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Abstract

We present a duality for the intuitionistic modal logic IK introduced
by Fischer Servi in [8, 9]. Unlike other dualities for IK reported in the lit-
erature (see for example [13]), the dual structures of the duality presented
here are ordered topological spaces endowed with just one extra relation,
which is used to define the set-theoretic representation of both 2 and 3.
Also, this duality naturally extends the definitions and techniques used
by Fischer Servi in the proof of completeness for IK via canonical model
construction [10]. We also give a parallel presentation of dualities for the
intuitionistic modal logics IntK2 and IntK3. Finally, we turn to the
intuitionistic modal logic MIPC, which is an axiomatic extension of IK,
and we give a very natural characterization of the dual spaces for MIPC
introduced in [2] as a subcategory of the category of the dual spaces for
IK introduced here.

1 Preliminaries

1.1 The logics IntK2, IntK3 and IK

Let Int be the standard intuitionistic propositional calculus. For a non-empty
set M of unary modal operators, let LM be the intuitionistic propositional
language augmented by the connectives in M . By an intuitionistic modal logic
we understand any subset of LM containing all the theorems of Int and closed
under modus ponens, substitution and the regularity rule φ → ψ/mφ → mψ
for every m ∈ M .
The logic IntK2, in the language L2, is axiomatized by adding the following

axioms to Int:

2(φ ∧ ψ) = 2φ ∧2ψ and 2> = >.

The logic IntK3, in the language L3, is axiomatized by adding the following
axioms to Int:

3(φ ∨ ψ) = 3φ ∨3ψ and 3⊥ = ⊥.

The logic IntK23 is the smallest logic S in the language L23 such that IntK2∪
IntK3 ⊆ S. The modal operators 2 and 3 are independent in IntK23, but are
connected in the logic IK, defined by Fischer Servi in [8, 9] and axiomatized in
[10]. IK is the axiomatic extension of IntK23 obtained by adding the following
connecting axioms:
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3(φ → ψ) → (2φ → 3ψ) and (3φ → 2ψ) → 2(φ → ψ).

1.2 Algebraic semantics

Definition 1.2.1. (IntK2-algebra) A = 〈A,∧,∨,→,2, 0, 1〉 is an IntK2-
algebra iff 〈A,∧,∨,→, 0, 1〉 is a Heyting algebra and the following axioms are
satisfied:

2(a ∧ b) = 2a ∧2b and 21 = 1.

Definition 1.2.2. (IntK3-algebra) A = 〈A,∧,∨,→, 3, 0, 1〉 is an IntK3-
algebra iff 〈A,∧,∨,→, 0, 1〉 is a Heyting algebra and the following axioms are
satisfied:

3(a ∨ b) = 3a ∨3b and 30 = 0.

Definition 1.2.3. (IK-algebra) A = 〈A,∧,∨,→, 2,3, 0, 1〉 is an IK-algebra
iff 〈A,∧,∨,→, 0, 1〉 is a Heyting algebra and the following axioms are satisfied:

1. 21 = 1 2. 30 = 0
3. 2(a ∧ b) = 2a ∧2b 4. 3(a ∨ b) = 3a ∨3b
5. 3(a → b) ≤ 2a → 3b 6. 3a → 2b ≤ 2(a → b).

2 Frames

An intuitionistic frame [4] is a poset, i.e. a structure 〈X,≤〉, such that X 6= ∅
and ≤ is a reflexive, antisymmetric and transitive binary relation on X. Let
P≤(X) be the collection of the ≤-increasing subsets of X. For every relation
S ⊆ X ×X and every Y, Z ⊆ X, let

2S(Y ) = {x ∈ X | S[x] ⊆ Y }

3S(Y ) = {x ∈ X | S[x] ∩ Y 6= ∅}

Z ⇒S Y = 2S((X \ Z) ∪ Y )
= {x ∈ X | ∀y ∈ X(xSy & y ∈ Z ⇒ y ∈ Y }.

Lemma 2.0.4. For every poset 〈X,≤〉 and every A,B ∈ P≤(X), A ⇒≤ B ∈
P≤(X).

Proof. Assume that x ∈ (A ⇒≤ B) and x ≤ y. Then for every z ∈ A, if y ≤ z,
then x ≤ z, and so z ∈ B. This shows that y ∈ (A ⇒≤ B).

Lemma 2.0.5. For every intuitionistic frame 〈X,≤〉, 〈P≤(X),∩,∪,⇒≤, ∅, X〉
is a Heyting algebra.

Proof. For every partial order 〈X,≤〉, it holds that 〈P≤(X),∩,∪, ∅, X〉 is a
bounded distributive lattice. Let us show that for every A,B, C ∈ P≤(X),

(A ∩ C) ⊆ B iff C ⊆ (A ⇒≤ B).
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(⇒) Let c ∈ C, and let us show that c ∈ A ⇒≤ B, i.e. that if c ≤ y and
y ∈ A, then y ∈ B. As c ≤ y, c ∈ C and C is ≤-increasing, then y ∈ C, so
y ∈ A ∩ C ⊆ B.
(⇐) If x ∈ A ∩ C ⊆ C ⊆ A ⇒≤ B, then for every y ∈ A such that x ≤ y,

y ∈ B. Then take y = x.

Definition 2.0.6. (Frames) Let F = 〈X,≤, R〉 be such that X is a nonempty
set, ≤ is a preorder on X and R is a binary relation.

1. F is an IntK2-frame iff (≤ ◦R) ⊆ (R ◦ ≤).

2. F is an IntK3-frame iff (≥ ◦R) ⊆ (R ◦ ≥).

3. F is an IK-frame iff (≥ ◦R) ⊆ (R ◦ ≥) and (R ◦ ≤) ⊆ (≤ ◦R).

Example 2.0.7. For every partial order 〈X,≤〉,
1. 〈X,≤,≤〉 is an IntK2-frame.

2. 〈X,≤,≥〉 is an IntK3-frame.

3. 〈X,≤,≥ ◦ ≤〉 is an IK-frame.

Lemma 2.0.8. For every partial order 〈X,≤〉 and every binary relation S on
X,

1. the following are equivalent:

(a) (≤ ◦ S) ⊆ (S ◦ ≤).

(b) P≤(X) is closed under 2S.

2. The following are equivalent:

(a) (≥ ◦ S) ⊆ (S ◦ ≥).

(b) P≤(X) is closed under 3S.

3. The following are equivalent:

(a) (S ◦ ≤) ⊆ (≤ ◦ S).

(b) For every x ∈ X, S[x↑] ∈ P≤(X).

Proof. 1. (a ⇒ b) Let us show that if Y ⊆ X is ≤-increasing, S[x] ⊆ Y and
x ≤ y, then S[y] ⊆ Y : For every z ∈ S[y], x ≤ ySz, hence by assumption v ≤ z
for some v ∈ S[x] ⊆ Y , and as Y is ≤-increasing, z ∈ Y .
(b ⇒ a) Assume that x ≤ ySz, and let us show that z ∈ S[x]↑. As S[x]↑

is ≤-increasing, then by assumption 2S(S[x]↑) = {s ∈ X | S[s] ⊆ S[x]↑} is
≤-increasing. As S[x] ⊆ S[x]↑, then x ∈ 2S(S[x]↑), hence x ≤ y implies that
y ∈ 2S(S[x]↑), and as z ∈ S[y] ⊆ S[x]↑, then z ∈ S[x]↑.
2. (a ⇒ b) Let us show that if Y ⊆ X is ≤-increasing, S[x]∩Y 6= ∅ and x ≤ y,

then S[y] ∩ Y 6= ∅: let z ∈ S[x] ∩ Y , then y ≥ xSz, hence by assumption v ≥ z
for some v ∈ S[y], and as z ∈ Y and Y is ≤-increasing, then v ∈ Y .
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(b ⇒ a) Assume that x ≥ ySz, and let us show that z ∈ S[x]↓. As S[x]↓ is
≤-decreasing, then S[x]↓c is ≤-increasing, so by assumption 3S(S[x]↓c) = {s ∈
X | S[s] 6⊆ S[x]↓} is ≤-increasing. As S[x] ⊆ S[x]↓, then x /∈ 3S(S[x]↓c), hence
x ≥ y implies that y /∈ 3S(S[x]↓c), and as z ∈ S[y] ⊆ S[x]↓, then z ∈ S[x]↓.
3. (a ⇐ b) Let us show that if z ∈ S[x↑] and z ≤ y, then y ∈ S[x↑]: As

x ≤ vSz ≤ y for some v ∈ X, then by assumption x ≤ v ≤ wSy, hence
y ∈ S[x↑].
(b ⇒ a) Assume that xSy ≤ z, and let us show that z ∈ S[x↑]. As y ∈ S[x] ⊆

S[x↑], y ≤ z and S[x↑] is ≤-increasing by assumption, then z ∈ S[x↑].
Corollary 2.0.9. For every preorder 〈X,≤〉 and every binary relation R on X,
P≤(X) is closed under 2(≤◦R).

Proof. It holds that (≤ ◦ (≤ ◦R)) ⊆ ((≤ ◦R) ◦ ≤), hence clause (a) of item 1 of
2.0.8 is satisfied with S = (≤ ◦R).

Lemma 2.0.10. Let F = 〈X,≤, R〉 be a relational structure.

1. If F is an IntK2-frame, then AF = 〈P≤(X),∩,∪,⇒,2R, ∅, X〉 is an
IntK2-algebra. Hence, every subalgebra A of AF is an IntK2-algebra.

2. If F is an IntK3-frame, then AF = 〈P≤(X),∩,∪,⇒,3R, ∅, X〉 is an
IntK3-algebra. Hence, every subalgebra A of AF is an IntK3-algebra.

3. If F is an IK-frame, then AF = 〈P≤(X),∩,∪,⇒, 2(≤◦R),3R, ∅, X〉 is an
IK-algebra. Hence, every subalgebra A of AF is an IK-algebra.

Proof. 3. Let us show that 3R(U ⇒ V ) ⊆ (2(≤◦R)U ⇒ 3RV ) for every
U, V ∈ P≤(X): Assume that x ∈ 3R(U ⇒ V ), let x ≤ z and z ∈ 2(≤◦R)U ,
and let us show that z ∈ 3RV , i.e. that R[z] ∩ V 6= ∅. As x ∈ 3R(U ⇒ V ),
then there exists y ∈ R[x] ∩ (U ⇒ V ), hence z ≥ xRy, and so, as F is an
IK-frame, zRv ≥ y for some v ∈ X. As v ∈ R[z] ⊆ (≤ ◦ R)[z] ⊆ U , y ≤ v and
y ∈ (U ⇒ V ), then v ∈ V , and as v ∈ R[z], then R[z] ∩ V 6= ∅.
Let us show that (3RU ⇒ 2(≤◦R)V ) ⊆ 2(≤◦R)(U ⇒ V ) for every U, V ∈
P≤(X): Assume that x ∈ (3RU ⇒ 2(≤◦R)V ), let z ∈ (≤◦R)[x] and z ≤ y ∈ U ,
and let us show that y ∈ V . As z ∈ (≤ ◦R)[x], then x ≤ vRz ≤ y, hence, as F
is an IK-frame, x ≤ v ≤ wRy for some w ∈ X. As wRy ∈ U , then w ∈ 3RU ,
and as x ≤ w, then w ∈ 2(≤◦R)V , hence y ∈ R[w] ⊆ (≤ ◦R)[w] ⊆ Y .

3 Topological semantics

Definition 3.0.11. (General frame) A general frame is a structure G =
〈X,≤, R,A〉 such that X is a nonempty set, ≤ is a partial order on X, R
is a binary relation on X, and A is a subalgebra of 〈P≤(X),∩,∪,⇒, ∅, X〉.
For every general frame G, FG = 〈X,≤, R〉 is the associated frame, and the
associated ordered topological space XG = 〈X,≤, τA〉 has the following subbase:
{Y | Y ∈ A} ∪ {(X \ Y ) | Y ∈ A}.
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3.1 General IntK2-frames and their morphisms

Definition 3.1.1. (General IntK2-frame) Let G = 〈X,≤, R,A〉 be a general
frame. G is a general IntK2-frame iff

D1. XG is an Esakia space, and A is the collection of the clopen increasing
sets of XG.

D2’. A is closed under 2R.

D3. For every x ∈ X, R[x] ∈ K(XG).

Definition 3.1.2. (p-morphism of general IntK2-frames) Let Gi = 〈Xi,≤i

, Ri,Ai〉 be general IntK2-frames, i = 1, 2. A map f : X1 → X2 is a p-
morphism iff for every x, x′, y ∈ X1, z ∈ X2,

M1. if x ≤1 y then f(x) ≤2 f(y).

M2. If f(x) ≤2 z then f(x′) = z for some x′ ∈ x↑.
M3. For every Y ∈ A2, f−1[Y ] ∈ A1.

M4. If xR1y then f(x)R2f(y).

M5’. If f(x)R2z then f(x′) ≤2 z for some x′ ∈ R1[x].

Conditions M1–M3 together are equivalent to saying that f : XG1 −→ XG2 is
a continuous and strongly isotone map.

3.2 General IntK3-frames and their morphisms

Definition 3.2.1. (General IntK3-frame) Let G = 〈X,≤, R,A〉 be a general
frame. G is a general IntK3-frame iff

D1. XG is an Esakia space, and A is the collection of the clopen increasing
sets of XG.

D2. A is closed under 3R.

D3. For every x ∈ X, R[x] ∈ K(XG).

Definition 3.2.2. (p-morphism of general IntK3-frames) Let Gi = 〈Xi,≤i

, Ri,Ai〉 be general IntK3-frames, i = 1, 2. A map f : X1 → X2 is a p-
morphism iff for every x, x′, y ∈ X1, z ∈ X2,

M1. if x ≤1 y then f(x) ≤2 f(y).

M2. If f(x) ≤2 z then f(x′) = z for some x′ ∈ x↑.
M3. For every Y ∈ A2, f−1[Y ] ∈ A1.

M4. If xR1y then f(x)R2f(y).

M5. If f(x)R2z then z ≤2 f(x′) for some x′ ∈ R1[x].
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3.3 General IK-frames and their morphisms

Definition 3.3.1. (General IK-frame) Let G = 〈X,≤, R,A〉 be a general
frame. G is a general IK-frame iff

D1. XG is an Esakia space, and A is the collection of the clopen increasing
sets of XG.

D2. A is closed under 3R and 2(≤◦R).

D3. For every x ∈ X, R[x] ∈ K(XG).

D4. For every x ∈ X, R[x↑] ∈ K↑(XG).

Example 3.3.2. For every finite partial order 〈X,≤〉, the general frame G =
〈X,≤, (≥ ◦ ≤),P≤(X)〉 is a general IK-frame.

Proof. Let τ be the topology generated by taking P≤(X)∪P≥(X) as a subbase.
As X is finite, then X = 〈X,≤, τ〉 is compact. For every U ∈ P≤(X), U
is clopen and ≤-increasing. Viceversa, if U is clopen and ≤-increasing, then
U ∈ P≤(X), so P≤(X) is the collection of the clopen increasing subsets of X.
X is totally order-disconnected, for if x 6≤ y, then y /∈ x↑ ∈ P≤(X), so X is a
Priestley space1. X is an Esakia space, for if U is a clopen subset of X, then
U↓ ∈ P≥(X), hence U↓ is clopen. Item 2 of 2.0.8 implies that P≤(X) is closed
under 3(≥◦≤), and by 2.0.9, P≤(X) is closed under 2≤◦(≥◦≤). For every x ∈ X,
(≥◦≤)[x] = x↓↑ ∈ P≤(X) and (≥◦≤)[x↑] = x↑↓↑ ∈ P≤(X), so they are clopen
increasing, therefore (≥ ◦ ≤)[x] ∈ K(X) and (≥ ◦ ≤)[x↑] ∈ K↑(X).

Definition 3.3.3. (p-morphism of general IK-frames) Let Gi = 〈Xi,≤i

, Ri,Ai〉 be general IK-frames, i = 1, 2. A map f : X1 → X2 is a p-morphism
iff for every x, x′, y ∈ X1, z ∈ X2,

M1. if x ≤1 y then f(x) ≤2 f(y).

M2. If f(x) ≤2 z then f(x′) = z for some x′ ∈ x↑.
M3. For every Y ∈ A2, f−1[Y ] ∈ A1.

M4. If xR1y then f(x)R2f(y).

M5. If f(x)R2z then z ≤2 f(x′) for some x′ ∈ R1[x].

M6. If f(x)(≤2 ◦R2)z then f(x′) ≤2 z for some x′ ∈ R1[x↑].
1Actually, τ is the discrete topology, because, as X is finite, then every closed set is the

finite intersection of clopen sets and so every closed set is clopen. Moreover, as X is a Priestley
space, then it is Hausdorff, so every singleton set is closed and therefore clopen, so every subset
of X is clopen, for it is the finite union of clopen sets.
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4 From general L-frames to algebras

For every general frame G = 〈X,≤, R,A〉, let G+ := A, and for every continuous
map f : XG1 −→ XG2 let f+ : G+

2 −→ G+
1 be given by the assignment Y 7−→

f−1[Y ] for every Y ∈ AG2 .

4.1 The action of ( )+ on objects

Let us recall that for every general frame G = 〈X,≤, R,A〉, FG = 〈X,≤, R〉 is
the associated frame.

Lemma 4.1.1. Let G = 〈X,≤, R,A〉 be a general frame.

1. If G is a general IntK2-frame, then FG is an IntK2-frame.

2. If G is a general IntK3-frame, then FG is an IntK3-frame.

3. If G is a general IK-frame, then FG is an IK-frame.

Proof. 1. Let us show that for every x ∈ X, (≤ ◦ R)[x] ⊆ (R ◦ ≤)[x]: Suppose
that z ∈ (≤ ◦ R)[x] and z /∈ (R ◦ ≤)[x] = R[x]↑ for some z ∈ X. As z /∈
R[x]↑, then y 6≤ z for every y ∈ R[x], hence, by D1, for every y ∈ R[x] there
exists a clopen increasing subset Uy of XG such that y ∈ Uy and z /∈ Uy, and
so R[x] ⊆ ⋃

y∈R[x] Uy, and as XG is compact and R[x] is closed by D3, then
R[x] ⊆ ⋃n

i=1 Uyi = U for some y1, . . . , yn ∈ R[x]. As U is clopen increasing,
then U ∈ A, moreover, z /∈ U and R[x] ⊆ U .
As z ∈ (≤ ◦ R)[x], then x ≤ wRz for some w ∈ X. Since z ∈ (R[w] \ U), then

w /∈ 2RU ∈ A by D2’, so in particular 2RU is increasing, and as x ≤ w, then
x /∈ 2RU , i.e. R[x] 6⊆ U , contradiction.
2. Let us show that for every x ∈ X, (≥ ◦ R)[x] ⊆ (R ◦ ≥)[x]: Suppose that

z ∈ (≥ ◦ R)[x] and z /∈ (R ◦ ≥)[x] = R[x]↓ for some z ∈ X. As z /∈ R[x]↓,
then z 6≤ y for every y ∈ R[x], hence, by D1, for every y ∈ R[x] there exists
a clopen decreasing subset Vy of XG such that y ∈ Vy and z /∈ Vy, and so
R[x] ⊆ ⋃

y∈R[x] Vy, and as XG is compact and R[x] is closed by D3, then R[x] ⊆⋃n
i=1 Vyi = V for some y1, . . . , yn ∈ R[x]. Let U = (X \ V ). As U is clopen

increasing, then U ∈ A, moreover, z ∈ U and R[x] ∩ U = ∅.
As z ∈ (≥ ◦ R)[x], then x ≥ wRz for some w ∈ X. Since z ∈ R[w] ∩ U , then

w ∈ 3RU ∈ A by D2, so in particular 3RU is increasing, and as w ≤ x, then
x ∈ 3RU , i.e. R[x] ∩ U 6= ∅, contradiction.
3. Let us show that for every x ∈ X, (R ◦ ≤)[x] ⊆ (≤ ◦ R)[x]: Suppose that

z ∈ (R ◦ ≤)[x] and z /∈ (≤ ◦ R)[x] = R[x↑] for some z ∈ X. As z /∈ R[x↑]
which is a closed and increasing subset of XG by D4, then y 6≤ z for every
y ∈ R[x↑], hence, by D1, for every y ∈ R[x↑] there exists a clopen increasing
subset Uy of XG such that y ∈ Uy and z /∈ Uy, and so R[x↑] ⊆ ⋃

y∈R[x] Uy, and
as XG is compact and R[x] is closed by D3, then R[x] ⊆ ⋃n

i=1 Uyi = U for some
y1, . . . , yn ∈ R[x]. As U is clopen increasing, then U ∈ A, moreover, z /∈ U and
R[x↑] ⊆ U .
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As z ∈ (R◦≤)[x], then xRw ≤ z for some w ∈ X. Since w ∈ R[x] ⊆ R[x↑] ⊆ U ,
then w ∈ U which is increasing, and as w ≤ z, then z ∈ U , contradiction.

Proposition 4.1.2. Let L ∈ {IntK2, IntK3, IK}. For every general L-frame
G = 〈X,≤, R,A〉, A is an L-algebra.

Proof. It immediately follows from 2.0.10 and 4.1.1.

4.2 The action of ( )+ on arrows

Proposition 4.2.1. Let L ∈ {IntK2, IntK3, IK}. For every p-morphism
h : G1 −→ G2 of general L-frames, h+ : G2

+ −→ G1
+ is a homomorphism of

L-algebras.

Proof. If h : G1 −→ G2 is a p-morphism of general L-frames, then in particular
it is a continuous and strongly isotone map between the Esakia spaces XG1

and XG2 , hence from the duality for Heyting algebras, h+ is a homomorphism
between the Heyting algebra reducts of G2

+ and G1
+. Let us show that if G1

and G2 are general IntK2-frames, then for every Y ∈ A2,

h−1[2R2Y ] = 2R1h
−1[Y ].

For every x ∈ X1, x ∈ h−1[2R2Y ] iff R2[h(x)] ⊆ Y , and x ∈ 2R1h
−1[Y ] iff

R1[x] ⊆ h−1[Y ].
(⊆) Assume that z ∈ R1[x] and show that z ∈ h−1[Y ]: As xR1z, then, by M4,

h(x)R2h(z), i.e. h(z) ∈ R2[h(x)] ⊆ Y , hence z ∈ h−1[Y ].
(⊇) Assume that z ∈ R2[h(x)] and show that z ∈ Y : If h(x)R2z, then, by M5’,

there exists y ∈ R1[x] ⊆ h−1[Y ] such that h(y) ≤2 z. As h(y) ∈ Y and Y is
≤2-increasing, then z ∈ Y .
Let us show that if G1 and G2 are general IntK3-frames, then for every Y ∈ A2,

h−1[3R2Y ] = 3R1h
−1[Y ].

For every x ∈ X1, x ∈ h−1[3R2Y ] iff R2[h(x)] ∩ Y 6= ∅, and x ∈ 3R1h
−1[Y ] iff

R1[x] ∩ h−1[Y ] 6= ∅.
(⊆) Assume that z ∈ R2[h(x)] ∩ Y . As h(x)R2z, then, by M5, there exists

y ∈ R1[x] such that z ≤2 h(y). As z ∈ Y and Y is ≤2-increasing, then h(y) ∈ Y .
Hence y ∈ R1[x] ∩ h−1[Y ] 6= ∅.
(⊇) Assume that z ∈ R1[x] ∩ h−1[Y ], hence h(z) ∈ Y and xR1z, so, by M4,

h(x)R2h(z), i.e. h(z) ∈ R2[h(x)], and so h(z) ∈ R2[h(x)] ∩ Y 6= ∅.
Let us show that if G1 and G2 are general IK-frames, then for every Y ∈ A2,

h−1[2(≤◦R2)Y ] = 2(≤◦R1)h
−1[Y ].

For every x ∈ X1, x ∈ h−1[2(≤◦R2)Y ] iff (≤ ◦ R2)[h(x)] ⊆ Y , and x ∈
2(≤◦R1)h

−1[Y ] iff (≤ ◦R1)[x] ⊆ h−1[Y ].
(⊆) Assume that z ∈ (≤ ◦ R1)[x] and show that z ∈ h−1[Y ]: As x ≤1 wR1z

for some w ∈ X1, then, by M1 and M4, h(x) ≤2 h(w)R2h(z), i.e. h(z) ∈
(≤ ◦R2)[h(x)] ⊆ Y , hence z ∈ h−1[Y ].
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(⊇) Assume that z ∈ (≤ ◦ R2)[h(x)] and show that z ∈ Y : If h(x)(≤2 ◦ R2)z,
then, by M5, there exists y ∈ (≤1 ◦ R1)[x] ⊆ h−1[Y ] such that h(y) ≤2 z. As
h(y) ∈ Y and Y is ≤2-increasing, then z ∈ Y .
The proof that h−1[3R2Y ] = 3R1h

−1[Y ] goes as in the IntK3 case.

5 From algebras to general L-frames

Let L ∈ {IntK2, IntK3, IK}. For every L-algebra A let Pr(A) be the collec-
tion of the prime filters of A. Let us define A+ := 〈Pr(A),⊆,RA,A〉, where
for every P, Q ∈ Pr(A):

R1. If A is an IntK2-algebra, PRAQ iff 2−1[P ] ⊆ Q.

R2. If A is an IntK3-algebra, PRAQ iff Q ⊆ 3−1[P ].

R3. If A is an IK-algebra, PRAQ iff 2−1P ⊆ Q ⊆ 3−1[P ].

A = {a | a ∈ A}, and for every a ∈ A, a = {P ∈ Pr(A) | a ∈ P}, moreover for
every n-ary operation ∗ in the signature of A ∗A(a1, . . . , an) = ∗(a1, . . . , an).
For every homomorphism f : A1 −→ A2 let f+ : A2+ −→ A1+ be given by the

assignment P 7−→ f−1[P ] for every P ∈ Pr(A2).

5.1 Properties of RA
Lemma 5.1.1. For every L-algebra A, RA is a closed subset of XA+ ×XA+ .

Proof. Assume that RA is defined like in R1. If 〈P,Q〉 /∈ RA, then 2−1[P ] 6⊆ Q,
i.e. 2a ∈ P and a /∈ Q for some a ∈ A. Hence P ∈ (2a) and Q /∈ a. Let us
consider U = (2a)× (Pr(A) \ a). U is an open subset of XA+ ×XA+ , for both
(2a) and Pr(A) \ a are, moreover 〈P, Q〉 ∈ U . Let us show that RA ∩U = ∅: If
〈S, T 〉 ∈ U , then 2a ∈ S and a /∈ T , hence 2−1[S] 6⊆ T , i.e. 〈S, T 〉 /∈ RA.
Assume that RA is defined like in R2. If 〈P, Q〉 /∈ RA, then Q 6⊆ 3−1[P ],

i.e. a ∈ Q and 3a /∈ P for some a ∈ A. Hence Q ∈ a and P /∈ (3a). Let us
consider U = (Pr(A) \ (3a))× a. U is an open subset of XA+ ×XA+ , for both
Pr(A) \ (3a) and a are, moreover 〈P, Q〉 ∈ U . Let us show that RA ∩U = ∅: If
〈S, T 〉 ∈ U , then 3a /∈ S and a ∈ T , hence T 6⊆ 3−1[S], i.e. 〈S, T 〉 /∈ RA.
Assume that RA is defined like in R3. If 〈P, Q〉 /∈ RA, then either 2−1[P ] 6⊆ Q

or Q 6⊆ 3−1[P ]. Then the proof follows like in one of the cases above.

Corollary 5.1.2. For every L-algebra A, if F is a closed subset of XA+ , then
RA[F ] is a closed subset of XA+ .

Proof. For every closed subset F of XA+ ,

RA[F ] = {Q ∈ Pr(A) | PRAQ for some P ∈ F}
= π2[RA ∩ (F × Pr(A))].
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By 5.1.1 RA is closed, hence so is RA∩ (F ×Pr(A)), and as π2 is a closed map,
for it is a continuous map between compact spaces, then π2[RA ∩ (F ×Pr(A))]
is closed.

Lemma 5.1.3. 1. For every IntK2-algebra A, RA = (⊆ ◦RA ◦ ⊆).

2. For every IntK3-algebra A, RA = (⊇ ◦ RA ◦ ⊇).

3. For every IK-algebra A, RA = (⊆ ◦ RA) ∩ (RA ◦ ⊇).

Proof. 1. (⊇) If 〈P, Q〉 ∈ (⊆ ◦ RA ◦ ⊆), then P ⊆ S1RAS2 ⊆ Q, for some
S1, S2 ∈ Pr(A), hence 2−1[P ] ⊆ 2−1[S1] ⊆ S2 ⊆ Q.
(⊆) If PRAQ, then P ⊆ PRAQ ⊆ Q.
2.(⊇) If 〈P, Q〉 ∈ (⊇◦RA◦⊇), then P ⊇ S1RAS2 ⊇ Q, for some S1, S2 ∈ Pr(A),

hence Q ⊆ S2 ⊆ 3−1[S1] ⊆ 3−1[P ].
(⊆) If PRAQ, then P ⊇ PRAQ ⊇ Q.
3. (⊇) If 〈P,Q〉 ∈ (⊆ ◦ RA) ∩ (RA ◦ ⊇), then P ⊆ S1RAQ and PRAS2 ⊇ Q

for some S1, S2 ∈ Pr(A), then 2−1[P ] ⊆ 2−1[S1] ⊆ Q and Q ⊆ S2 ⊆ 3−1[P ],
hence PRAQ.
(⊆) If PRAQ, then P ⊆ PRAQ and PRAQ ⊇ Q.

Lemma 5.1.4. For every IK-algebra A and every P, Q ∈ Pr(A),

1. 〈P,Q〉 ∈ (RA ◦ ⊇) iff Q ⊆ 3−1[P ].

2. 〈P,Q〉 ∈ (⊆ ◦RA) iff 2−1[P ] ⊆ Q.

Proof. 1. (⇐) Assume that Q ⊆ 3−1[P ], and let us show that there exists
S ∈ Pr(A) such that PRAS ⊇ Q, i.e. such that Q ∪ 2−1[P ] ⊆ S and S ∩
3−1[P ]c = ∅. Let us consider Fi(Q ∪2−1[P ]): If we show that

Fi(Q ∪2−1[P ]) ∩3−1[P ]c = ∅,
then the statement will follow by Birkhoff-Stone theorem. Suppose that Fi(Q∪
2−1[P ])∩3−1[P ]c 6= ∅. Then there exists c ∈ A such that 3c /∈ P and a∧ b ≤ c
for some a ∈ 2−1[P ] and b ∈ Q. Then b ≤ a → c, hence 3b ≤ 3(a → c) ≤
(2a → 3c). As b ∈ Q ⊆ 3−1[P ], then 3b ∈ P , hence 2a → 3c ∈ P , and as
2a ∈ P , then 3c ∈ P , contradiction.
(⇒) If PRAS ⊇ Q for some S ∈ Pr(A), then Q ⊆ S ⊆ 3−1[P ].
2. (⇐) Assume that 2−1[P ] ⊆ Q, and let us show that there exists S ∈ Pr(A)

such that P ⊆ S and 2−1[P ] ⊆ Q ⊆ 3−1[P ], i.e. such that P ∪3[P ] ⊆ S and
S ∩2[Qc] = ∅. Let us consider Fi(P ∪3[Q]): If we show that

Fi(P ∪3[Q]) ∩2[Qc] = ∅,
then the statement will follow by Birkhoff-Stone theorem. Suppose that Fi(P ∪
3[Q]) ∩ 2[Qc] 6= ∅. Then there exist a ∈ Qc, b ∈ P and c ∈ Q such that
b ∧3c ≤ 2a. Then b ≤ 3c → 2a ≤ 2(c → a). As b ∈ P , then 2(c → a) ∈ P ,
hence c → a ∈ 2−1[P ] ⊆ Q, and as c ∈ Q, then a ∈ Q, contradiction.
(⇒) If P ⊆ SRAQ for some S ∈ Pr(A), then 2−1[P ] ⊆ 2−1[S] ⊆ Q.
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Corollary 5.1.5. 1. For every IntK2-algebra A and every P ∈ Pr(A), if
2a /∈ P , then a /∈ Q and PRAQ for some Q ∈ Pr(A).

2. For every IntK3-algebra A and every P ∈ Pr(A), if 3a ∈ P , then a ∈ Q
and PRAQ for some Q ∈ Pr(A).

3. For every IK-algebra A, if 2a /∈ P , then a /∈ Q and P ⊆ SRAQ for some
Q,S ∈ Pr(A).

4. For every IK-algebra A and every P ∈ Pr(A), if 3a ∈ P , then a ∈ S and
PRAS for some S ∈ Pr(A).

Proof. 1. If 2a /∈ P , then Id(a) ∩ 2−1[P ] = ∅, for if not, then c ≤ a for some
c such that 2c ∈ P , hence 2c ≤ 2a, therefore 2a ∈ P , contradiction. By
Birkhoff-Stone theorem, there exists Q ∈ Pr(A) such that 2−1[P ] ⊆ Q, i.e.
PRAQ, and a /∈ Q.
2. If 3a ∈ P , then Fi(a) ∩3−1[P c] = ∅, for if not, then a ≤ c for some c such

that 3c /∈ P , hence 3a ≤ 3c, therefore 3c ∈ P , contradiction. By Birkhoff-
Stone theorem, there exists Q ∈ Pr(A) such that a ∈ Q and Q ⊆ 3−1[P ], i.e.
PRAQ.
3. If 2a /∈ P , then Id(a) ∩ 2−1[P ] = ∅, so by Birkhoff-Stone theorem, there

exists Q ∈ Pr(A) such that 2−1[P ] ⊆ Q and a /∈ Q. By item 2 of 5.1.4,
P ⊆ SRAQ for some S ∈ Pr(A).
4. If 3a ∈ P , then Fi(a) ∩3−1[P c] = ∅, so by Birkhoff-Stone theorem, there

exists Q ∈ Pr(A) such that a ∈ Q and Q ⊆ 3−1[P ]. By item 1 of 5.1.4,
PRAS ⊇ Q for some S ∈ Pr(A), and as a ∈ S ⊆ Q, then a ∈ S.

Corollary 5.1.6. 1. For every IntK2-algebra A, (⊆ ◦RA) ⊆ (RA ◦ ⊆).

2. For every IntK3-algebra A, (⊇ ◦RA) ⊆ (RA ◦ ⊇).

3. For every IK-algebra A, (⊇◦RA) ⊆ (RA ◦⊇) and (RA ◦⊆) ⊆ (⊆◦RA).

Proof. 1. If P ⊆ SRAQ, then 2−1[P ] ⊆ 2−1[S] ⊆ Q, hence PRAQ ⊆ Q.
2. If P ⊇ SRAQ, then Q ⊆ 3−1[S] ⊆ 3−1[P ], hence PRAQ ⊇ Q.
3. If PRAS ⊆ Q, then 2−1[P ] ⊆ S ⊆ Q, hence by item 2 of 5.1.4, 〈P, Q〉 ∈

(⊆ ◦RA).
If P ⊇ SRAQ, then Q ⊆ 3−1[S] ⊆ 3−1[P ], hence hence by item 1 of 5.1.4,
〈P,Q〉 ∈ (RA ◦ ⊇).

5.2 The action of ( )+ on objects

Proposition 5.2.1. Let L ∈ {IntK2, IntK3, IK}. For every L-algebra A,
A+ = 〈Pr(A),⊆,RA,A〉 is a general L-frame.

Proof. From the duality for Heyting algebras, it holds that XA+ is an Esakia
space, and A is the collection of the clopen increasing sets of XA+ , which is D1.
As XA+ is an Esakia space, then in particular it is Hausdorff, hence for every
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P ∈ Pr(A), {P} is closed in XA+ , and so by 5.1.2, RA[P ] is closed in XA+ ,
which is D3.
Let us show that if A is an IntK2-algebra, then 2A = 2RA , i.e. that for every

a ∈ A,

(2a) = 2RAa.

(⊆) If P ∈ (2a), then 2a ∈ P , i.e. a ∈ 2−1[P ] so, for every Q ∈ Pr(A), if
PRAQ, then a ∈ 2−1[P ] ⊆ Q.
(⊇) If P /∈ (2a), then by item 1 of 5.1.5, a /∈ Q and PRAQ for some Q ∈ Pr(A),

so P /∈ 2RAa.
Let us show that if A is an IntK3-algebra (an IK-algebra), then 3A = 3RA ,

i.e. that for every a ∈ A,

(3a) = 3RAa.

(⊆) If P ∈ (3a), then 3a ∈ P , then by item 2 (item 4) of 5.1.5, a ∈ Q and
PRAQ for some Q ∈ Pr(A), hence P ∈ 3RAa.
(⊇) If P ∈ 3RAa, then a ∈ Q and PRAQ for some Q ∈ Pr(A), i.e. Q ⊆

3−1[P ], hence 3a ∈ P .
Let us show that if A is an IK-algebra, then 2A = 2(⊆◦RA), i.e. that for every

a ∈ A,

(2a) = 2(⊆◦RA)a.

(⊆) If P ∈ (2a), then 2a ∈ P , i.e. a ∈ 2−1[P ] so, for every Q ∈ Pr(A), if
PRAQ, then a ∈ 2−1[P ] ⊆ Q.
(⊇) If P /∈ (2a), then by item 3 of 5.1.5, a /∈ Q and P ⊆ SRAQ for some

Q,S ∈ Pr(A), so P /∈ 2(⊆◦RA)a.
This is enough to show that A is closed in each case under the appropriate

operations.
If A is an IK-algebra, then as XA+ is an Esakia space, then in particular it is

Priestley, hence for every P ∈ Pr(A), P↑ = {Q ∈ Pr(A) | P ⊆ Q} is closed in
XA+ , and so by 5.1.2, RA[P↑] is closed in XA+ .
Let us show that RA[P↑] is ⊆-increasing: If Q ∈ RA[P↑] and Q ⊆ T , then P ⊆

SRAQ ⊆ T , hence by item 3 of 5.1.6, P ⊆ S ⊆ Q′RAT , and so T ∈ RA[P↑].
This proves D4.

5.3 The action of ( )+ on arrows

Proposition 5.3.1. Let L ∈ {IntK2, IntK3, IK}. For every L-algebra ho-
momorphism h : A1 −→ A2, h+ : A2+ −→ A1+ is a p-morphism of general
L-frames.

Proof. From the duality for Heyting algebras, it holds that h+ is a continuous
and strongly isotone map between XA2+ and XA1+ , which is equivalent to
conditions M1–M3.
Let us show that if P, Q ∈ Pr(A2) and 2−1[P ] ⊆ Q, then 2−1[h−1[P ]] ⊆

h−1[Q]: For every a ∈ A2,
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a ∈ 2−1[h−1[P ]] ⇔ 2a ∈ h−1[P ]
⇔ h(2a) ∈ P
⇔ 2h(a) ∈ P
⇔ h(a) ∈ 2−1[P ] ⊆ Q
⇒ a ∈ h−1[Q].

Let us show that if P, Q ∈ Pr(A2) and Q ⊆ 3−1[P ], then h−1[Q] ⊆ 3−1[h−1[P ]]:
For every a ∈ A2,

a ∈ h−1[Q] ⇔ h(a) ∈ Q ⊆ 3−1[P ]
⇒ 3h(a) ∈ P
⇔ h(3a) ∈ P
⇔ 3a ∈ h−1[P ]
⇔ a ∈ 3−1[h−1[P ]].

This is enough to show that for L ∈ {IntK2, IntK3, IK} and for every P, Q ∈
Pr(A2), if PRA2Q, then h+(P )RA1h+(Q), which is M4.
Let us show M5 for IntK3-algebras, i.e. that if A1 and A2 are IntK3-algebras

and P ∈ Pr(A2), Q ∈ Pr(A1) are such that h−1[P ]RA1Q, then there exists S ∈
RA2 [P ] such that Q ⊆ h−1[S]. We need that S ⊆ 3−1[P ], i.e. S ∩3−1[P ]c = ∅
and Q ⊆ h−1[S], i.e. h[Q] ⊆ S. It holds that

Fi(h[Q]) ∩3−1[P ]c = ∅,
for if not, then there are a ∈ Q and 3b /∈ P such that h(a) ≤ b, hence 3h(a) ≤
3b. As a ∈ Q ⊆ 3−1[h−1[P ]], then 3h(a) ∈ P , hence 3b ∈ P , contradiction.
By Birkhoff-Stone theorem, there exists S ∈ Pr(A2) such that h[Q] ⊆ S (i.e.

Q ⊆ h−1[S]) and S ∩3−1[P ]c = ∅, i.e. S ⊆ 3−1[P ], i.e. PRA2S.
Let us show M5 for IK-algebras: Like before, it holds that Fi(h[Q])∩3−1[P ]c =
∅, so by Birkhoff-Stone theorem, h[Q] ⊆ T (i.e. Q ⊆ h−1[T ]) and T ∩3−1[P ]c =
∅ for some T ∈ Pr(A2). As T ⊆ 3−1[P ], then by item 1 of 5.1.4, 〈P, T 〉 ∈
(RA2 ◦ ⊇), i.e. PRA2S ⊇ T for some S ∈ Pr(A2), so S ∈ RA2 [P ] and Q ⊆
h−1[T ] ⊆ h−1[S].
Let us show M5’, i.e. that if A1 and A2 are IntK2-algebras and P ∈ Pr(A2),

Q ∈ Pr(A1) are such that h−1[P ]RA1Q, then there exists S ∈ RA2 [P ] such
that h−1[S] ⊆ Q: we need that 2−1[P ] ⊆ S and S ⊆ h[Q], i.e. S ∩ h[Qc] = ∅.
If we show that

h[Qc] ∩ Fi(2−1[P ]) = ∅,
then the statement will follow from Birkhoff-Stone theorem. Suppose that there
are a /∈ Q and 2b ∈ P such that b ≤ h(a), hence 2b ≤ 2h(a) = h(2a). As
2b ∈ P , then h(2a) ∈ P , hence a ∈ 2−1[h−1[P ] ⊆ Q, contradiction.
Let us show M6, i.e. that if A1 and A2 are IK-algebras and P ∈ Pr(A2),

Q ∈ Pr(A1) are such that h−1[P ](⊆◦RA1)Q, then there exists S ∈ (⊆◦RA1)[P ]
such that h−1[S] ⊆ Q: By item 2 of 5.1.4, we need that 2−1[P ] ⊆ S, moreover,
we need that S ⊆ h[Q], i.e. S ∩ h[Qc] = ∅. The proof goes like in the case
treated before.
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6 Duality

For L ∈ {IntK2, IntK3, IK} and for every general L-frame G = 〈X,≤, R,A〉,
let us consider the assignment which maps every x ∈ X to the set εG(x) =
{Y ∈ A | x ∈ Y }. From the duality for Heyting algebras, we know that this
assignment defines a map εG : XG −→ X(G+)+ which is an iso in E.
Let us introduce three full subcategories of the categories of the general L-

frames and their p-morphisms:

6.1 L-spaces

Definition 6.1.1. (IntK2-space) Let G = 〈X,≤, R,A〉 be a general frame. G
is an IntK2-space iff

D1. XG is an Esakia space, and A is the collection of the clopen increasing
sets of XG.

D2’. A is closed under 2R.

D3. For every x ∈ X, R[x] ∈ K↑(XG) = {F ∈ K(XG) | F = F↑}.
So IntK2-spaces are those general IntK2-frames such that R[x] is≤-increasing

for every x ∈ X. Let IntK2sp be the category of the IntK2-spaces and their
p-morphisms.

Example 6.1.2. For every finite partial order 〈X,≤〉, the general frame G =
〈X,≤,≤,P≤(X)〉 is an IntK2-space.

Proof. Let τ be the topology generated by taking P≤(X)∪P≥(X) as a subbase,
and let X = 〈X,≤, τ〉. In 3.3.2, we saw that X is an Esakia space and that
P≤(X) is the collection of the clopen increasing subsets of X. Item 1 of 2.0.8
implies that P≤(X) is closed under 2≤. For every x ∈ X, x↑ ∈ P≤(X) is clopen
increasing, so in particular x↑ ∈ K↑(X).

Definition 6.1.3. (IntK3-space) Let G = 〈X,≤, R,A〉 be a general frame. G
is an IntK3-space iff

D1. XG is an Esakia space, and A is the collection of the clopen increasing
sets of XG.

D2. A is closed under 3R.

D3. For every x ∈ X, R[x] ∈ K↓(XG) = {F ∈ K(XG) | F = F↓}.
So IntK3-spaces are those general IntK3-frames such that R[x] is≤-decreasing

for every x ∈ X. Let IntK3sp be the category of the IntK3-spaces and their
p-morphisms.

Example 6.1.4. For every finite partial order 〈X,≤〉, the general frame G =
〈X,≤,≥,P≤(X)〉 is an IntK3-space.
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Proof. Let τ be the topology generated by taking P≤(X)∪P≥(X) as a subbase,
and let X = 〈X,≤, τ〉. In 3.3.2, we saw that X is an Esakia space and that
P≤(X) is the collection of the clopen increasing subsets of X. Item 2 of 2.0.8
implies that P≤(X) is closed under 3≥. For every x ∈ X, x↓ ∈ P≥(X) is clopen
decreasing, so in particular x↓ ∈ K↓(X).

Definition 6.1.5. (IK-space) Let G = 〈X,≤, R,A〉 be a general frame. G is
an IK-space iff

D1. XG is an Esakia space, and A is the collection of the clopen increasing
sets of XG.

D2. A is closed under 3R and 2(≤◦R).

D3. For every x ∈ X, R[x] ∈ K(XG).

D4. For every x ∈ X, R[x↑] ∈ K↑(XG).

D5. For every x ∈ X, R[x] = R[x↑] ∩R[x]↓.
Conditions D4 and D5 together imply that for every x ∈ X, R[x] is the in-

tersection of an increasing set and a decreasing set, hence R[x] is convex, and
so R[x] = R[x]↑ ∩ R[x]↓. So if G is an IK-space, then G is a general IK-
space and R[x] is convex for every x ∈ X. Question: does the viceversa
hold? Probably not. Let IKsp be the category of the IK-spaces and their
p-morphisms.

Given a finite partial order 〈X,≤〉, the general IK-frame G = 〈X,≤, (≥ ◦
≤),P≤(X)〉 is not an IK-space in general. Consider the partial order associated
with the following Hasse diagram:

rx¡
¡

¡

@
@

@

rz1

@
@

@
@

@
@r

z3
¡

¡
¡

¡
¡

¡
rz4

@
@

@

r
z2
¡

¡
¡

ry

The relation (≥ ◦ ≤) does not satisfy D5: It holds that x ≤ z1 ≥ z2 ≤ y, so
y ∈ (≥ ◦ ≤)[x↑], and x ≥ z3 ≤ z4 ≥ y, so y ∈ (≥ ◦ ≤)[x]↓, but y /∈ (≥ ◦ ≤)[x].

Example 6.1.6. For every finite linear order 〈X,≤〉, the general IK-frame
G = 〈X,≤, (≥ ◦ ≤),P≤(X)〉 is an IK-space.

Proof. Since ≤ is a linear order, then for every x ∈ X, X = x↑∪x↓ ⊆ (≥◦≤)[x],
hence (≥ ◦ ≤)[x] = (≥ ◦ ≤)[x↑] ∩ (≥ ◦ ≤)[x]↓, which is D5.

Proposition 6.1.7. For every L-algebra A, A+ is an L-space.

15



Proof. By 5.2.1, A+ is a general L-frame. By item 1 of 5.1.3, if A is an IntK2-
algebra, then RA[P ] = (⊆ ◦ RA ◦ ⊆)[P ] is ⊆-increasing for every P ∈ Pr(A).
Analogously, items 2 and 3 of 5.1.3 respectively imply that if A is an IntK3-
algebra, then RA[P ] is ⊆-decreasing for every P ∈ Pr(A), and if A is an
IK-algebra, then RA[P ] = (⊆◦RA)[P ]∩ (RA ◦⊇)[P ] for every P ∈ Pr(A).

Lemma 6.1.8. For every general L-frame G = 〈X,≤, R,A〉 and every x, y ∈ X,

1. x ≤ y iff εG(x) ⊆ εG(y).

2. If xRy then εG(x)RAεG(y).

Proof. 1. If x ≤ y then, as A ⊆ P≤(X), for every Y ∈ A, if x ∈ Y then y ∈ Y .
If x 6≤ y then, as XG is totally order-disconnected and A is the collection of

the clopen increasing subsets of XG , x ∈ Y and y /∈ Y for some Y ∈ A, hence
Y ∈ (εG(x) \ εG(y)), and so εG(x) 6⊆ εG(y).
2. Let us show that if y ∈ R[x], then a) 2−1

R [εG(x)] ⊆ εG(y), b) εG(y) ⊆
3−1

R [εG(x)] and c) 2−1
(≤◦R)[εG(x)] ⊆ εG(y):

a) For every Y ∈ A, 2RY ∈ εG(x) iff x ∈ 2RY , iff R[x] ⊆ Y , and so y ∈ Y ,
i.e. Y ∈ εG(y).
b) For every Y ∈ A, Y ∈ εG(y) iff y ∈ Y , and as y ∈ R[x], then R[x] ∩ Y 6= ∅,

i.e. 3RY ∈ εG(x), i.e. Y ∈ 3−1
R [εG(x)].

c) For every Y ∈ A, 2(≤◦R)Y ∈ εG(x) iff x ∈ 2(≤◦R)Y , iff (≤ ◦R)[x] ⊆ Y , and
so y ∈ R[x] ⊆ (≤ ◦R)[x] ⊆ Y , i.e. Y ∈ εG(y).
a) proves the statement if A is an IntK2-algebra, b) proves the statement if
A is an IntK3-algebra, and a) and c) together prove the statement if A is an
IK-algebra.

Lemma 6.1.9. 1. The following are equivalent for every general IntK2-
frame:

(a) For every x ∈ X, R[x] = R[x]↑.
(b) For every x, y ∈ X, if ε(x)RAε(y) then xRy.

2. The following are equivalent for every general IntK3-frame:

(a) For every x ∈ X, R[x] = R[x]↓.
(b) For every x, y ∈ X, if ε(x)RAε(y) then xRy.

3. The following are equivalent for every general IK-frame:

(a) For every x ∈ X, R[x] = R[x↑] ∩R[x]↓.
(b) For every x, y ∈ X, if ε(x)RAε(y) then xRy.

Proof. 1. (a ⇒ b) Suppose that x, y ∈ X are such that ε(x)RAε(y) but y /∈
R[x] = R[x]↑. Then R[x] ⊆ U and y /∈ U for some U ∈ A, hence x ∈ 2RU .
As ε(x)RAε(y), then 2−1

R [ε(x)] ⊆ ε(y), i.e. for every U ∈ A, if x ∈ 2RU , then
y ∈ U , contradiction.
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(b ⇒ a) (⊇) If y ∈ R[x]↑, then xRz ≤ y for some z ∈ X, hence, by 6.1.8,
ε(x)RAε(z) ⊆ ε(y), i.e. 2−1

R [ε(x)] ⊆ ε(z) ⊆ ε(y), hence ε(x)RAε(y), and so by
assumption it follows that xRy.
2. (a ⇒ b) Suppose that x, y ∈ X are such that ε(x)RAε(y) but y /∈ R[x] =

R[x]↓. Then y ∈ U and R[x]∩U = ∅ for some clopen increasing subset U , hence
x /∈ 3RU .
As ε(x)RAε(y), then ε(y) ⊆ 3−1

R [ε(x)], i.e. for every U ∈ A, if y ∈ U then
x ∈ 3RU , contradiction.
(b ⇒ a) (⊇) If y ∈ R[x]↓, then xRz ≥ y for some z ∈ X, hence, by 6.1.8,

ε(x)RAε(z) ⊇ ε(y), i.e. ε(y) ⊆ ε(z) ⊆ 3−1
R [ε(x)], hence ε(x)RAε(y), and so by

assumption it follows that xRy.
3. (a ⇒ b) Suppose that x, y ∈ X are such that ε(x)RAε(y) but y /∈ R[x] =

R[x↑] ∩R[x]↓. Then either y /∈ R[x↑] or y /∈ R[x]↓. If y /∈ R[x↑] = R[x↑]↑ Then
R[x↑] ⊆ U and y /∈ U for some U ∈ A, hence x ∈ 2(≤◦R)U .
As ε(x)RAε(y), then 2−1

(≤◦R)[ε(x)] ⊆ ε(y), i.e. for every U ∈ A, if x ∈ 2(≤◦R)U ,
then y ∈ U , contradiction. If y /∈ R[x]↓ the proof is analogous to the (a ⇒ b)
of item 2.
(b ⇒ a) (⊇) If y ∈ R[x↑] ∩ R[x]↓, then x ≤ z1Ry and xRz2 ≥ y for some

z1, z2 ∈ X, hence, by 6.1.8, ε(x) ⊆ ε(z1)RAε(y) and ε(x)RAε(z2) ⊇ ε(y),
and so 2−1

R [ε(x)] ⊆ 2−1
R [ε(z1)] ⊆ ε(y) and ε(y) ⊆ ε(z2) ⊆ 3−1

R [ε(x)], hence
ε(x)RAε(y), and so by assumption it follows that xRy.

Proposition 6.1.10. For every L-space G = 〈X,≤, R,A〉, εG : G −→ (G+)+ is
a p-morphism of L-spaces, hence it is an iso in the category of L-spaces.

Proof. From the duality for Heyting algebras, we know that εG : XG −→ X(G+)+

is an iso in E, hence it is bijective and satisfies M1–M3. M4 holds by item 2
of 6.1.8. The surjectivity of εG and 6.1.9 imply M5’, M5 and M6. Let us show
M6: If εG(x)(⊆ ◦ RA)P = εG(y), then εG(x) ⊆ εG(z)RAεG(y) for some z ∈ X,
hence, by item 1 of 6.1.8 and 6.1.9, x ≤ zRy, i.e. y ∈ (≤ ◦R)[x].

Theorem 6.1.11. For every L ∈ {IntK2, IntK3, IK}, the category LAlg of
L-algebras and their homomorphisms is dually equivalent to the category LSp
of L-spaces and their p-morphisms.

Proof. It follows from 4.1.2, 4.2.1, 5.3.1, 6.1.7, and 6.1.10.

7 Characterizing topological semantics of MIPC

One of the best known axiomatic extensions of IK is the modal imtuitionistic
propositional calculus (MIPC) introduced by Prior in [12]. MIPC can be
thought of as the intuitionistic S5 (see [2]), and it holds (see for example [13])
that

MIPC = IK⊕2p → p ⊕2p → 22p ⊕3p → 23p ⊕
p → 3p ⊕33p → 3p ⊕32p → 2p.

17



Bezhanishvili [1, 2] introduced a topological semantics for MIPC, given by
the category TPSOE of perfect augmented Kripke frames and their morphisms
(see 7.0.17 and 7.0.21 below), and proved that TPSOE is dually equivalent
to the category of monadic Heyting algebras and their homomorphisms, which
is the class of algebras canonically associated with MIPC (see [2]). In this
section, we will show that – as it was to be expected – TPSOE is isomorphic
to the full subcategory MIPCsp of IKsp whose objects are the IK-spaces
G = 〈X,≤, R,A〉 such that R is an equivalence relation.

Definition 7.0.12. (MIPC-space) An MIPC-space is an IK-space G =
〈X,≤, E,A〉 such that E is an equivalence relation.

Definition 7.0.13. (Augmented Kripke frame) (cf. def 2.1 of [2]) A rela-
tional structure 〈X,≤, E〉 is an augmented Kripke frame iff 〈X,≤〉 is a partial
order and E is an equivalence relation on X such that (E ◦ ≤) ⊆ (≤ ◦ E).

Lemma 7.0.14. The following are equivalent for every relational structure
〈X,≤, E〉:

1. 〈X,≤, E〉 is an augmented Kripke frame.

2. 〈X,≤, E〉 is an IK-frame such that E is an equivalence relation.

Proof. (1 ⇒ 2) Let us show that (≥◦E) ⊆ (E ◦≥): if x, y, z ∈ X and x ≥ yEz,
then, as E is symmetric, zEy ≤ x, and so z ≤ vEx for some v ∈ X, hence
xEv ≥ z.
(1 ⇒ 2) It immediately follows from the definition of IK-frame.

Definition 7.0.15. (Perfect Kripke frame) (cf. section 3.1 of [2]) A pre-
ordered Stone space X = 〈X,≤, τ〉 is a perfect Kripke frame iff x↑ ∈ K(X) for
every x ∈ X and for every clopen subset U of X, U↓ is clopen.

Proposition 7.0.16. The following are equivalent for every preordered space
X = 〈X,≤, τ〉:

1. X is a quasi Esakia space.

2. X is a Stone space such that for every clopen subset U , U↓ is clopen.

3. X is a quasi Priestley space such that for every clopen subset U , U↓ is
clopen.

Proof. See 3.2.7 of [11].

From the proposition above it follows that 1) if X = 〈X,≤, τ〉 is a preordered
Stone space such that for every clopen subset U , U↓ is clopen, then X is a
Priestley space, hence x↑ ∈ K(X) for every x ∈ X, and so the condition that ≤
is point closed in 7.0.15 is redundant, and 2) perfect Kripke frames and quasi-
Esakia spaces are one and the same thing.
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Definition 7.0.17. (Perfect augmented Kripke frame) (cf. section 3.1
of [2]) A perfect augmented Kripke frame is a structure X = 〈X,≤, E, τ〉 such
that

1. 〈X,≤, E〉 is an augmented Kripke frame.

2. 〈X,≤, τ〉 and 〈X, (≤ ◦ E), τ〉 are perfect Kripke frames.

3. For every clopen increasing subset U , E[U ] is clopen.

Lemma 7.0.18. For every augmented Kripke frame 〈X,≤, E〉, and every ≤-
increasing subset Y , E[Y ] is ≤-increasing.

Proof. Let x ∈ E[Y ] and x ≤ z and let us show that z ∈ E[Y ]: as x ∈ E[Y ]
then yEx for some y ∈ Y , so z ≥ xEy, hence, as (≥ ◦ E) ⊆ (E ◦ ≥) by 7.0.14,
zEv ≥ y for some v ∈ X, i.e. y ≤ vEz, and as Y is increasing and y ∈ Y , then
v ∈ Y and so z ∈ E[Y ].

Lemma 7.0.19. (cf. lemma 3.1 (1) of [2]) For every perfect augmented Kripke
frame X = 〈X,≤, E, τ〉 and every x ∈ X, E[x] = (≤ ◦ E)[x] ∩ (E ◦ ≥)[x].

For every perfect augmented Kripke frame X = 〈X,≤, E, τ〉 let us define GX =
〈X,≤, E,Aτ 〉, where Aτ is the IK-type algebra of the clopen increasing subsets
of 〈X,≤, τ〉, i.e. the modal operations of Aτ are 2(≤◦E) and 3E .
For every IK-space G = 〈X,≤, E,A〉 such that E is an equivalence relation let

us consider XG = 〈X,≤, τ〉 and define XG = 〈X,≤, E, τ〉.
Proposition 7.0.20. 1. For every perfect augmented Kripke frame X =

〈X,≤, E, τ〉, GX = 〈X,≤, E,Aτ 〉 is an MIPC-space.

2. For every MIPC-space G = 〈X,≤, E,A〉, XG = 〈X,≤, E, τ〉 is a perfect
augmented Kripke frame.

Proof. 1. It holds that XGX = 〈X,≤, τ〉 is a perfect Kripke frame, i.e. a quasi
Esakia space, and ≤ is a partial order, so XGX is an Esakia space, and Aτ is
the algebra of the clopen increasing subsets of XGX , hence D1 holds.
As 〈X, (≤ ◦ E), τ〉 is a perfect Kripke frame, then for every x ∈ X E[x↑] ∈

K(XGX ), which is D4, moreover for every U ∈ Aτ (U is a clopen increasing
subset of XGX , hence (X \ U) is clopen, therefore), (≤ ◦E)−1[X \ U ] is clopen.
It holds that

(≤ ◦ E)−1[X \ U ] = {z ∈ X | v(≤ ◦ E)−1z for some v ∈ (X \ U)}
= {z ∈ X | z(≤ ◦ E)v for some v ∈ (X \ U)}
= {z ∈ X | E[z↑] ∩ (X \ U) 6= ∅}
= {z ∈ X | E[z↑] 6⊆ U}
= X \2(≤◦E)U.

Hence 2(≤◦E)U is clopen, and it is increasing, for if z ∈ 2(≤◦E)U and z ≤ y,
then y↑ ⊆ z↑, and so E[y↑] ⊆ E[z↑] ⊆ U , hence y ∈ 2(≤◦E)U . Let us show that
for every U ∈ Aτ , 3EU ∈ Aτ :
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3EU = {z ∈ X | E[z] ∩ U 6= ∅}
= {z ∈ X | zEu for some u ∈ U}
= {z ∈ X | uEz for some u ∈ U} (E is symmetric)
= E[U ].

As U ∈ Aτ , then U is a clopen increasing subset of XGX , hence by condition 3 of
7.0.17, E[U ] is clopen, and it is increasing, by 7.0.18, which completes the proof
of D2. By 7.0.19, for every x ∈ X, E[x] = (≤◦E)[x]∩(E◦≥)[x] = E[x↑]∩E[x]↓,
which is D5. From D4 and the fact that XGX , being an Esakia space, is a
Priestley space, it follows that E[x] = E[x↑] ∩ E[x]↓ is the intersection of two
closed sets, so it is closed, which is D3.
2. By item 3 of 4.1.1 it holds in particular that (E◦≤) ⊆ (≤◦E), so 〈X,≤, E〉 is

an augmented Kripke frame. D2 implies that for every clopen increasing subset
U , E[U ] = 3EU is clopen. By D1, 〈X,≤, τ〉 is an Esakia space, hence it is a
perfect Kripke frame. Let us show that 〈X, (≤◦E), τ〉 is a perfect Kripke frame:
By 7.0.16, it is enough to show that the assignment x 7−→ (≤ ◦ E)[x] defines a
continuous map ρ : XG −→ K(XG). By D4, it holds that (≤ ◦ E)[x] = E[x↑] ∈
K↑(XG) for every x ∈ X, and as K↑(XG) is a subspace of K(XG), then it is
enough to show that the assignment x 7−→ (≤ ◦E)[x] defines a continuous map
ρ : XG −→ K↑(XG). By item 2 of 6.1.5 of [11], B↑

K↑(XG)
= {t(U) ∩K↑(XG) | U

clopen increasing } ∪ {m(V ) ∩ K↑(XG) | V clopen decreasing} is a subbase
of K↑(XG), so it is enough to show that for every clopen increasing subset
U of XG , ρ−1[t(U)] is clopen. For every clopen increasing subset U of XG ,
ρ−1[t(U)] = {x ∈ X | (≤ ◦ E)[x] ⊆ U ]} = 2(≤◦E)U , which is clopen increasing
by D2.

Definition 7.0.21. (Morphism of perfect augmented Kripke frames)
(cf. section 3.1 of [2]) Let Xi = 〈Xi,≤i, Ei, τi〉 be perfect augmented Kripke
frames, i = 1, 2. A continuous map f : 〈X1, τ1〉 −→ 〈X2, τ2〉 is a morphism iff
for every x, x′, y ∈ X1, z ∈ X2,

M1. if x ≤1 y then f(x) ≤2 f(y).

M2. If f(x) ≤2 z then f(x′) = z for some x′ ∈ x↑.
M4’. If x(≤1 ◦ E1)y then f(x)(≤2 ◦ E2)f(y).

M6’. If f(x)(≤2 ◦ E2)z then z = f(x′) for some x′ ∈ (≤1 ◦ E1)[x].

M5. If f(x)E2z then z ≤2 f(x′) for some x′ ∈ E1[x].

Proposition 7.0.22. 1. For every morphism f : X1 −→ X2 of perfect aug-
mented Kripke frames, f is a p-morphism between the associated MIPC-
spaces GX1 and GX2 .

2. For every p-morphism f : G1 −→ G2 of MIPC-spaces, f is a morphism
between the associated perfect augmented Kripke frames XG1 and XG2 .
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Proof. 1. We have to show the conditions M3, M4 and M6 in 3.3.3 hold: M3
is equivalent to the continuity of f , and M6’ immediately implies M6. Let us
show M4, i.e. assume that xE1y and show that f(x)E2f(y): By 7.0.19, it is
enough to show that f(x)(≤ ◦ E2)f(y) and f(x)(E2 ◦ ≥)f(y). As x ≤ xE1y,
then by M4’, f(x)(≤ ◦ E2)f(y). As xE1y ≥ y, then x ∈ (≤ ◦ E1)[y] so, by M4’,
f(x) ∈ (≤ ◦ E2)[f(y)] i.e. f(y) ∈ (≤ ◦ E2)−1[f(x)] = (E2 ◦ ≥)[f(x)].
2. We have to show that f is continuous and that M4’, M6’ in 7.0.21 hold:

M3 is equivalent to continuity, and M4’ is easily implied by M1 and M4. Let
us show M6’: assume that f(x)(≤2 ◦ E2)z, and show that z = f(x′) for some
x′ ∈ (≤1 ◦ E1)[x]. By M6, f(y) ≤2 z for some y ∈ (≤ ◦ E1)[x], hence, by M2,
z = f(x′) for some x′ ∈ y↑, and as y ∈ (≤ ◦ E1)[x], then x′ ∈ (≤ ◦ E1 ◦ ≤)[x] =
(≤ ◦ E1)[x], the last equality being implied by (E1 ◦ ≤) ⊆ (≤ ◦ E1).

8 Final remarks

Remark 8.0.23. For every finite linear order 〈X,≤〉 with more than one ele-
ment, the assignment x 7−→ (≥ ◦≤)[x] = x↓↑(= X) defines an order-preserving
map ζ↓↑ : 〈X,≤〉 −→ 〈P(X),≤↑↓〉 which is not strongly isotone.

Proof. As ≤ is a linear order, then (≥◦≤) = X×X, so ≤◦(≥ ◦ ≤) ⊆ (≥ ◦ ≤)◦≤
and ≥◦ (≥ ◦ ≤) ⊆ (≥ ◦ ≤)◦≥, which implies (see 5.1.3 of [11]) that ζ↓↑ is order-
preserving. As 〈X,≤〉 is a finite linear order, then there exists a maximum
element a ∈ X. As X = {a}↓, then for every x ∈ X, x↓↑ = X ≤↑↓ {a}, but
since X has more than one element, then {a} 6= X, so there is no y ∈ X such
that y↓↑ = {a}.
Remark 8.0.24. For every finite linear order 〈X,≤〉 the assignment x 7−→ (≥◦
≤)[x] = x↓↑(= X) defines a strongly isotone map ζ↓↑ : 〈X,≤〉 −→ 〈P≥(X),≤↓
〉 = 〈P≥(X),⊆〉.
Proof. As ≤ is a linear order, then (≥◦≤) = X×X, so ≥◦(≥ ◦ ≤) ⊆ (≥ ◦ ≤)◦≥,
which implies (see 5.1.3 of [11]) that ζ↓↑ is order-preserving. For every x ∈ X
and every F ∈ P≥(X), if x↓↑ = X ≤↓ F , then X = F , so x ∈ X, x ≤ x and
x↓↑ = F .
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