to designate nodes as the natural numbers and others as the
urelements. The node n2i will take the rôle of {i} and n2i+1 will take the
rôle of � i. All other edges stay the same, so, for instance, a node that
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was representing {1, 2, 7, {3, 10}} in a ZF-graph G, will be representing
{ � 0, 1, � 3, { � 1, 5}} in zfu(G).

For the other direction, let H = 〈H,E, ν, `〉 be a ZFU-graph with
special subsets A = {ai ; i ∈

�
} and N = {ni ; i ∈

�
}. If we define

nE∗n′ ⇐⇒ (n = ai & n′ = ni+1) or (n = ni & n′ = ai) or
(n′ /∈ N & nEn′),

then again, the following is obvious:

Proposition 3. If 〈H,E, ν, `〉 is a ZFU-graph and E∗ is defined as
above, then 〈H,E∗, ν〉 is a ZF-graph. We denote it by zf(H).

Note that, clearly, the two operations are inverses of each other, and
so G = zf(zfu(G)) and H = zfu(zf(H)).

4.3. Graphs in submodels. For the following, suppose that V =
〈V,∈〉 is a model of ZF, and that WV is the model of ZFU inside V
defined in Section 3.1. We shall be working with the usual Kuratowski
pairing function, so

〈x, y〉 = {{x}, {x, y}},

and, consequently, in WV, we have

〈u, v〉W
V

= 〈1, {〈1, {u}〉, 〈1, {u, v}〉}〉.

Suppose that WV |= “H = 〈H,E, ν, `〉 is a ZFU-graph”. Then we can
define an isomorphic ZFU-graph in V as follows. Let H = 〈1, x〉 and

E = 〈1, y〉. Since WV thinks that 〈H,E〉W
V

is a graph, we know that
the (∈-)elements of E are of the form

〈1, {〈1, {u}〉, 〈1, {u, v}〉}〉

for some u and v such that u ∈̂H and v ∈̂H.
We work in V and define a V-graph H\. Let H \ := {u ; u ∈̂H} and

for u, v ∈ H \, we define

uE\ v : ⇐⇒ 〈1, {〈1, {u}〉, 〈1, {u, v}〉}〉 ∈̂ E.

For the definition of `\, let Z be the V-function with dom(Z) = ω + 1
such that Z(x) is the unique element of WV representing x. Then

`\(x) = u : ⇐⇒ 〈1, {〈1, {Z(x)}〉, 〈1, {Z(x), u}〉}〉 ∈̂ `

⇐⇒ WV |= `(Z(x)) = u.
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Proposition 4. Work inside V. If WV |= “H = 〈H,E, ν, `〉 is a ZFU-
graph” andH \, E\ and `\ are defined as above, then H\ = 〈H \, E\, ν, `\〉
is a ZFU-graph.

Moreover, isetV,WV

(H\) = isetW
V,WV

(H).

Of course, there is no need for a similar retraction between W and
VW, as the element relation stays the same when you move from W
to VW, so if VW |= “G is a ZF-graph”, then G literally is a ZF-graph
in W.

5. The synonymy of ZF and ZFU

In the following, we shall use the operations x 7→ Gx, u 7→ Hu,

setW,VW

, isetV,WV

, zf , and zfu to define an interpretation of ZFU

in ZF which is a synonymy.

5.1. Interpreting ZFU inside V (second version). We start with a
model V = 〈V,∈〉 of ZF. By the work from Section 3.1 and Proposition
2, the operation

I : x 7→ Gx 7→ zfu(Gx) 7→ isetV,WV

(zfu(Gx))

is definable in V. We define a translation

T ∗

ZFU,ZF = 〈δ, 〈∈̇,Ξ∈̇〉, 〈Ḟ ,ΞḞ 〉, 〈U̇ ,ΞU̇〉〉

with

δ(v0) l v0=̇v0,

Ξ∈̇(v0, v1) l Φ∈̇(I(v0), I(v1)),

ΞḞ (v0, v1) l ΦḞ (I(v0), I(v1)), and

ΞU̇(v0) l ΦU̇(I(v0)).

In order to show that this translation induces an interpretation, de-
fine relations ∈∗, F ∗ and U∗ on V, defined via the mentioned formulas:
x ∈∗ y : ⇐⇒ Ξ∈̇(x, y), F ∗(x, y) : ⇐⇒ ΞḞ (x, y), and x ∈ U∗ : ⇐⇒
ΞU̇(x).

Proposition 5. The operation I : 〈V,∈∗, F ∗, U∗〉 ≺ 〈WV, ∈̂, F̂ , Û〉 is
an elementary embedding.

Proof. This is proved by induction on the formula complexity. The only
interesting step is the universal quantifier. Suppose that u witnesses
that WV |= ¬∀v0 ψ, i.e., WV |= ¬ψ[u]. Let HWV

u be the ZFU-graph of
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u as defined in WV. We use the \-operation defined from Proposition
4 and get a graph H\ := (HW

V

u )\ in V such that

isetV,WV

(H\) = isetW
V,WV

(HW
V

u ) = u.

Now let x := setV,V(zf(H\)). Then I(x) = u, and thus by the induction
hypothesis 〈V,∈∗, F ∗, U∗〉 |= ¬ψ[x], whence 〈V,∈∗, F ∗, U∗〉 |= ¬∀v0 ψ.

�

Corollary 6. The translation T ∗

ZFU,ZF induces an interpretation from
ZFU in ZF.

5.2. Interpreting ZF inside W (second version). Using the ideas
from Section 5.1, we do the same for a ZFU-model W:

We start with a model W = 〈W, ∈̂, F̂ , Û〉 of ZFU. By the work from
Section 3.2 and Proposition 3, the operation

J : u 7→ Hu 7→ zf(Hu) 7→ setW,VW

(zf(Hu))

is definable in W. We define a translation

T ∗

ZF,ZFU = 〈δ′, 〈∈̇,Υ∈̇〉〉

with

δ′(v0) l v0=̇v0, and

Υ∈̇(v0, v1) l Ψ∈̇(J(v0), J(v1)).

We define a relation E∗ on W by uE∗ v : ⇐⇒ Υ∈̇(u, v) and prove
in analogy to Proposition 5:

Proposition 7. The operation I : 〈V,∈∗, F ∗, U∗〉 ≺ 〈WV, ∈̂, F̂ , Û〉 is
an elementary embedding.

Corollary 8. The translation T ∗

ZF,ZFU induces an interpretation from
ZF in ZFU.

5.3. Synonymy. Everything is prepared to state the main result of
this note:

Theorem 9. The theories ZF and ZFU are synonymous (i.e., isomor-
phic in INT0).

Proof. We claim that the interpretations 〈ZFU, T ∗

ZFU,ZF,ZF〉 and
〈ZF, T ∗

ZF,ZFU,ZFU〉 are inverses of each other. For this, let us look at
their concatenations

K := 〈ZFU, T ∗

ZFU,ZF,ZF〉 ◦ 〈ZF, T ∗

ZF,ZFU,ZFU〉



SET THEORY AND CATEGORIES OF INTERPRETATIONS 11

and

L := 〈ZF, T ∗

ZF,ZFU,ZFU〉 ◦ 〈ZFU, T ∗

ZFU,ZF,ZF〉.

Let τK = 〈∆L, 〈∈̇,∆K
∈̇
〉, 〈Ḟ ,∆K

Ḟ
〉, 〈U̇ ,∆K

U̇
〉〉 and τL = 〈∆L, 〈∈̇,∆L

∈̇
〉〉

be the translations defining K and L. It is obvious that both ∆L and
∆K are the trivial condition, so we have to show the following:

ZF ` v0 ∈̇ v1 ↔ J(I(v0)) ∈̇ J(I(v1)),(1)

ZFU ` v0 ∈̇ v1 ↔ I(J(v0)) ∈̇ I(J(v1)),(2)

ZFU ` Ḟ (v0, v1) ↔ Ḟ (I(J(v0)), I(J(v1))), and(3)

ZFU ` U̇(v0) ↔ U̇(I(J(v0))).(4)

As all of these proofs are rather similar, let us focus on the proof of
(1): Let us work in some model V = 〈V,∈〉 of ZF. Then

J(I(x)) = setW
V ,VW

V
(

zf
(

HWV

isetV,WV
(zfu(Gx))

))

.

To reduce notation, let’s write

'x := HWV

isetV,WV
(zfu(Gx))

(note that this is a labelled pointed graph in WV). By Proposition 1,
we have that 'x is isomorphic as a labelled pointed graph (in V) to
zfu(Gx), so that zf('x) is isomorphic as a pointed graph to Gx (again,
in V).

Now if V |= y ∈̇ z, then by iterated applications of Proposition 1 (3)
and (4), zf('y) is a subgraph of zf('z), and thus

VWV

|= J(I(y)) ∈̇ J(I(z)).

For the other direction, we write

Yx := GV
W

V

J(I(x)) = GV
W

V

setW
V ,VWV

„

zf

„

HWV

isetV,WV
(zfu(Gx))

««.

We assume that VW
V

|= J(I(y)) ∈̇ J(I(z)), and apply Proposition 1
(1) to see that (in V), Yy is isomorphic to zf('y) and thus (again by
Proposition 1 (1) isomorphic to Gy. Similarly, Yz is isomorphic to Gz.
But by our assumption, Yy is a subgraph of Yz, and so Gy is isomorphic
to a subgraph of Gz. This yields that y ∈ z. �



12 BENEDIKT LÖWE
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