Dualities for Some Intuitionistic Modal Logics

Alessandra Palmigiano

Abstract

We present a duality for the intuitionistic modal logic **IK** introduced by Fischer Servi in [8, 9]. Unlike other dualities for **IK** reported in the literature (see for example [13]), the dual structures of the duality presented here are ordered topological spaces endowed with just *one* extra relation, which is used to define the set-theoretic representation of both \Box and \diamond . Also, this duality naturally extends the definitions and techniques used by Fischer Servi in the proof of completeness for **IK** via canonical model construction [10]. We also give a parallel presentation of dualities for the intuitionistic modal logics **IntK** $_{\Box}$ and **IntK** $_{\diamond}$. Finally, we turn to the intuitionistic modal logic **MIPC**, which is an axiomatic extension of **IK**, and we give a very natural characterization of the dual spaces for **MIPC** introduced in [2] as a subcategory of the category of the dual spaces for **IK** introduced here.

1 Preliminaries

1.1 The logics $IntK_{\Box}$, $IntK_{\diamond}$ and IK

Let **Int** be the standard intuitionistic propositional calculus. For a non-empty set M of unary modal operators, let \mathcal{L}_M be the intuitionistic propositional language augmented by the connectives in M. By an *intuitionistic modal logic* we understand any subset of \mathcal{L}_M containing all the theorems of **Int** and closed under modus ponens, substitution and the regularity rule $\phi \to \psi/m\phi \to m\psi$ for every $m \in M$.

The logic $IntK_{\Box}$, in the language \mathcal{L}_{\Box} , is axiomatized by adding the following axioms to Int:

$$\Box(\phi \land \psi) = \Box \phi \land \Box \psi \text{ and } \Box \top = \top.$$

The logic $IntK_{\diamond}$, in the language \mathcal{L}_{\diamond} , is axiomatized by adding the following axioms to Int:

$$\Diamond(\phi \lor \psi) = \Diamond \phi \lor \Diamond \psi$$
 and $\Diamond \bot = \bot$.

The logic $\operatorname{Int} K_{\Box \diamond}$ is the smallest logic S in the language $\mathcal{L}_{\Box \diamond}$ such that $\operatorname{Int} K_{\Box \cup}$ Int $K_{\diamond} \subseteq S$. The modal operators \Box and \diamond are independent in $\operatorname{Int} K_{\Box \diamond}$, but are connected in the logic IK, defined by Fischer Servi in [8, 9] and axiomatized in [10]. IK is the axiomatic extension of $\operatorname{Int} K_{\Box \diamond}$ obtained by adding the following *connecting axioms*: $\Diamond(\phi \to \psi) \to (\Box \phi \to \Diamond \psi)$ and $(\Diamond \phi \to \Box \psi) \to \Box(\phi \to \psi)$.

1.2 Algebraic semantics

Definition 1.2.1. (IntK_□-algebra) $\mathcal{A} = \langle A, \wedge, \vee, \rightarrow, \Box, 0, 1 \rangle$ is an IntK_□-algebra iff $\langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and the following axioms are satisfied:

$$\Box(a \wedge b) = \Box a \wedge \Box b \quad and \quad \Box 1 = 1.$$

Definition 1.2.2. (IntK \diamond -algebra) $\mathcal{A} = \langle A, \land, \lor, \rightarrow, \diamond, 0, 1 \rangle$ is an IntK \diamond -algebra iff $\langle A, \land, \lor, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and the following axioms are satisfied:

$$\Diamond (a \lor b) = \Diamond a \lor \Diamond b \text{ and } \Diamond 0 = 0.$$

Definition 1.2.3. (IK-algebra) $\mathcal{A} = \langle A, \wedge, \vee, \rightarrow, \Box, \diamond, 0, 1 \rangle$ is an IK-algebra *iff* $\langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ *is a Heyting algebra and the following axioms are satisfied:*

1. $\Box 1 = 1$	2. $\diamond 0 = 0$
3. $\Box(a \wedge b) = \Box a \wedge \Box b$	$4. \ \diamondsuit(a \lor b) = \diamondsuit a \lor \diamondsuit b$
5. $\Diamond(a \to b) \leq \Box a \to \Diamond b$	$6. \Diamond a \to \Box b \le \Box (a \to b).$

2 Frames

An *intuitionistic frame* [4] is a poset, i.e. a structure $\langle X, \leq \rangle$, such that $X \neq \emptyset$ and \leq is a reflexive, antisymmetric and transitive binary relation on X. Let $\mathcal{P}_{\leq}(X)$ be the collection of the \leq -increasing subsets of X. For every relation $S \subseteq X \times X$ and every $Y, Z \subseteq X$, let

$$\Box_{S}(Y) = \{x \in X \mid S[x] \subseteq Y\}$$

$$\diamond_{S}(Y) = \{x \in X \mid S[x] \cap Y \neq \emptyset\}$$

$$Z \Rightarrow_{S} Y = \Box_{S}((X \setminus Z) \cup Y)$$

$$= \{x \in X \mid \forall y \in X(xSy \& y \in Z \Rightarrow y \in Y)\}$$

Lemma 2.0.4. For every poset $\langle X, \leq \rangle$ and every $A, B \in \mathcal{P}_{\leq}(X), A \Rightarrow_{\leq} B \in \mathcal{P}_{\leq}(X)$.

Proof. Assume that $x \in (A \Rightarrow \leq B)$ and $x \leq y$. Then for every $z \in A$, if $y \leq z$, then $x \leq z$, and so $z \in B$. This shows that $y \in (A \Rightarrow \leq B)$.

Lemma 2.0.5. For every intuitionistic frame $\langle X, \leq \rangle$, $\langle \mathcal{P}_{\leq}(X), \cap, \cup, \Rightarrow_{\leq}, \emptyset, X \rangle$ is a Heyting algebra.

Proof. For every partial order $\langle X, \leq \rangle$, it holds that $\langle \mathcal{P}_{\leq}(X), \cap, \cup, \emptyset, X \rangle$ is a bounded distributive lattice. Let us show that for every $\overline{A}, B, C \in \mathcal{P}_{\leq}(X)$,

$$(A \cap C) \subseteq B \text{ iff } C \subseteq (A \Rightarrow_{<} B)$$

 (\Rightarrow) Let $c \in C$, and let us show that $c \in A \Rightarrow \leq B$, i.e. that if $c \leq y$ and $y \in A$, then $y \in B$. As $c \leq y$, $c \in C$ and C is \leq -increasing, then $y \in C$, so $y \in A \cap C \subseteq B$.

(⇐) If $x \in A \cap C \subseteq C \subseteq A \Rightarrow_{\leq} B$, then for every $y \in A$ such that $x \leq y$, $y \in B$. Then take y = x.

Definition 2.0.6. (Frames) Let $\mathcal{F} = \langle X, \leq, R \rangle$ be such that X is a nonempty set, \leq is a preorder on X and R is a binary relation.

- 1. \mathcal{F} is an $\mathbf{Int}\mathbf{K}_{\Box}$ -frame iff $(\leq \circ R) \subseteq (R \circ \leq)$.
- 2. \mathcal{F} is an $\mathbf{Int}\mathbf{K}_{\diamond}$ -frame iff $(\geq \circ R) \subseteq (R \circ \geq)$.
- 3. \mathcal{F} is an **IK**-frame iff $(\geq \circ R) \subseteq (R \circ \geq)$ and $(R \circ \leq) \subseteq (\leq \circ R)$.

Example 2.0.7. For every partial order $\langle X, \leq \rangle$,

- 1. $\langle X, \leq, \leq \rangle$ is an IntK_D-frame.
- 2. $\langle X, \leq, \geq \rangle$ is an IntK \diamond -frame.
- 3. $\langle X, \leq, \geq \circ \leq \rangle$ is an **IK**-frame.

Lemma 2.0.8. For every partial order $\langle X, \leq \rangle$ and every binary relation S on X,

- 1. the following are equivalent:
 - (a) $(\leq \circ S) \subseteq (S \circ \leq)$.
 - (b) $\mathcal{P}_{\leq}(X)$ is closed under \Box_S .
- 2. The following are equivalent:
 - (a) $(\geq \circ S) \subseteq (S \circ \geq)$.
 - (b) $\mathcal{P}_{\leq}(X)$ is closed under \diamond_S .
- 3. The following are equivalent:
 - (a) $(S \circ \leq) \subseteq (\leq \circ S).$
 - (b) For every $x \in X$, $S[x\uparrow] \in \mathcal{P}_{<}(X)$.

Proof. 1. (a \Rightarrow b) Let us show that if $Y \subseteq X$ is \leq -increasing, $S[x] \subseteq Y$ and $x \leq y$, then $S[y] \subseteq Y$: For every $z \in S[y]$, $x \leq ySz$, hence by assumption $v \leq z$ for some $v \in S[x] \subseteq Y$, and as Y is \leq -increasing, $z \in Y$.

 $(b \Rightarrow a)$ Assume that $x \leq ySz$, and let us show that $z \in S[x]\uparrow$. As $S[x]\uparrow$ is \leq -increasing, then by assumption $\Box_S(S[x]\uparrow) = \{s \in X \mid S[s] \subseteq S[x]\uparrow\}$ is \leq -increasing. As $S[x] \subseteq S[x]\uparrow$, then $x \in \Box_S(S[x]\uparrow)$, hence $x \leq y$ implies that $y \in \Box_S(S[x]\uparrow)$, and as $z \in S[y] \subseteq S[x]\uparrow$, then $z \in S[x]\uparrow$.

2. (a \Rightarrow b) Let us show that if $Y \subseteq X$ is \leq -increasing, $S[x] \cap Y \neq \emptyset$ and $x \leq y$, then $S[y] \cap Y \neq \emptyset$: let $z \in S[x] \cap Y$, then $y \geq xSz$, hence by assumption $v \geq z$ for some $v \in S[y]$, and as $z \in Y$ and Y is \leq -increasing, then $v \in Y$.

 $(b \Rightarrow a)$ Assume that $x \ge ySz$, and let us show that $z \in S[x] \downarrow$. As $S[x] \downarrow$ is \le -decreasing, then $S[x] \downarrow^c$ is \le -increasing, so by assumption $\diamond_S(S[x] \downarrow^c) = \{s \in X \mid S[s] \not\subseteq S[x] \downarrow\}$ is \le -increasing. As $S[x] \subseteq S[x] \downarrow$, then $x \notin \diamond_S(S[x] \downarrow^c)$, hence $x \ge y$ implies that $y \notin \diamond_S(S[x] \downarrow^c)$, and as $z \in S[y] \subseteq S[x] \downarrow$, then $z \in S[x] \downarrow$.

3. (a \Leftarrow b) Let us show that if $z \in S[x\uparrow]$ and $z \leq y$, then $y \in S[x\uparrow]$: As $x \leq vSz \leq y$ for some $v \in X$, then by assumption $x \leq v \leq wSy$, hence $y \in S[x\uparrow]$.

 $(b \Rightarrow a)$ Assume that $xSy \leq z$, and let us show that $z \in S[x\uparrow]$. As $y \in S[x] \subseteq S[x\uparrow]$, $y \leq z$ and $S[x\uparrow]$ is \leq -increasing by assumption, then $z \in S[x\uparrow]$.

Corollary 2.0.9. For every preorder $\langle X, \leq \rangle$ and every binary relation R on X, $\mathcal{P}_{<}(X)$ is closed under $\Box_{(< \circ R)}$.

Proof. It holds that $(\leq \circ (\leq \circ R)) \subseteq ((\leq \circ R) \circ \leq)$, hence clause (a) of item 1 of 2.0.8 is satisfied with $S = (\leq \circ R)$.

Lemma 2.0.10. Let $\mathcal{F} = \langle X, \leq, R \rangle$ be a relational structure.

- 1. If \mathcal{F} is an $\mathbf{Int}\mathbf{K}_{\Box}$ -frame, then $\mathcal{A}_{\mathcal{F}} = \langle \mathcal{P}_{\leq}(X), \cap, \cup, \Rightarrow, \Box_{R}, \emptyset, X \rangle$ is an $\mathbf{Int}\mathbf{K}_{\Box}$ -algebra. Hence, every subalgebra \mathcal{A} of $\mathcal{A}_{\mathcal{F}}$ is an $\mathbf{Int}\mathbf{K}_{\Box}$ -algebra.
- 2. If \mathcal{F} is an \mathbf{IntK}_{\diamond} -frame, then $\mathcal{A}_{\mathcal{F}} = \langle \mathcal{P}_{\leq}(X), \cap, \cup, \Rightarrow, \diamond_R, \emptyset, X \rangle$ is an \mathbf{IntK}_{\diamond} -algebra. Hence, every subalgebra \mathcal{A} of $\mathcal{A}_{\mathcal{F}}$ is an \mathbf{IntK}_{\diamond} -algebra.
- 3. If \mathcal{F} is an **IK**-frame, then $\mathcal{A}_{\mathcal{F}} = \langle \mathcal{P}_{\leq}(X), \cap, \cup, \Rightarrow, \Box_{(\leq \circ R)}, \diamond_R, \emptyset, X \rangle$ is an **IK**-algebra. Hence, every subalgebra \mathcal{A} of $\mathcal{A}_{\mathcal{F}}$ is an **IK**-algebra.

Proof. 3. Let us show that $\Diamond_R(U \Rightarrow V) \subseteq (\Box_{(\leq \circ R)}U \Rightarrow \Diamond_R V)$ for every $U, V \in \mathcal{P}_{\leq}(X)$: Assume that $x \in \Diamond_R(U \Rightarrow V)$, let $x \leq z$ and $z \in \Box_{(\leq \circ R)}U$, and let us show that $z \in \Diamond_R V$, i.e. that $R[z] \cap V \neq \emptyset$. As $x \in \Diamond_R(U \Rightarrow V)$, then there exists $y \in R[x] \cap (U \Rightarrow V)$, hence $z \geq xRy$, and so, as \mathcal{F} is an **IK**-frame, $zRv \geq y$ for some $v \in X$. As $v \in R[z] \subseteq (\leq \circ R)[z] \subseteq U$, $y \leq v$ and $y \in (U \Rightarrow V)$, then $v \in V$, and as $v \in R[z]$, then $R[z] \cap V \neq \emptyset$.

Let us show that $(\diamond_R U \Rightarrow \Box_{(\leq \circ R)} V) \subseteq \Box_{(\leq \circ R)}(U \Rightarrow V)$ for every $U, V \in \mathcal{P}_{\leq}(X)$: Assume that $x \in (\diamond_R U \Rightarrow \Box_{(\leq \circ R)} V)$, let $z \in (\leq \circ R)[x]$ and $z \leq y \in U$, and let us show that $y \in V$. As $z \in (\leq \circ R)[x]$, then $x \leq vRz \leq y$, hence, as \mathcal{F} is an **IK**-frame, $x \leq v \leq wRy$ for some $w \in X$. As $wRy \in U$, then $w \in \diamond_R U$, and as $x \leq w$, then $w \in \Box_{(\leq \circ R)} V$, hence $y \in R[w] \subseteq (\leq \circ R)[w] \subseteq Y$. \Box

3 Topological semantics

Definition 3.0.11. (General frame) A general frame is a structure $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ such that X is a nonempty set, \leq is a partial order on X, R is a binary relation on X, and \mathcal{A} is a subalgebra of $\langle \mathcal{P}_{\leq}(X), \cap, \cup, \Rightarrow, \emptyset, X \rangle$. For every general frame \mathcal{G} , $\mathcal{F}_{\mathcal{G}} = \langle X, \leq, R \rangle$ is the associated frame, and the associated ordered topological space $\mathbf{X}_{\mathcal{G}} = \langle X, \leq, \tau_{\mathcal{A}} \rangle$ has the following subbase: $\{Y \mid Y \in \mathcal{A}\} \cup \{(X \setminus Y) \mid Y \in \mathcal{A}\}.$

3.1 General $IntK_{\Box}$ -frames and their morphisms

Definition 3.1.1. (General IntK_{\Box}-frame) Let $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ be a general frame. \mathcal{G} is a general IntK_{\Box}-frame iff

- D1. $\mathbf{X}_{\mathcal{G}}$ is an Esakia space, and \mathcal{A} is the collection of the clopen increasing sets of $\mathbf{X}_{\mathcal{G}}$.
- D2'. \mathcal{A} is closed under \Box_R .
- D3. For every $x \in X$, $R[x] \in K(\mathbf{X}_{\mathcal{G}})$.

Definition 3.1.2. (p-morphism of general IntK_□-frames) Let $\mathcal{G}_i = \langle X_i, \leq_i , R_i, \mathcal{A}_i \rangle$ be general IntK_□-frames, i = 1, 2. A map $f : X_1 \to X_2$ is a p-morphism iff for every $x, x', y \in X_1, z \in X_2$,

- M1. if $x \leq_1 y$ then $f(x) \leq_2 f(y)$.
- M2. If $f(x) \leq_2 z$ then f(x') = z for some $x' \in x \uparrow$.
- M3. For every $Y \in \mathcal{A}_2$, $f^{-1}[Y] \in \mathcal{A}_1$.
- M4. If xR_1y then $f(x)R_2f(y)$.
- M5'. If $f(x)R_2z$ then $f(x') \leq_2 z$ for some $x' \in R_1[x]$.

Conditions M1–M3 together are equivalent to saying that $f : \mathbf{X}_{\mathcal{G}_1} \longrightarrow \mathbf{X}_{\mathcal{G}_2}$ is a continuous and strongly isotone map.

3.2 General IntK $_{\diamond}$ -frames and their morphisms

Definition 3.2.1. (General IntK \diamond -frame) Let $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ be a general frame. \mathcal{G} is a general IntK \diamond -frame *iff*

- D1. $\mathbf{X}_{\mathcal{G}}$ is an Esakia space, and \mathcal{A} is the collection of the clopen increasing sets of $\mathbf{X}_{\mathcal{G}}$.
- D2. A is closed under \diamond_R .
- D3. For every $x \in X$, $R[x] \in K(\mathbf{X}_{\mathcal{G}})$.

Definition 3.2.2. (p-morphism of general IntK \diamond -frames) Let $\mathcal{G}_i = \langle X_i, \leq_i , R_i, \mathcal{A}_i \rangle$ be general IntK \diamond -frames, i = 1, 2. A map $f : X_1 \to X_2$ is a p-morphism iff for every $x, x', y \in X_1, z \in X_2$,

- M1. if $x \leq_1 y$ then $f(x) \leq_2 f(y)$.
- M2. If $f(x) \leq_2 z$ then f(x') = z for some $x' \in x \uparrow$.
- M3. For every $Y \in \mathcal{A}_2$, $f^{-1}[Y] \in \mathcal{A}_1$.
- M4. If xR_1y then $f(x)R_2f(y)$.
- M5. If $f(x)R_2z$ then $z \leq_2 f(x')$ for some $x' \in R_1[x]$.

3.3 General IK-frames and their morphisms

Definition 3.3.1. (General IK-frame) Let $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ be a general frame. \mathcal{G} is a general **IK**-frame *iff*

- D1. $\mathbf{X}_{\mathcal{G}}$ is an Esakia space, and \mathcal{A} is the collection of the clopen increasing sets of $\mathbf{X}_{\mathcal{G}}$.
- D2. A is closed under \diamond_R and $\Box_{(\langle \circ R \rangle)}$.
- D3. For every $x \in X$, $R[x] \in K(\mathbf{X}_{\mathcal{G}})$.
- D4. For every $x \in X$, $R[x\uparrow] \in K^{\uparrow}(\mathbf{X}_{\mathcal{G}})$.

Example 3.3.2. For every finite partial order $\langle X, \leq \rangle$, the general frame $\mathcal{G} = \langle X, \leq, (\geq \circ \leq), \mathcal{P}_{\leq}(X) \rangle$ is a general **IK**-frame.

Proof. Let *τ* be the topology generated by taking $\mathcal{P}_{\leq}(X) \cup \mathcal{P}_{\geq}(X)$ as a subbase. As *X* is finite, then **X** = $\langle X, \leq, \tau \rangle$ is compact. For every *U* ∈ $\mathcal{P}_{\leq}(X)$, *U* is clopen and ≤-increasing. Viceversa, if *U* is clopen and ≤-increasing, then $U \in \mathcal{P}_{\leq}(X)$, so $\mathcal{P}_{\leq}(X)$ is the collection of the clopen increasing subsets of **X**. **X** is totally order-disconnected, for if $x \not\leq y$, then $y \notin x^{\uparrow} \in \mathcal{P}_{\leq}(X)$, so **X** is a Priestley space¹. **X** is an Esakia space, for if *U* is a clopen subset of **X**, then $U \downarrow \in \mathcal{P}_{\geq}(X)$, hence $U \downarrow$ is clopen. Item 2 of 2.0.8 implies that $\mathcal{P}_{\leq}(X)$ is closed under $\diamond_{\geq \diamond \leq}$, and by 2.0.9, $\mathcal{P}_{\leq}(X)$ is closed under $\Box_{\leq \diamond (\geq \diamond \leq)}$. For every $x \in X$, $(\geq \diamond \leq)[x] = x \downarrow \uparrow \in \mathcal{P}_{\leq}(X)$ and $(\geq \diamond \leq)[x\uparrow] = x \uparrow \downarrow \land \in \mathcal{P}_{\leq}(X)$, so they are clopen increasing, therefore $(\geq \diamond \leq)[x] \in K(\mathbf{X})$ and $(\geq \diamond \leq)[x\uparrow] \in K^{\uparrow}(\mathbf{X})$.

Definition 3.3.3. (p-morphism of general IK-frames) Let $\mathcal{G}_i = \langle X_i, \leq_i , R_i, \mathcal{A}_i \rangle$ be general IK-frames, i = 1, 2. A map $f : X_1 \to X_2$ is a p-morphism iff for every $x, x', y \in X_1, z \in X_2$,

- M1. if $x \leq_1 y$ then $f(x) \leq_2 f(y)$.
- M2. If $f(x) \leq_2 z$ then f(x') = z for some $x' \in x \uparrow$.
- M3. For every $Y \in \mathcal{A}_2$, $f^{-1}[Y] \in \mathcal{A}_1$.
- M4. If xR_1y then $f(x)R_2f(y)$.
- M5. If $f(x)R_2z$ then $z \leq_2 f(x')$ for some $x' \in R_1[x]$.
- M6. If $f(x)(\leq_2 \circ R_2)z$ then $f(x') \leq_2 z$ for some $x' \in R_1[x\uparrow]$.

¹Actually, τ is the discrete topology, because, as X is finite, then every closed set is the finite intersection of clopen sets and so every closed set is clopen. Moreover, as **X** is a Priestley space, then it is Hausdorff, so every singleton set is closed and therefore clopen, so every subset of X is clopen, for it is the finite union of clopen sets.

4 From general L-frames to algebras

For every general frame $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$, let $\mathcal{G}^+ := \mathcal{A}$, and for every continuous map $f : \mathbf{X}_{\mathcal{G}_1} \longrightarrow \mathbf{X}_{\mathcal{G}_2}$ let $f^+ : \mathcal{G}_2^+ \longrightarrow \mathcal{G}_1^+$ be given by the assignment $Y \longmapsto f^{-1}[Y]$ for every $Y \in \mathcal{A}_{\mathcal{G}_2}$.

4.1 The action of $(_)^+$ on objects

Let us recall that for every general frame $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$, $\mathcal{F}_{\mathcal{G}} = \langle X, \leq, R \rangle$ is the associated frame.

Lemma 4.1.1. Let $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ be a general frame.

- 1. If \mathcal{G} is a general $\mathbf{Int}\mathbf{K}_{\Box}$ -frame, then $\mathcal{F}_{\mathcal{G}}$ is an $\mathbf{Int}\mathbf{K}_{\Box}$ -frame.
- 2. If \mathcal{G} is a general $\operatorname{Int} \mathbf{K}_{\diamond}$ -frame, then $\mathcal{F}_{\mathcal{G}}$ is an $\operatorname{Int} \mathbf{K}_{\diamond}$ -frame.
- 3. If \mathcal{G} is a general **IK**-frame, then $\mathcal{F}_{\mathcal{G}}$ is an **IK**-frame.

Proof. 1. Let us show that for every $x \in X$, $(\leq \circ R)[x] \subseteq (R \circ \leq)[x]$: Suppose that $z \in (\leq \circ R)[x]$ and $z \notin (R \circ \leq)[x] = R[x]\uparrow$ for some $z \in X$. As $z \notin R[x]\uparrow$, then $y \not\leq z$ for every $y \in R[x]$, hence, by D1, for every $y \in R[x]$ there exists a clopen increasing subset U_y of $\mathbf{X}_{\mathcal{G}}$ such that $y \in U_y$ and $z \notin U_y$, and so $R[x] \subseteq \bigcup_{y \in R[x]} U_y$, and as $\mathbf{X}_{\mathcal{G}}$ is compact and R[x] is closed by D3, then $R[x] \subseteq \bigcup_{i=1}^n U_{y_i} = U$ for some $y_1, \ldots, y_n \in R[x]$. As U is clopen increasing, then $U \in \mathcal{A}$, moreover, $z \notin U$ and $R[x] \subseteq U$.

As $z \in (\leq \circ R)[x]$, then $x \leq wRz$ for some $w \in X$. Since $z \in (R[w] \setminus U)$, then $w \notin \Box_R U \in \mathcal{A}$ by D2', so in particular $\Box_R U$ is increasing, and as $x \leq w$, then $x \notin \Box_R U$, i.e. $R[x] \not\subseteq U$, contradiction.

2. Let us show that for every $x \in X$, $(\geq \circ R)[x] \subseteq (R \circ \geq)[x]$: Suppose that $z \in (\geq \circ R)[x]$ and $z \notin (R \circ \geq)[x] = R[x] \downarrow$ for some $z \in X$. As $z \notin R[x] \downarrow$, then $z \not\leq y$ for every $y \in R[x]$, hence, by D1, for every $y \in R[x]$ there exists a clopen decreasing subset V_y of $\mathbf{X}_{\mathcal{G}}$ such that $y \in V_y$ and $z \notin V_y$, and so $R[x] \subseteq \bigcup_{y \in R[x]} V_y$, and as $\mathbf{X}_{\mathcal{G}}$ is compact and R[x] is closed by D3, then $R[x] \subseteq \bigcup_{i=1}^n V_{y_i} = V$ for some $y_1, \ldots, y_n \in R[x]$. Let $U = (X \setminus V)$. As U is clopen increasing, then $U \in \mathcal{A}$, moreover, $z \in U$ and $R[x] \cap U = \emptyset$.

As $z \in (\geq \circ R)[x]$, then $x \geq wRz$ for some $w \in X$. Since $z \in R[w] \cap U$, then $w \in \diamondsuit_R U \in \mathcal{A}$ by D2, so in particular $\diamondsuit_R U$ is increasing, and as $w \leq x$, then $x \in \diamondsuit_R U$, i.e. $R[x] \cap U \neq \emptyset$, contradiction.

3. Let us show that for every $x \in X$, $(R \circ \leq)[x] \subseteq (\leq \circ R)[x]$: Suppose that $z \in (R \circ \leq)[x]$ and $z \notin (\leq \circ R)[x] = R[x\uparrow]$ for some $z \in X$. As $z \notin R[x\uparrow]$ which is a closed and increasing subset of $\mathbf{X}_{\mathcal{G}}$ by D4, then $y \not\leq z$ for every $y \in R[x\uparrow]$, hence, by D1, for every $y \in R[x\uparrow]$ there exists a clopen increasing subset U_y of $\mathbf{X}_{\mathcal{G}}$ such that $y \in U_y$ and $z \notin U_y$, and so $R[x\uparrow] \subseteq \bigcup_{y \in R[x]} U_y$, and as $\mathbf{X}_{\mathcal{G}}$ is compact and R[x] is closed by D3, then $R[x] \subseteq \bigcup_{i=1}^n U_{y_i} = U$ for some $y_1, \ldots, y_n \in R[x]$. As U is clopen increasing, then $U \in \mathcal{A}$, moreover, $z \notin U$ and $R[x\uparrow] \subseteq U$.

As $z \in (R \circ \leq)[x]$, then $xRw \leq z$ for some $w \in X$. Since $w \in R[x] \subseteq R[x\uparrow] \subseteq U$, then $w \in U$ which is increasing, and as $w \leq z$, then $z \in U$, contradiction. \Box

Proposition 4.1.2. Let $\mathbf{L} \in {\{\mathbf{IntK}_{\Box}, \mathbf{IntK}_{\Diamond}, \mathbf{IK}\}}$. For every general \mathbf{L} -frame $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$, \mathcal{A} is an \mathbf{L} -algebra.

Proof. It immediately follows from 2.0.10 and 4.1.1.

4.2 The action of $(_)^+$ on arrows

Proposition 4.2.1. Let $\mathbf{L} \in {\{\mathbf{IntK}_{\Box}, \mathbf{IntK}_{\diamond}, \mathbf{IK}\}}$. For every *p*-morphism $h : \mathcal{G}_1 \longrightarrow \mathcal{G}_2$ of general **L**-frames, $h^+ : \mathcal{G}_2^+ \longrightarrow \mathcal{G}_1^+$ is a homomorphism of **L**-algebras.

Proof. If $h : \mathcal{G}_1 \longrightarrow \mathcal{G}_2$ is a p-morphism of general **L**-frames, then in particular it is a continuous and strongly isotone map between the Esakia spaces $\mathbf{X}_{\mathcal{G}_1}$ and $\mathbf{X}_{\mathcal{G}_2}$, hence from the duality for Heyting algebras, h^+ is a homomorphism between the Heyting algebra reducts of \mathcal{G}_2^+ and \mathcal{G}_1^+ . Let us show that if \mathcal{G}_1 and \mathcal{G}_2 are general $\mathbf{Int} \mathbf{K}_{\Box}$ -frames, then for every $Y \in \mathcal{A}_2$,

$$h^{-1}[\Box_{R_2}Y] = \Box_{R_1}h^{-1}[Y].$$

For every $x \in X_1$, $x \in h^{-1}[\Box_{R_2}Y]$ iff $R_2[h(x)] \subseteq Y$, and $x \in \Box_{R_1}h^{-1}[Y]$ iff $R_1[x] \subseteq h^{-1}[Y]$.

(⊆) Assume that $z \in R_1[x]$ and show that $z \in h^{-1}[Y]$: As xR_1z , then, by M4, $h(x)R_2h(z)$, i.e. $h(z) \in R_2[h(x)] \subseteq Y$, hence $z \in h^{-1}[Y]$.

 (\supseteq) Assume that $z \in R_2[h(x)]$ and show that $z \in Y$: If $h(x)R_2z$, then, by M5', there exists $y \in R_1[x] \subseteq h^{-1}[Y]$ such that $h(y) \leq_2 z$. As $h(y) \in Y$ and Y is \leq_2 -increasing, then $z \in Y$.

Let us show that if \mathcal{G}_1 and \mathcal{G}_2 are general $\mathbf{Int} \mathbf{K}_{\diamond}$ -frames, then for every $Y \in \mathcal{A}_2$,

$$h^{-1}[\Diamond_{R_2}Y] = \Diamond_{R_1}h^{-1}[Y].$$

For every $x \in X_1$, $x \in h^{-1}[\diamondsuit_{R_2}Y]$ iff $R_2[h(x)] \cap Y \neq \emptyset$, and $x \in \diamondsuit_{R_1}h^{-1}[Y]$ iff $R_1[x] \cap h^{-1}[Y] \neq \emptyset$.

 (\subseteq) Assume that $z \in R_2[h(x)] \cap Y$. As $h(x)R_2z$, then, by M5, there exists $y \in R_1[x]$ such that $z \leq_2 h(y)$. As $z \in Y$ and Y is \leq_2 -increasing, then $h(y) \in Y$. Hence $y \in R_1[x] \cap h^{-1}[Y] \neq \emptyset$.

(⊇) Assume that $z \in R_1[x] \cap h^{-1}[Y]$, hence $h(z) \in Y$ and xR_1z , so, by M4, $h(x)R_2h(z)$, i.e. $h(z) \in R_2[h(x)]$, and so $h(z) \in R_2[h(x)] \cap Y \neq \emptyset$.

Let us show that if \mathcal{G}_1 and \mathcal{G}_2 are general **IK**-frames, then for every $Y \in \mathcal{A}_2$,

$$h^{-1}[\Box_{(\leq \circ R_2)}Y] = \Box_{(\leq \circ R_1)}h^{-1}[Y].$$

For every $x \in X_1$, $x \in h^{-1}[\Box_{(\leq \circ R_2)}Y]$ iff $(\leq \circ R_2)[h(x)] \subseteq Y$, and $x \in \Box_{(\leq \circ R_1)}h^{-1}[Y]$ iff $(\leq \circ R_1)[x] \subseteq h^{-1}[Y]$.

 (\subseteq) Assume that $z \in (\leq \circ R_1)[x]$ and show that $z \in h^{-1}[Y]$: As $x \leq_1 wR_1z$ for some $w \in X_1$, then, by M1 and M4, $h(x) \leq_2 h(w)R_2h(z)$, i.e. $h(z) \in (\leq \circ R_2)[h(x)] \subseteq Y$, hence $z \in h^{-1}[Y]$.

 (\supseteq) Assume that $z \in (\leq \circ R_2)[h(x)]$ and show that $z \in Y$: If $h(x)(\leq_2 \circ R_2)z$, then, by M5, there exists $y \in (\leq_1 \circ R_1)[x] \subseteq h^{-1}[Y]$ such that $h(y) \leq_2 z$. As $h(y) \in Y$ and Y is \leq_2 -increasing, then $z \in Y$.

The proof that $h^{-1}[\diamondsuit_{R_2}Y] = \diamondsuit_{R_1}h^{-1}[Y]$ goes as in the **IntK** \diamondsuit case.

$\mathbf{5}$ From algebras to general L-frames

Let $\mathbf{L} \in {\mathbf{Int}} \mathbf{K}_{\Box}, \mathbf{Int} \mathbf{K}_{\diamond}, \mathbf{IK}$. For every **L**-algebra \mathcal{A} let $Pr(\mathcal{A})$ be the collection of the prime filters of \mathcal{A} . Let us define $\mathcal{A}_+ := \langle Pr(\mathcal{A}), \subseteq, \mathcal{R}_{\mathcal{A}}, \mathcal{A} \rangle$, where for every $P, Q \in Pr(\mathcal{A})$:

R1. If \mathcal{A} is an $\mathbf{Int}\mathbf{K}_{\Box}$ -algebra, $P\mathcal{R}_{\mathcal{A}}Q$ iff $\Box^{-1}[P] \subseteq Q$.

R2. If \mathcal{A} is an $\mathbf{Int}\mathbf{K}_{\diamond}$ -algebra, $P\mathcal{R}_{\mathcal{A}}Q$ iff $Q \subseteq \diamond^{-1}[P]$.

R3. If \mathcal{A} is an **IK**-algebra, $P\mathcal{R}_{\mathcal{A}}Q$ iff $\Box^{-1}P \subset Q \subset \Diamond^{-1}[P]$.

 $\overline{A} = \{\overline{a} \mid a \in \mathcal{A}\}, \text{ and for every } a \in A, \overline{a} = \{P \in Pr(\mathcal{A}) \mid a \in P\}, \text{ moreover for }$ every *n*-ary operation * in the signature of $\mathcal{A} *^{\overline{\mathcal{A}}}(\overline{a_1}, \ldots, \overline{a_n}) = \overline{*(a_1, \ldots, a_n)}$. For every homomorphism $f: \mathcal{A}_1 \longrightarrow \mathcal{A}_2$ let $f_+: \mathcal{A}_{2+} \longrightarrow \mathcal{A}_{1+}$ be given by the assignment $P \longmapsto f^{-1}[P]$ for every $P \in Pr(\mathcal{A}_2)$.

5.1Properties of \mathcal{R}_A

Lemma 5.1.1. For every L-algebra \mathcal{A} , $\mathcal{R}_{\mathcal{A}}$ is a closed subset of $\mathbf{X}_{\mathcal{A}_{+}} \times \mathbf{X}_{\mathcal{A}_{+}}$.

Proof. Assume that $\mathcal{R}_{\mathcal{A}}$ is defined like in R1. If $\langle P, Q \rangle \notin \mathcal{R}_{\mathcal{A}}$, then $\Box^{-1}[P] \not\subseteq Q$, i.e. $\Box a \in P$ and $a \notin Q$ for some $a \in A$. Hence $P \in (\Box a)$ and $Q \notin \overline{a}$. Let us consider $\mathcal{U} = (\Box a) \times (Pr(\mathcal{A}) \setminus \overline{a})$. \mathcal{U} is an open subset of $\mathbf{X}_{\mathcal{A}_+} \times \mathbf{X}_{\mathcal{A}_+}$, for both $\overline{(\Box a)}$ and $Pr(\mathcal{A}) \setminus \overline{a}$ are, moreover $\langle P, Q \rangle \in \mathcal{U}$. Let us show that $\mathcal{R}_{\mathcal{A}} \cap \mathcal{U} = \emptyset$: If $\langle S,T\rangle \in \mathcal{U}$, then $\Box a \in S$ and $a \notin T$, hence $\Box^{-1}[S] \not\subseteq T$, i.e. $\langle S,T \rangle \notin \mathcal{R}_{\mathcal{A}}$.

Assume that $\mathcal{R}_{\mathcal{A}}$ is defined like in R2. If $\langle P, Q \rangle \notin \mathcal{R}_{\mathcal{A}}$, then $Q \not\subseteq \Diamond^{-1}[P]$, i.e. $a \in Q$ and $\Diamond a \notin P$ for some $a \in \mathcal{A}$. Hence $Q \in \overline{a}$ and $P \notin (\Diamond a)$. Let us consider $\mathcal{U} = (Pr(\mathcal{A}) \setminus (\diamond a)) \times \overline{a}$. \mathcal{U} is an open subset of $\mathbf{X}_{\mathcal{A}_+} \times \mathbf{X}_{\mathcal{A}_+}$, for both $Pr(\mathcal{A}) \setminus (\Diamond a)$ and \overline{a} are, moreover $\langle P, Q \rangle \in \mathcal{U}$. Let us show that $\mathcal{R}_{\mathcal{A}} \cap \mathcal{U} = \emptyset$: If $\langle S,T\rangle \in \mathcal{U}$, then $\diamond a \notin S$ and $a \in T$, hence $T \not\subseteq \diamond^{-1}[S]$, i.e. $\langle S,T \rangle \notin \mathcal{R}_{\mathcal{A}}$. Assume that $\mathcal{R}_{\mathcal{A}}$ is defined like in R3. If $\langle P, Q \rangle \notin \mathcal{R}_{\mathcal{A}}$, then either $\Box^{-1}[P] \not\subseteq Q$

or $Q \not\subseteq \Diamond^{-1}[P]$. Then the proof follows like in one of the cases above.

Corollary 5.1.2. For every L-algebra \mathcal{A} , if \mathcal{F} is a closed subset of $\mathbf{X}_{\mathcal{A}_{\perp}}$, then $\mathcal{R}_{\mathcal{A}}[\mathcal{F}]$ is a closed subset of $\mathbf{X}_{\mathcal{A}_{+}}$.

Proof. For every closed subset \mathcal{F} of $\mathbf{X}_{\mathcal{A}_{\perp}}$,

$$\mathcal{R}_{\mathcal{A}}[\mathcal{F}] = \{ Q \in Pr(\mathcal{A}) \mid P\mathcal{R}_{\mathcal{A}}Q \text{ for some } P \in \mathcal{F} \}$$

= $\pi_2[\mathcal{R}_{\mathcal{A}} \cap (\mathcal{F} \times Pr(\mathcal{A}))].$

By 5.1.1 $\mathcal{R}_{\mathcal{A}}$ is closed, hence so is $\mathcal{R}_{\mathcal{A}} \cap (\mathcal{F} \times Pr(\mathcal{A}))$, and as π_2 is a closed map, for it is a continuous map between compact spaces, then $\pi_2[\mathcal{R}_{\mathcal{A}} \cap (\mathcal{F} \times Pr(\mathcal{A}))]$ is closed.

1. For every $\operatorname{Int} \mathbf{K}_{\Box}$ -algebra $\mathcal{A}, \mathcal{R}_{\mathcal{A}} = (\subseteq \circ \mathcal{R}_{\mathcal{A}} \circ \subseteq).$ Lemma 5.1.3.

- 2. For every $\operatorname{Int} \mathbf{K}_{\diamond}$ -algebra $\mathcal{A}, \mathcal{R}_{\mathcal{A}} = (\supseteq \circ \mathcal{R}_{\mathcal{A}} \circ \supseteq).$
- 3. For every **IK**-algebra $\mathcal{A}, \mathcal{R}_{\mathcal{A}} = (\subseteq \circ \mathcal{R}_{\mathcal{A}}) \cap (\mathcal{R}_{\mathcal{A}} \circ \supseteq).$

Proof. 1. (\supseteq) If $\langle P, Q \rangle \in (\subseteq \circ \mathcal{R}_{\mathcal{A}} \circ \subseteq)$, then $P \subseteq S_1 \mathcal{R}_{\mathcal{A}} S_2 \subseteq Q$, for some $S_1, S_2 \in Pr(\mathcal{A})$, hence $\Box^{-1}[P] \subseteq \Box^{-1}[S_1] \subseteq S_2 \subseteq Q$. (\subseteq) If $P\mathcal{R}_{\mathcal{A}}Q$, then $P\subseteq P\mathcal{R}_{\mathcal{A}}Q\subseteq Q$.

2.(\supseteq) If $\langle P, Q \rangle \in (\supseteq \circ \mathcal{R}_{\mathcal{A}} \circ \supseteq)$, then $P \supseteq S_1 \mathcal{R}_{\mathcal{A}} S_2 \supseteq Q$, for some $S_1, S_2 \in Pr(\mathcal{A})$, hence $Q \subseteq S_2 \subseteq \diamondsuit^{-1}[S_1] \subseteq \diamondsuit^{-1}[P]$.

 (\subseteq) If $P\mathcal{R}_{\mathcal{A}}Q$, then $P \supseteq P\mathcal{R}_{\mathcal{A}}Q \supseteq Q$.

3. (\supseteq) If $\langle P, Q \rangle \in (\subseteq \circ \mathcal{R}_{\mathcal{A}}) \cap (\mathcal{R}_{\mathcal{A}} \circ \supseteq)$, then $P \subseteq S_1 \mathcal{R}_{\mathcal{A}} Q$ and $P \mathcal{R}_{\mathcal{A}} S_2 \supseteq Q$ for some $S_1, S_2 \in Pr(\mathcal{A})$, then $\Box^{-1}[P] \subseteq \Box^{-1}[S_1] \subseteq Q$ and $Q \subseteq S_2 \subseteq \Diamond^{-1}[P]$, hence $P\mathcal{R}_{\mathcal{A}}Q$.

$$(\subseteq)$$
 If $P\mathcal{R}_{\mathcal{A}}Q$, then $P \subseteq P\mathcal{R}_{\mathcal{A}}Q$ and $P\mathcal{R}_{\mathcal{A}}Q \supseteq Q$.

Lemma 5.1.4. For every **IK**-algebra \mathcal{A} and every $P, Q \in Pr(\mathcal{A})$,

- 1. $\langle P, Q \rangle \in (\mathcal{R}_{\mathcal{A}} \circ \supseteq)$ iff $Q \subseteq \Diamond^{-1}[P]$.
- 2. $\langle P, Q \rangle \in (\subseteq \circ \mathcal{R}_{\mathcal{A}})$ iff $\Box^{-1}[P] \subseteq Q$.

Proof. 1. (\Leftarrow) Assume that $Q \subseteq \diamond^{-1}[P]$, and let us show that there exists $S \in Pr(\mathcal{A})$ such that $P\mathcal{R}_{\mathcal{A}}S \supseteq Q$, i.e. such that $Q \cup \Box^{-1}[P] \subseteq S$ and $S \cap$ $\Diamond^{-1}[P]^c = \emptyset$. Let us consider $Fi(Q \cup \Box^{-1}[P])$: If we show that

$$Fi(Q \cup \Box^{-1}[P]) \cap \Diamond^{-1}[P]^c = \emptyset,$$

then the statement will follow by Birkhoff-Stone theorem. Suppose that $Fi(Q \cup$ $\Box^{-1}[P]) \cap \Diamond^{-1}[P]^c \neq \emptyset$. Then there exists $c \in A$ such that $\Diamond c \notin P$ and $a \land b \leq c$ for some $a \in \Box^{-1}[P]$ and $b \in Q$. Then $b \leq a \to c$, hence $\Diamond b \leq \Diamond (a \to c) \leq b \leq a \to c$ $(\Box a \to \Diamond c)$. As $b \in Q \subseteq \Diamond^{-1}[P]$, then $\Diamond b \in P$, hence $\Box a \to \Diamond c \in P$, and as $\Box a \in P$, then $\Diamond c \in P$, contradiction.

 (\Rightarrow) If $P\mathcal{R}_{\mathcal{A}}S \supseteq Q$ for some $S \in Pr(\mathcal{A})$, then $Q \subseteq S \subseteq \diamond^{-1}[P]$.

2. (\Leftarrow) Assume that $\Box^{-1}[P] \subseteq Q$, and let us show that there exists $S \in Pr(\mathcal{A})$ such that $P \subseteq S$ and $\Box^{-1}[P] \subseteq Q \subseteq \Diamond^{-1}[P]$, i.e. such that $P \cup \Diamond[P] \subseteq S$ and $S \cap \Box[Q^c] = \emptyset$. Let us consider $Fi(P \cup \Diamond[Q])$: If we show that

$$Fi(P \cup \diamondsuit[Q]) \cap \Box[Q^c] = \emptyset,$$

then the statement will follow by Birkhoff-Stone theorem. Suppose that $Fi(P \cup$ $\Diamond[Q]) \cap \Box[Q^c] \neq \emptyset$. Then there exist $a \in Q^c, b \in P$ and $c \in Q$ such that $b \land \Diamond c \leq \Box a$. Then $b \leq \Diamond c \to \Box a \leq \Box (c \to a)$. As $b \in P$, then $\Box (c \to a) \in P$, hence $c \to a \in \Box^{-1}[P] \subseteq Q$, and as $c \in Q$, then $a \in Q$, contradiction. (\Rightarrow) If $P \subseteq S\mathcal{R}_{\mathcal{A}}Q$ for some $S \in Pr(\mathcal{A})$, then $\Box^{-1}[P] \subseteq \Box^{-1}[S] \subseteq Q$.

- **Corollary 5.1.5.** 1. For every $\operatorname{Int} \mathbf{K}_{\Box}$ -algebra \mathcal{A} and every $P \in Pr(\mathcal{A})$, if $\Box a \notin P$, then $a \notin Q$ and $P\mathcal{R}_{\mathcal{A}}Q$ for some $Q \in Pr(\mathcal{A})$.
 - 2. For every $\operatorname{Int} \mathbf{K}_{\diamond}$ -algebra \mathcal{A} and every $P \in Pr(\mathcal{A})$, if $\diamond a \in P$, then $a \in Q$ and $P\mathcal{R}_{\mathcal{A}}Q$ for some $Q \in Pr(\mathcal{A})$.
 - 3. For every **IK**-algebra \mathcal{A} , if $\Box a \notin P$, then $a \notin Q$ and $P \subseteq S\mathcal{R}_{\mathcal{A}}Q$ for some $Q, S \in Pr(\mathcal{A})$.
 - 4. For every **IK**-algebra \mathcal{A} and every $P \in Pr(\mathcal{A})$, if $\diamond a \in P$, then $a \in S$ and $P\mathcal{R}_{\mathcal{A}}S$ for some $S \in Pr(\mathcal{A})$.

Proof. 1. If $\Box a \notin P$, then $Id(a) \cap \Box^{-1}[P] = \emptyset$, for if not, then $c \leq a$ for some c such that $\Box c \in P$, hence $\Box c \leq \Box a$, therefore $\Box a \in P$, contradiction. By Birkhoff-Stone theorem, there exists $Q \in Pr(\mathcal{A})$ such that $\Box^{-1}[P] \subseteq Q$, i.e. $P\mathcal{R}_{\mathcal{A}}Q$, and $a \notin Q$.

2. If $\diamond a \in P$, then $Fi(a) \cap \diamond^{-1}[P^c] = \emptyset$, for if not, then $a \leq c$ for some c such that $\diamond c \notin P$, hence $\diamond a \leq \diamond c$, therefore $\diamond c \in P$, contradiction. By Birkhoff-Stone theorem, there exists $Q \in Pr(\mathcal{A})$ such that $a \in Q$ and $Q \subseteq \diamond^{-1}[P]$, i.e. $P\mathcal{R}_{\mathcal{A}}Q$.

3. If $\Box a \notin P$, then $Id(a) \cap \Box^{-1}[P] = \emptyset$, so by Birkhoff-Stone theorem, there exists $Q \in Pr(\mathcal{A})$ such that $\Box^{-1}[P] \subseteq Q$ and $a \notin Q$. By item 2 of 5.1.4, $P \subseteq S\mathcal{R}_{\mathcal{A}}Q$ for some $S \in Pr(\mathcal{A})$.

4. If $\diamond a \in P$, then $Fi(a) \cap \diamond^{-1}[P^c] = \emptyset$, so by Birkhoff-Stone theorem, there exists $Q \in Pr(\mathcal{A})$ such that $a \in Q$ and $Q \subseteq \diamond^{-1}[P]$. By item 1 of 5.1.4, $P\mathcal{R}_{\mathcal{A}}S \supseteq Q$ for some $S \in Pr(\mathcal{A})$, and as $a \in S \subseteq Q$, then $a \in S$.

Corollary 5.1.6. *1. For every* $\operatorname{Int} \mathbf{K}_{\Box}$ *-algebra* \mathcal{A} *,* $(\subseteq \circ \mathcal{R}_{\mathcal{A}}) \subseteq (\mathcal{R}_{\mathcal{A}} \circ \subseteq)$ *.*

2. For every $IntK_{\diamond}$ -algebra $\mathcal{A}, (\supseteq \circ \mathcal{R}_{\mathcal{A}}) \subseteq (\mathcal{R}_{\mathcal{A}} \circ \supseteq).$

3. For every **IK**-algebra \mathcal{A} , $(\supseteq \circ \mathcal{R}_{\mathcal{A}}) \subseteq (\mathcal{R}_{\mathcal{A}} \circ \supseteq)$ and $(\mathcal{R}_{\mathcal{A}} \circ \subseteq) \subseteq (\subseteq \circ \mathcal{R}_{\mathcal{A}})$.

Proof. 1. If $P \subseteq S\mathcal{R}_{\mathcal{A}}Q$, then $\Box^{-1}[P] \subseteq \Box^{-1}[S] \subseteq Q$, hence $P\mathcal{R}_{\mathcal{A}}Q \subseteq Q$. 2. If $P \supseteq S\mathcal{R}_{\mathcal{A}}Q$, then $Q \subseteq \diamond^{-1}[S] \subseteq \diamond^{-1}[P]$, hence $P\mathcal{R}_{\mathcal{A}}Q \supseteq Q$. 3. If $P\mathcal{R}_{\mathcal{A}}S \subseteq Q$, then $\Box^{-1}[P] \subseteq S \subseteq Q$, hence by item 2 of 5.1.4, $\langle P, Q \rangle \in (\subseteq \circ \mathcal{R}_{\mathcal{A}})$.

If $P \supseteq S\mathcal{R}_{\mathcal{A}}Q$, then $Q \subseteq \Diamond^{-1}[S] \subseteq \Diamond^{-1}[P]$, hence hence by item 1 of 5.1.4, $\langle P, Q \rangle \in (\mathcal{R}_{\mathcal{A}} \circ \supseteq).$

5.2 The action of $(_{-})_{+}$ on objects

Proposition 5.2.1. Let $\mathbf{L} \in {\{\mathbf{Int}\mathbf{K}_{\Box}, \mathbf{Int}\mathbf{K}_{\Diamond}, \mathbf{IK}\}}$. For every \mathbf{L} -algebra \mathcal{A} , $\mathcal{A}_{+} = \langle Pr(\mathcal{A}), \subseteq, \mathcal{R}_{\mathcal{A}}, \overline{\mathcal{A}} \rangle$ is a general \mathbf{L} -frame.

Proof. From the duality for Heyting algebras, it holds that $\mathbf{X}_{\mathcal{A}_+}$ is an Esakia space, and \mathcal{A} is the collection of the clopen increasing sets of $\mathbf{X}_{\mathcal{A}_+}$, which is D1. As $\mathbf{X}_{\mathcal{A}_+}$ is an Esakia space, then in particular it is Hausdorff, hence for every

 $P \in Pr(\mathcal{A}), \{P\}$ is closed in $\mathbf{X}_{\mathcal{A}_+}$, and so by 5.1.2, $\mathcal{R}_{\mathcal{A}}[P]$ is closed in $\mathbf{X}_{\mathcal{A}_+}$, which is D3.

Let us show that if \mathcal{A} is an $\mathbf{Int}\mathbf{K}_{\Box}$ -algebra, then $\Box^{\overline{\mathcal{A}}} = \Box_{\mathcal{R}_{\mathcal{A}}}$, i.e. that for every $a \in \mathcal{A}$,

$$\overline{(\Box a)} = \Box_{\mathcal{R}_{\mathcal{A}}} \overline{a}.$$

 (\subseteq) If $P \in \overline{(\Box a)}$, then $\Box a \in P$, i.e. $a \in \Box^{-1}[P]$ so, for every $Q \in Pr(\mathcal{A})$, if $P\mathcal{R}_{\mathcal{A}}Q$, then $a \in \Box^{-1}[P] \subseteq Q$.

 (\supseteq) If $P \notin \overline{(\Box a)}$, then by item 1 of 5.1.5, $a \notin Q$ and $P\mathcal{R}_{\mathcal{A}}Q$ for some $Q \in Pr(\mathcal{A})$, so $P \notin \Box_{\mathcal{R}_{\mathcal{A}}}\overline{a}$.

Let us show that if \mathcal{A} is an $\mathbf{Int}\mathbf{K}_{\diamond}$ -algebra (an \mathbf{IK} -algebra), then $\diamond^{\overline{\mathcal{A}}} = \diamond_{\mathcal{R}_{\mathcal{A}}}$, i.e. that for every $a \in \mathcal{A}$,

$$\overline{(\diamondsuit a)} = \diamondsuit_{\mathcal{R}_{\mathcal{A}}} \overline{a}.$$

 (\subseteq) If $P \in \overline{(\diamond a)}$, then $\diamond a \in P$, then by item 2 (item 4) of 5.1.5, $a \in Q$ and $P\mathcal{R}_{\mathcal{A}}Q$ for some $Q \in Pr(\mathcal{A})$, hence $P \in \diamond_{\mathcal{R}_{\mathcal{A}}}\overline{a}$.

 (\supseteq) If $P \in \diamond_{\mathcal{R}_{\mathcal{A}}}\overline{a}$, then $a \in Q$ and $\mathcal{PR}_{\mathcal{A}}Q$ for some $Q \in Pr(\mathcal{A})$, i.e. $Q \subseteq \diamond^{-1}[P]$, hence $\diamond a \in P$.

Let us show that if \mathcal{A} is an **IK**-algebra, then $\Box^{\overline{\mathcal{A}}} = \Box_{(\subseteq \circ \mathcal{R}_{\mathcal{A}})}$, i.e. that for every $a \in \mathcal{A}$,

$$\overline{(\Box a)} = \Box_{(\subseteq \circ \mathcal{R}_{\mathcal{A}})}\overline{a}$$

 (\subseteq) If $P \in \overline{(\Box a)}$, then $\Box a \in P$, i.e. $a \in \Box^{-1}[P]$ so, for every $Q \in Pr(\mathcal{A})$, if $P\mathcal{R}_{\mathcal{A}}Q$, then $a \in \Box^{-1}[P] \subseteq Q$.

 (\supseteq) If $P \notin (\Box a)$, then by item 3 of 5.1.5, $a \notin Q$ and $P \subseteq S\mathcal{R}_{\mathcal{A}}Q$ for some $Q, S \in Pr(\mathcal{A})$, so $P \notin \Box_{(\subseteq \circ \mathcal{R}_{\mathcal{A}})}\overline{a}$.

This is enough to show that $\overline{\mathcal{A}}$ is closed in each case under the appropriate operations.

If \mathcal{A} is an **IK**-algebra, then as $\mathbf{X}_{\mathcal{A}_+}$ is an Esakia space, then in particular it is Priestley, hence for every $P \in Pr(\mathcal{A}), P\uparrow = \{Q \in Pr(\mathcal{A}) \mid P \subseteq Q\}$ is closed in $\mathbf{X}_{\mathcal{A}_+}$, and so by 5.1.2, $\mathcal{R}_{\mathcal{A}}[P\uparrow]$ is closed in $\mathbf{X}_{\mathcal{A}_+}$.

Let us show that $\mathcal{R}_{\mathcal{A}}[P\uparrow]$ is \subseteq -increasing: If $Q \in \mathcal{R}_{\mathcal{A}}[P\uparrow]$ and $Q \subseteq T$, then $P \subseteq S\mathcal{R}_{\mathcal{A}}Q \subseteq T$, hence by item 3 of 5.1.6, $P \subseteq S \subseteq Q'\mathcal{R}_{\mathcal{A}}T$, and so $T \in \mathcal{R}_{\mathcal{A}}[P\uparrow]$. This proves D4.

5.3 The action of $(_{-})_{+}$ on arrows

Proposition 5.3.1. Let $\mathbf{L} \in \{\mathbf{IntK}_{\Box}, \mathbf{IntK}_{\diamond}, \mathbf{IK}\}$. For every \mathbf{L} -algebra homomorphism $h : \mathcal{A}_1 \longrightarrow \mathcal{A}_2, h_+ : \mathcal{A}_{2+} \longrightarrow \mathcal{A}_{1+}$ is a p-morphism of general \mathbf{L} -frames.

Proof. From the duality for Heyting algebras, it holds that h_+ is a continuous and strongly isotone map between $\mathbf{X}_{\mathcal{A}_{2+}}$ and $\mathbf{X}_{\mathcal{A}_{1+}}$, which is equivalent to conditions M1–M3.

Let us show that if $P, Q \in Pr(\mathcal{A}_2)$ and $\Box^{-1}[P] \subseteq Q$, then $\Box^{-1}[h^{-1}[P]] \subseteq h^{-1}[Q]$: For every $a \in \mathcal{A}_2$,

$$\begin{array}{rcl} a \in \Box^{-1}[h^{-1}[P]] & \Leftrightarrow & \Box a \in h^{-1}[P] \\ & \Leftrightarrow & h(\Box a) \in P \\ & \Leftrightarrow & \Box h(a) \in P \\ & \Leftrightarrow & h(a) \in \Box^{-1}[P] \subseteq Q \\ & \Rightarrow & a \in h^{-1}[Q]. \end{array}$$

Let us show that if $P, Q \in Pr(\mathcal{A}_2)$ and $Q \subseteq \Diamond^{-1}[P]$, then $h^{-1}[Q] \subseteq \Diamond^{-1}[h^{-1}[P]]$: For every $a \in \mathcal{A}_2$,

$$\begin{array}{rcl} a \in h^{-1}[Q] & \Leftrightarrow & h(a) \in Q \subseteq \diamondsuit^{-1}[P] \\ & \Rightarrow & \diamondsuit h(a) \in P \\ & \Leftrightarrow & h(\diamondsuit a) \in P \\ & \Leftrightarrow & \diamondsuit a \in h^{-1}[P] \\ & \Leftrightarrow & a \in \diamondsuit^{-1}[h^{-1}[P]]. \end{array}$$

This is enough to show that for $\mathbf{L} \in {\{\mathbf{IntK}_{\Box}, \mathbf{IntK}_{\diamond}, \mathbf{IK}\}}$ and for every $P, Q \in Pr(\mathcal{A}_2)$, if $P\mathcal{R}_{\mathcal{A}_2}Q$, then $h_+(P)\mathcal{R}_{\mathcal{A}_1}h_+(Q)$, which is M4.

Let us show M5 for $\operatorname{Int} \mathbf{K}_{\diamond}$ -algebras, i.e. that if \mathcal{A}_1 and \mathcal{A}_2 are $\operatorname{Int} \mathbf{K}_{\diamond}$ -algebras and $P \in Pr(\mathcal{A}_2), Q \in Pr(\mathcal{A}_1)$ are such that $h^{-1}[P]\mathcal{R}_{\mathcal{A}_1}Q$, then there exists $S \in \mathcal{R}_{\mathcal{A}_2}[P]$ such that $Q \subseteq h^{-1}[S]$. We need that $S \subseteq \diamond^{-1}[P]$, i.e. $S \cap \diamond^{-1}[P]^c = \emptyset$ and $Q \subseteq h^{-1}[S]$, i.e. $h[Q] \subseteq S$. It holds that

$$Fi(h[Q]) \cap \diamondsuit^{-1}[P]^c = \emptyset,$$

for if not, then there are $a \in Q$ and $\Diamond b \notin P$ such that $h(a) \leq b$, hence $\Diamond h(a) \leq \diamond b$. As $a \in Q \subseteq \Diamond^{-1}[h^{-1}[P]]$, then $\Diamond h(a) \in P$, hence $\Diamond b \in P$, contradiction. By Birkhoff-Stone theorem, there exists $S \in Pr(\mathcal{A}_2)$ such that $h[Q] \subseteq S$ (i.e.

By Birkhon-Stone theorem, there exists $S \in Pr(\mathcal{A}_2)$ such that $h[Q] \subseteq S$ (i.e. $Q \subseteq h^{-1}[S]$) and $S \cap \diamond^{-1}[P]^c = \emptyset$, i.e. $S \subseteq \diamond^{-1}[P]$, i.e. $P\mathcal{R}_{\mathcal{A}_2}S$.

Let us show M5 for **IK**-algebras: Like before, it holds that $Fi(h[Q]) \cap \Diamond^{-1}[P]^c = \emptyset$, so by Birkhoff-Stone theorem, $h[Q] \subseteq T$ (i.e. $Q \subseteq h^{-1}[T]$) and $T \cap \Diamond^{-1}[P]^c = \emptyset$ for some $T \in Pr(\mathcal{A}_2)$. As $T \subseteq \Diamond^{-1}[P]$, then by item 1 of 5.1.4, $\langle P, T \rangle \in (\mathcal{R}_{\mathcal{A}_2} \circ \supseteq)$, i.e. $P\mathcal{R}_{\mathcal{A}_2}S \supseteq T$ for some $S \in Pr(\mathcal{A}_2)$, so $S \in \mathcal{R}_{\mathcal{A}_2}[P]$ and $Q \subseteq h^{-1}[T] \subseteq h^{-1}[S]$.

Let us show M5', i.e. that if \mathcal{A}_1 and \mathcal{A}_2 are \mathbf{IntK}_{\Box} -algebras and $P \in Pr(\mathcal{A}_2)$, $Q \in Pr(\mathcal{A}_1)$ are such that $h^{-1}[P]\mathcal{R}_{\mathcal{A}_1}Q$, then there exists $S \in \mathcal{R}_{\mathcal{A}_2}[P]$ such that $h^{-1}[S] \subseteq Q$: we need that $\Box^{-1}[P] \subseteq S$ and $S \subseteq h[Q]$, i.e. $S \cap h[Q^c] = \emptyset$. If we show that

$$h[Q^c] \cap Fi(\Box^{-1}[P]) = \emptyset,$$

then the statement will follow from Birkhoff-Stone theorem. Suppose that there are $a \notin Q$ and $\Box b \in P$ such that $b \leq h(a)$, hence $\Box b \leq \Box h(a) = h(\Box a)$. As $\Box b \in P$, then $h(\Box a) \in P$, hence $a \in \Box^{-1}[h^{-1}[P] \subseteq Q$, contradiction.

Let us show M6, i.e. that if \mathcal{A}_1 and \mathcal{A}_2 are **IK**-algebras and $P \in Pr(\mathcal{A}_2)$, $Q \in Pr(\mathcal{A}_1)$ are such that $h^{-1}[P](\subseteq \circ \mathcal{R}_{\mathcal{A}_1})Q$, then there exists $S \in (\subseteq \circ \mathcal{R}_{\mathcal{A}_1})[P]$ such that $h^{-1}[S] \subseteq Q$: By item 2 of 5.1.4, we need that $\Box^{-1}[P] \subseteq S$, moreover, we need that $S \subseteq h[Q]$, i.e. $S \cap h[Q^c] = \emptyset$. The proof goes like in the case treated before. \Box

6 Duality

For $\mathbf{L} \in {\{\mathbf{Int}\mathbf{K}_{\Box}, \mathbf{Int}\mathbf{K}_{\diamond}, \mathbf{IK}\}}$ and for every general \mathbf{L} -frame $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$, let us consider the assignment which maps every $x \in X$ to the set $\varepsilon_{\mathcal{G}}(x) = {Y \in \mathcal{A} \mid x \in Y\}}$. From the duality for Heyting algebras, we know that this assignment defines a map $\varepsilon_{\mathcal{G}} : \mathbf{X}_{\mathcal{G}} \longrightarrow \mathbf{X}_{(\mathcal{G}^+)_+}$ which is an iso in \mathbf{E} .

Let us introduce three full subcategories of the categories of the general L-frames and their p-morphisms:

6.1 L-spaces

Definition 6.1.1. (IntK_{\Box}-space) Let $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ be a general frame. \mathcal{G} is an IntK_{\Box}-space iff

- D1. $\mathbf{X}_{\mathcal{G}}$ is an Esakia space, and \mathcal{A} is the collection of the clopen increasing sets of $\mathbf{X}_{\mathcal{G}}$.
- D2'. A is closed under \Box_R .
- D3. For every $x \in X$, $R[x] \in K^{\uparrow}(\mathbf{X}_{\mathcal{G}}) = \{F \in K(\mathbf{X}_{\mathcal{G}}) \mid F = F^{\uparrow}\}.$

So $\mathbf{Int}\mathbf{K}_{\Box}$ -spaces are those general $\mathbf{Int}\mathbf{K}_{\Box}$ -frames such that R[x] is \leq -increasing for every $x \in X$. Let $\mathbf{Int}\mathbf{K}_{\Box}\mathbf{sp}$ be the category of the $\mathbf{Int}\mathbf{K}_{\Box}$ -spaces and their p-morphisms.

Example 6.1.2. For every finite partial order $\langle X, \leq \rangle$, the general frame $\mathcal{G} = \langle X, \leq, \leq, \mathcal{P}_{\leq}(X) \rangle$ is an IntK_{\square}-space.

Proof. Let τ be the topology generated by taking $\mathcal{P}_{\leq}(X) \cup \mathcal{P}_{\geq}(X)$ as a subbase, and let $\mathbf{X} = \langle X, \leq, \tau \rangle$. In 3.3.2, we saw that \mathbf{X} is an Esakia space and that $\mathcal{P}_{\leq}(X)$ is the collection of the clopen increasing subsets of \mathbf{X} . Item 1 of 2.0.8 implies that $\mathcal{P}_{\leq}(X)$ is closed under \Box_{\leq} . For every $x \in X, x \uparrow \in \mathcal{P}_{\leq}(X)$ is clopen increasing, so in particular $x \uparrow \in K^{\uparrow}(\mathbf{X})$.

Definition 6.1.3. (IntK \diamond -space) Let $\mathcal{G} = \langle X, \leq, R, A \rangle$ be a general frame. \mathcal{G} is an IntK \diamond -space iff

- D1. $\mathbf{X}_{\mathcal{G}}$ is an Esakia space, and \mathcal{A} is the collection of the clopen increasing sets of $\mathbf{X}_{\mathcal{G}}$.
- D2. A is closed under \diamond_R .
- D3. For every $x \in X$, $R[x] \in K^{\downarrow}(\mathbf{X}_{\mathcal{G}}) = \{F \in K(\mathbf{X}_{\mathcal{G}}) \mid F = F \downarrow\}.$

So $\mathbf{Int} \mathbf{K}_{\diamond}$ -spaces are those general $\mathbf{Int} \mathbf{K}_{\diamond}$ -frames such that R[x] is \leq -decreasing for every $x \in X$. Let $\mathbf{Int} \mathbf{K}_{\diamond}$ -sp be the category of the $\mathbf{Int} \mathbf{K}_{\diamond}$ -spaces and their p-morphisms.

Example 6.1.4. For every finite partial order $\langle X, \leq \rangle$, the general frame $\mathcal{G} = \langle X, \leq, \geq, \mathcal{P}_{\leq}(X) \rangle$ is an IntK $_{\diamond}$ -space.

Proof. Let τ be the topology generated by taking $\mathcal{P}_{\leq}(X) \cup \mathcal{P}_{\geq}(X)$ as a subbase, and let $\mathbf{X} = \langle X, \leq, \tau \rangle$. In 3.3.2, we saw that \mathbf{X} is an Esakia space and that $\mathcal{P}_{\leq}(X)$ is the collection of the clopen increasing subsets of \mathbf{X} . Item 2 of 2.0.8 implies that $\mathcal{P}_{\leq}(X)$ is closed under \diamond_{\geq} . For every $x \in X, x \downarrow \in \mathcal{P}_{\geq}(X)$ is clopen decreasing, so in particular $x \downarrow \in K^{\downarrow}(\mathbf{X})$.

Definition 6.1.5. (IK-space) Let $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ be a general frame. \mathcal{G} is an IK-space iff

- D1. $\mathbf{X}_{\mathcal{G}}$ is an Esakia space, and \mathcal{A} is the collection of the clopen increasing sets of $\mathbf{X}_{\mathcal{G}}$.
- D2. A is closed under \diamond_R and $\Box_{(< \circ R)}$.
- D3. For every $x \in X$, $R[x] \in K(\mathbf{X}_{\mathcal{G}})$.
- D4. For every $x \in X$, $R[x\uparrow] \in K^{\uparrow}(\mathbf{X}_{\mathcal{G}})$.
- D5. For every $x \in X$, $R[x] = R[x\uparrow] \cap R[x]\downarrow$.

Conditions D4 and D5 together imply that for every $x \in X$, R[x] is the intersection of an increasing set and a decreasing set, hence R[x] is convex, and so $R[x] = R[x]\uparrow \cap R[x]\downarrow$. So if \mathcal{G} is an **IK**-space, then \mathcal{G} is a general **IK**space and R[x] is convex for every $x \in X$. Question: does the viceversa hold? Probably not. Let **IKsp** be the category of the **IK**-spaces and their p-morphisms.

Given a finite partial order $\langle X, \leq \rangle$, the general **IK**-frame $\mathcal{G} = \langle X, \leq, (\geq \circ \leq), \mathcal{P}_{\leq}(X) \rangle$ is not an **IK**-space in general. Consider the partial order associated with the following Hasse diagram:

The relation $(\geq \circ \leq)$ does not satisfy D5: It holds that $x \leq z_1 \geq z_2 \leq y$, so $y \in (\geq \circ \leq)[x]$, and $x \geq z_3 \leq z_4 \geq y$, so $y \in (\geq \circ \leq)[x]$, but $y \notin (\geq \circ \leq)[x]$.

Example 6.1.6. For every finite linear order $\langle X, \leq \rangle$, the general **IK**-frame $\mathcal{G} = \langle X, \leq, (\geq \circ \leq), \mathcal{P}_{\leq}(X) \rangle$ is an **IK**-space.

Proof. Since \leq is a linear order, then for every $x \in X$, $X = x \uparrow \cup x \downarrow \subseteq (\geq \circ \leq)[x]$, hence $(\geq \circ \leq)[x] = (\geq \circ \leq)[x\uparrow] \cap (\geq \circ \leq)[x]\downarrow$, which is D5.

Proposition 6.1.7. For every L-algebra \mathcal{A} , \mathcal{A}_+ is an L-space.

Proof. By 5.2.1, \mathcal{A}_+ is a general **L**-frame. By item 1 of 5.1.3, if \mathcal{A} is an IntK_{\square}algebra, then $\mathcal{R}_{\mathcal{A}}[P] = (\subseteq \circ \mathcal{R}_{\mathcal{A}} \circ \subseteq)[P]$ is \subseteq -increasing for every $P \in Pr(\mathcal{A})$. Analogously, items 2 and 3 of 5.1.3 respectively imply that if \mathcal{A} is an IntK_{\diamond}algebra, then $\mathcal{R}_{\mathcal{A}}[P]$ is \subseteq -decreasing for every $P \in Pr(\mathcal{A})$, and if \mathcal{A} is an **IK**-algebra, then $\mathcal{R}_{\mathcal{A}}[P] = (\subseteq \circ \mathcal{R}_{\mathcal{A}})[P] \cap (\mathcal{R}_{\mathcal{A}} \circ \supseteq)[P]$ for every $P \in Pr(\mathcal{A})$. \Box

Lemma 6.1.8. For every general L-frame $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ and every $x, y \in X$,

- 1. $x \leq y$ iff $\varepsilon_{\mathcal{G}}(x) \subseteq \varepsilon_{\mathcal{G}}(y)$.
- 2. If xRy then $\varepsilon_{\mathcal{G}}(x)\mathcal{R}_{\mathcal{A}}\varepsilon_{\mathcal{G}}(y)$.

Proof. 1. If $x \leq y$ then, as $\mathcal{A} \subseteq \mathcal{P}_{\leq}(X)$, for every $Y \in \mathcal{A}$, if $x \in Y$ then $y \in Y$. If $x \not\leq y$ then, as $\mathbf{X}_{\mathcal{G}}$ is totally order-disconnected and \mathcal{A} is the collection of the clopen increasing subsets of $\mathbf{X}_{\mathcal{G}}, x \in Y$ and $y \notin Y$ for some $Y \in \mathcal{A}$, hence $Y \in (\varepsilon_{\mathcal{G}}(x) \setminus \varepsilon_{\mathcal{G}}(y))$, and so $\varepsilon_{\mathcal{G}}(x) \not\subseteq \varepsilon_{\mathcal{G}}(y)$.

2. Let us show that if $y \in R[x]$, then a) $\Box_R^{-1}[\varepsilon_{\mathcal{G}}(x)] \subseteq \varepsilon_{\mathcal{G}}(y)$, b) $\varepsilon_{\mathcal{G}}(y) \subseteq \Diamond_R^{-1}[\varepsilon_{\mathcal{G}}(x)]$ and c) $\Box_{(\leq \circ R)}^{-1}[\varepsilon_{\mathcal{G}}(x)] \subseteq \varepsilon_{\mathcal{G}}(y)$: a) For every $Y \in \mathcal{A}$, $\Box_R Y \in \varepsilon_{\mathcal{G}}(x)$ iff $x \in \Box_R Y$, iff $R[x] \subseteq Y$, and so $y \in Y$,

i.e. $Y \in \varepsilon_{\mathcal{G}}(y)$.

b) For every $Y \in \mathcal{A}, Y \in \varepsilon_{\mathcal{G}}(y)$ iff $y \in Y$, and as $y \in R[x]$, then $R[x] \cap Y \neq \emptyset$, i.e. $\diamond_R Y \in \varepsilon_{\mathcal{G}}(x)$, i.e. $Y \in \diamond_R^{-1}[\varepsilon_{\mathcal{G}}(x)]$. c) For every $Y \in \mathcal{A}$, $\Box_{(\leq \circ R)} Y \in \varepsilon_{\mathcal{G}}(x)$ iff $x \in \Box_{(\leq \circ R)} Y$, iff $(\leq \circ R)[x] \subseteq Y$, and

so $y \in R[x] \subseteq (\leq \circ R)[x] \subseteq Y$, i.e. $Y \in \varepsilon_{\mathcal{G}}(y)$.

a) proves the statement if \mathcal{A} is an IntK_D-algebra, b) proves the statement if \mathcal{A} is an \mathbf{IntK}_{\diamond} -algebra, and a) and c) together prove the statement if \mathcal{A} is an IK-algebra.

Lemma 6.1.9. 1. The following are equivalent for every general $IntK_{\Box}$ frame:

- (a) For every $x \in X$, $R[x] = R[x]\uparrow$.
- (b) For every $x, y \in X$, if $\varepsilon(x) \mathcal{R}_{\mathcal{A}} \varepsilon(y)$ then x R y.
- 2. The following are equivalent for every general $IntK_{\diamond}$ -frame:
 - (a) For every $x \in X$, $R[x] = R[x] \downarrow$.
 - (b) For every $x, y \in X$, if $\varepsilon(x) \mathcal{R}_A \varepsilon(y)$ then x R y.
- 3. The following are equivalent for every general **IK**-frame:
 - (a) For every $x \in X$, $R[x] = R[x\uparrow] \cap R[x]\downarrow$.
 - (b) For every $x, y \in X$, if $\varepsilon(x) \mathcal{R}_A \varepsilon(y)$ then x R y.

Proof. 1. (a \Rightarrow b) Suppose that $x, y \in X$ are such that $\varepsilon(x) \mathcal{R}_{\mathcal{A}} \varepsilon(y)$ but $y \notin$ $R[x] = R[x]\uparrow$. Then $R[x] \subseteq U$ and $y \notin U$ for some $U \in \mathcal{A}$, hence $x \in \Box_R U$. As $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$, then $\Box_R^{-1}[\varepsilon(x)] \subseteq \varepsilon(y)$, i.e. for every $U \in \mathcal{A}$, if $x \in \Box_R U$, then $y \in U$, contradiction.

(b \Rightarrow a) (\supseteq) If $y \in R[x]\uparrow$, then $xRz \leq y$ for some $z \in X$, hence, by 6.1.8, $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(z) \subseteq \varepsilon(y)$, i.e. $\Box_{R}^{-1}[\varepsilon(x)] \subseteq \varepsilon(z) \subseteq \varepsilon(y)$, hence $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$, and so by assumption it follows that xRy.

2. (a \Rightarrow b) Suppose that $x, y \in X$ are such that $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$ but $y \notin R[x] = R[x]\downarrow$. Then $y \in U$ and $R[x] \cap U = \emptyset$ for some clopen increasing subset U, hence $x \notin \diamond_R U$.

As $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$, then $\varepsilon(y) \subseteq \diamond_R^{-1}[\varepsilon(x)]$, i.e. for every $U \in \mathcal{A}$, if $y \in U$ then $x \in \diamond_R U$, contradiction.

(b \Rightarrow a) (\supseteq) If $y \in R[x]\downarrow$, then $xRz \geq y$ for some $z \in X$, hence, by 6.1.8, $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(z) \supseteq \varepsilon(y)$, i.e. $\varepsilon(y) \subseteq \varepsilon(z) \subseteq \diamondsuit_{R}^{-1}[\varepsilon(x)]$, hence $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$, and so by assumption it follows that xRy.

3. (a \Rightarrow b) Suppose that $x, y \in X$ are such that $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$ but $y \notin R[x] = R[x\uparrow] \cap R[x]\downarrow$. Then either $y \notin R[x\uparrow]$ or $y \notin R[x]\downarrow$. If $y \notin R[x\uparrow] = R[x\uparrow]\uparrow$ Then $R[x\uparrow] \subseteq U$ and $y \notin U$ for some $U \in \mathcal{A}$, hence $x \in \Box_{(\leq \circ R)}U$.

As $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$, then $\Box_{(\leq \circ R)}^{-1}[\varepsilon(x)] \subseteq \varepsilon(y)$, i.e. for every $U \in \mathcal{A}$, if $x \in \Box_{(\leq \circ R)}U$, then $y \in U$, contradiction. If $y \notin R[x] \downarrow$ the proof is analogous to the $(a \Rightarrow b)$ of item 2.

 $(b \Rightarrow a) (\supseteq)$ If $y \in R[x\uparrow] \cap R[x]\downarrow$, then $x \leq z_1Ry$ and $xRz_2 \geq y$ for some $z_1, z_2 \in X$, hence, by 6.1.8, $\varepsilon(x) \subseteq \varepsilon(z_1)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$ and $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(z_2) \supseteq \varepsilon(y)$, and so $\Box_R^{-1}[\varepsilon(x)] \subseteq \Box_R^{-1}[\varepsilon(z_1)] \subseteq \varepsilon(y)$ and $\varepsilon(y) \subseteq \varepsilon(z_2) \subseteq \diamond_R^{-1}[\varepsilon(x)]$, hence $\varepsilon(x)\mathcal{R}_{\mathcal{A}}\varepsilon(y)$, and so by assumption it follows that xRy.

Proposition 6.1.10. For every **L**-space $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$, $\varepsilon_{\mathcal{G}} : \mathcal{G} \longrightarrow (\mathcal{G}^+)_+$ is a p-morphism of **L**-spaces, hence it is an iso in the category of **L**-spaces.

Proof. From the duality for Heyting algebras, we know that $\varepsilon_{\mathcal{G}} : \mathbf{X}_{\mathcal{G}} \longrightarrow \mathbf{X}_{(\mathcal{G}^+)_+}$ is an iso in **E**, hence it is bijective and satisfies M1–M3. M4 holds by item 2 of 6.1.8. The surjectivity of $\varepsilon_{\mathcal{G}}$ and 6.1.9 imply M5', M5 and M6. Let us show M6: If $\varepsilon_{\mathcal{G}}(x) (\subseteq \circ \mathcal{R}_{\mathcal{A}}) P = \varepsilon_{\mathcal{G}}(y)$, then $\varepsilon_{\mathcal{G}}(x) \subseteq \varepsilon_{\mathcal{G}}(z) \mathcal{R}_{\mathcal{A}} \varepsilon_{\mathcal{G}}(y)$ for some $z \in X$, hence, by item 1 of 6.1.8 and 6.1.9, $x \leq zRy$, i.e. $y \in (\leq \circ R)[x]$.

Theorem 6.1.11. For every $\mathbf{L} \in {\{\mathbf{IntK}_{\Box}, \mathbf{IntK}_{\diamond}, \mathbf{IK}\}}$, the category **LAlg** of **L**-algebras and their homomorphisms is dually equivalent to the category **LSp** of **L**-spaces and their p-morphisms.

Proof. It follows from 4.1.2, 4.2.1, 5.3.1, 6.1.7, and 6.1.10.

7 Characterizing topological semantics of MIPC

One of the best known axiomatic extensions of **IK** is the *modal imtuitionistic* propositional calculus (**MIPC**) introduced by Prior in [12]. **MIPC** can be thought of as the intuitionistic S5 (see [2]), and it holds (see for example [13]) that

$$\begin{split} \mathbf{MIPC} &= & \mathbf{IK} \oplus \Box p \to p \oplus \Box p \to \Box \Box p \oplus \Diamond p \to \Box \Diamond p \oplus \\ & p \to \Diamond p \oplus \Diamond \Diamond p \to \Diamond p \oplus \Diamond \Box p \to \Box p. \end{split}$$

Bezhanishvili [1, 2] introduced a topological semantics for **MIPC**, given by the category **TPSOE** of *perfect augmented Kripke frames* and their morphisms (see 7.0.17 and 7.0.21 below), and proved that **TPSOE** is dually equivalent to the category of *monadic Heyting algebras* and their homomorphisms, which is the class of algebras canonically associated with **MIPC** (see [2]). In this section, we will show that – as it was to be expected – **TPSOE** is isomorphic to the full subcategory **MIPCsp** of **IKsp** whose objects are the **IK**-spaces $\mathcal{G} = \langle X, \leq, R, \mathcal{A} \rangle$ such that R is an equivalence relation.

Definition 7.0.12. (MIPC-space) An MIPC-space is an IK-space $\mathcal{G} = \langle X, \leq, E, \mathcal{A} \rangle$ such that E is an equivalence relation.

Definition 7.0.13. (Augmented Kripke frame) (cf. def 2.1 of [2]) A relational structure $\langle X, \leq, E \rangle$ is an augmented Kripke frame iff $\langle X, \leq \rangle$ is a partial order and E is an equivalence relation on X such that $(E \circ \leq) \subseteq (\leq \circ E)$.

Lemma 7.0.14. The following are equivalent for every relational structure $\langle X, \leq, E \rangle$:

- 1. $\langle X, \leq, E \rangle$ is an augmented Kripke frame.
- 2. $\langle X, \leq, E \rangle$ is an **IK**-frame such that E is an equivalence relation.

Proof. $(1 \Rightarrow 2)$ Let us show that $(\geq \circ E) \subseteq (E \circ \geq)$: if $x, y, z \in X$ and $x \geq yEz$, then, as E is symmetric, $zEy \leq x$, and so $z \leq vEx$ for some $v \in X$, hence $xEv \geq z$.

 $(1 \Rightarrow 2)$ It immediately follows from the definition of **IK**-frame.

Definition 7.0.15. (Perfect Kripke frame) (cf. section 3.1 of [2]) A preordered Stone space $\mathbf{X} = \langle X, \leq, \tau \rangle$ is a perfect Kripke frame iff $x \uparrow \in K(\mathbf{X})$ for every $x \in X$ and for every clopen subset U of \mathbf{X} , $U \downarrow$ is clopen.

Proposition 7.0.16. The following are equivalent for every preordered space $\mathbf{X} = \langle X, \leq, \tau \rangle$:

- 1. X is a quasi Esakia space.
- 2. X is a Stone space such that for every clopen subset $U, U \downarrow$ is clopen.
- 3. X is a quasi Priestley space such that for every clopen subset $U, U \downarrow$ is clopen.

Proof. See 3.2.7 of [11].

From the proposition above it follows that 1) if $\mathbf{X} = \langle X, \leq, \tau \rangle$ is a preordered Stone space such that for every clopen subset $U, U \downarrow$ is clopen, then \mathbf{X} is a Priestley space, hence $x \uparrow \in K(\mathbf{X})$ for every $x \in X$, and so the condition that \leq is point closed in 7.0.15 is redundant, and 2) perfect Kripke frames and quasi-Esakia spaces are one and the same thing. **Definition 7.0.17.** (Perfect augmented Kripke frame) (cf. section 3.1 of [2]) A perfect augmented Kripke frame is a structure $\mathcal{X} = \langle X, \leq, E, \tau \rangle$ such that

- 1. $\langle X, \leq, E \rangle$ is an augmented Kripke frame.
- 2. $\langle X, \leq, \tau \rangle$ and $\langle X, (\leq \circ E), \tau \rangle$ are perfect Kripke frames.
- 3. For every clopen increasing subset U, E[U] is clopen.

Lemma 7.0.18. For every augmented Kripke frame $\langle X, \leq, E \rangle$, and every \leq -increasing subset Y, E[Y] is \leq -increasing.

Proof. Let $x \in E[Y]$ and $x \leq z$ and let us show that $z \in E[Y]$: as $x \in E[Y]$ then yEx for some $y \in Y$, so $z \geq xEy$, hence, as $(\geq \circ E) \subseteq (E \circ \geq)$ by 7.0.14, $zEv \geq y$ for some $v \in X$, i.e. $y \leq vEz$, and as Y is increasing and $y \in Y$, then $v \in Y$ and so $z \in E[Y]$.

Lemma 7.0.19. (cf. lemma 3.1 (1) of [2]) For every perfect augmented Kripke frame $\mathcal{X} = \langle X, \leq, E, \tau \rangle$ and every $x \in X$, $E[x] = (\leq \circ E)[x] \cap (E \circ \geq)[x]$.

For every perfect augmented Kripke frame $\mathcal{X} = \langle X, \leq, E, \tau \rangle$ let us define $\mathcal{G}_{\mathcal{X}} = \langle X, \leq, E, \mathcal{A}_{\tau} \rangle$, where \mathcal{A}_{τ} is the **IK**-type algebra of the clopen increasing subsets of $\langle X, \leq, \tau \rangle$, i.e. the modal operations of \mathcal{A}_{τ} are $\Box_{(\leq \circ E)}$ and \diamond_E .

For every **IK**-space $\mathcal{G} = \langle X, \leq, E, \mathcal{A} \rangle$ such that E is an equivalence relation let us consider $\mathbf{X}_{\mathcal{G}} = \langle X, \leq, \tau \rangle$ and define $\mathcal{X}_{\mathcal{G}} = \langle X, \leq, E, \tau \rangle$.

- **Proposition 7.0.20.** 1. For every perfect augmented Kripke frame $\mathcal{X} = \langle X, \leq, E, \tau \rangle$, $\mathcal{G}_{\mathcal{X}} = \langle X, \leq, E, \mathcal{A}_{\tau} \rangle$ is an **MIPC**-space.
 - 2. For every **MIPC**-space $\mathcal{G} = \langle X, \leq, E, \mathcal{A} \rangle$, $\mathcal{X}_{\mathcal{G}} = \langle X, \leq, E, \tau \rangle$ is a perfect augmented Kripke frame.

Proof. 1. It holds that $\mathbf{X}_{\mathcal{G}_{\mathcal{X}}} = \langle X, \leq, \tau \rangle$ is a perfect Kripke frame, i.e. a quasi Esakia space, and \leq is a partial order, so $\mathbf{X}_{\mathcal{G}_{\mathcal{X}}}$ is an Esakia space, and \mathcal{A}_{τ} is the algebra of the clopen increasing subsets of $\mathbf{X}_{\mathcal{G}_{\mathcal{X}}}$, hence D1 holds.

As $\langle X, (\leq \circ E), \tau \rangle$ is a perfect Kripke frame, then for every $x \in X E[x\uparrow] \in K(\mathbf{X}_{\mathcal{G}_{\mathcal{X}}})$, which is D4, moreover for every $U \in \mathcal{A}_{\tau}$ (U is a clopen increasing subset of $\mathbf{X}_{\mathcal{G}_{\mathcal{X}}}$, hence $(X \setminus U)$ is clopen, therefore), $(\leq \circ E)^{-1}[X \setminus U]$ is clopen. It holds that

$$(\leq \circ E)^{-1}[X \setminus U] = \{z \in X \mid v(\leq \circ E)^{-1}z \text{ for some } v \in (X \setminus U)\}$$
$$= \{z \in X \mid z(\leq \circ E)v \text{ for some } v \in (X \setminus U)\}$$
$$= \{z \in X \mid E[z\uparrow] \cap (X \setminus U) \neq \emptyset\}$$
$$= \{z \in X \mid E[z\uparrow] \not\subseteq U\}$$
$$= X \setminus \Box_{(\leq \circ E)}U.$$

Hence $\Box_{(\leq \circ E)}U$ is clopen, and it is increasing, for if $z \in \Box_{(\leq \circ E)}U$ and $z \leq y$, then $y \uparrow \subseteq z \uparrow$, and so $E[y \uparrow] \subseteq E[z \uparrow] \subseteq U$, hence $y \in \Box_{(\leq \circ E)}U$. Let us show that for every $U \in \mathcal{A}_{\tau}$, $\diamond_E U \in \mathcal{A}_{\tau}$:

$$\begin{aligned} \diamondsuit_E U &= \{ z \in X \mid E[z] \cap U \neq \emptyset \} \\ &= \{ z \in X \mid zEu \text{ for some } u \in U \} \\ &= \{ z \in X \mid uEz \text{ for some } u \in U \} \quad (E \text{ is symmetric}) \\ &= E[U]. \end{aligned}$$

As $U \in \mathcal{A}_{\tau}$, then U is a clopen increasing subset of $\mathbf{X}_{\mathcal{G}_{\mathcal{X}}}$, hence by condition 3 of 7.0.17, E[U] is clopen, and it is increasing, by 7.0.18, which completes the proof of D2. By 7.0.19, for every $x \in X$, $E[x] = (\leq \circ E)[x] \cap (E \circ \geq)[x] = E[x\uparrow] \cap E[x]\downarrow$, which is D5. From D4 and the fact that $\mathbf{X}_{\mathcal{G}_{\mathcal{X}}}$, being an Esakia space, is a Priestley space, it follows that $E[x] = E[x\uparrow] \cap E[x]\downarrow$ is the intersection of two closed sets, so it is closed, which is D3.

2. By item 3 of 4.1.1 it holds in particular that $(E \circ \leq) \subseteq (\leq \circ E)$, so $\langle X, \leq, E \rangle$ is an augmented Kripke frame. D2 implies that for every clopen increasing subset $U, E[U] = \diamond_E U$ is clopen. By D1, $\langle X, \leq, \tau \rangle$ is an Esakia space, hence it is a perfect Kripke frame. Let us show that $\langle X, (\leq \circ E), \tau \rangle$ is a perfect Kripke frame: By 7.0.16, it is enough to show that the assignment $x \longmapsto (\leq \circ E)[x]$ defines a continuous map $\rho : \mathbf{X}_{\mathcal{G}} \longrightarrow \mathbf{K}(\mathbf{X}_{\mathcal{G}})$. By D4, it holds that $(\leq \circ E)[x] = E[x^{\uparrow}] \in$ $\mathbf{K}^{\uparrow}(\mathbf{X}_{\mathcal{G}})$ for every $x \in X$, and as $\mathbf{K}^{\uparrow}(\mathbf{X}_{\mathcal{G}})$ is a subspace of $\mathbf{K}(\mathbf{X}_{\mathcal{G}})$, then it is enough to show that the assignment $x \longmapsto (\leq \circ E)[x]$ defines a continuous map $\rho : \mathbf{X}_{\mathcal{G}} \longrightarrow \mathbf{K}^{\uparrow}(\mathbf{X}_{\mathcal{G}})$. By item 2 of 6.1.5 of [11], $\mathcal{B}_{K^{\uparrow}(\mathbf{X}_{\mathcal{G}})}^{+} = \{t(U) \cap K^{\uparrow}(\mathbf{X}_{\mathcal{G}}) \mid U$ clopen increasing $\} \cup \{m(V) \cap K^{\uparrow}(\mathbf{X}_{\mathcal{G}}) \mid V$ clopen decreasing} is a subbase of $\mathbf{K}^{\uparrow}(\mathbf{X}_{\mathcal{G}})$, so it is enough to show that for every clopen increasing subset U of $\mathbf{X}_{\mathcal{G}}, \rho^{-1}[t(U)]$ is clopen. For every clopen increasing subset U of $\mathbf{X}_{\mathcal{G}}$, $\rho^{-1}[t(U)] = \{x \in X \mid (\leq \circ E)[x] \subseteq U]\} = \Box_{(\leq \circ E)}U$, which is clopen increasing by D2.

Definition 7.0.21. (Morphism of perfect augmented Kripke frames) (cf. section 3.1 of [2]) Let $\mathcal{X}_i = \langle X_i, \leq_i, E_i, \tau_i \rangle$ be perfect augmented Kripke frames, i = 1, 2. A continuous map $f : \langle X_1, \tau_1 \rangle \longrightarrow \langle X_2, \tau_2 \rangle$ is a morphism iff for every $x, x', y \in X_1, z \in X_2$,

- M1. if $x \leq_1 y$ then $f(x) \leq_2 f(y)$.
- M2. If $f(x) \leq_2 z$ then f(x') = z for some $x' \in x \uparrow$.
- *M*4'. If $x(\leq_1 \circ E_1)y$ then $f(x)(\leq_2 \circ E_2)f(y)$.
- M6'. If $f(x)(\leq_2 \circ E_2)z$ then z = f(x') for some $x' \in (\leq_1 \circ E_1)[x]$.
- M5. If $f(x)E_2z$ then $z \leq_2 f(x')$ for some $x' \in E_1[x]$.
- **Proposition 7.0.22.** 1. For every morphism $f : \mathcal{X}_1 \longrightarrow \mathcal{X}_2$ of perfect augmented Kripke frames, f is a p-morphism between the associated **MIPC**-spaces $\mathcal{G}_{\mathcal{X}_1}$ and $\mathcal{G}_{\mathcal{X}_2}$.
 - 2. For every p-morphism $f : \mathcal{G}_1 \longrightarrow \mathcal{G}_2$ of MIPC-spaces, f is a morphism between the associated perfect augmented Kripke frames $\mathcal{X}_{\mathcal{G}_1}$ and $\mathcal{X}_{\mathcal{G}_2}$.

Proof. 1. We have to show the conditions M3, M4 and M6 in 3.3.3 hold: M3 is equivalent to the continuity of f, and M6' immediately implies M6. Let us show M4, i.e. assume that xE_1y and show that $f(x)E_2f(y)$: By 7.0.19, it is enough to show that $f(x)(\leq \circ E_2)f(y)$ and $f(x)(E_2 \circ \geq)f(y)$. As $x \leq xE_1y$, then by M4', $f(x)(\leq \circ E_2)f(y)$. As $xE_1y \geq y$, then $x \in (\leq \circ E_1)[y]$ so, by M4', $f(x) \in (\leq \circ E_2)[f(y)]$ i.e. $f(y) \in (\leq \circ E_2)^{-1}[f(x)] = (E_2 \circ \geq)[f(x)]$.

2. We have to show that f is continuous and that M4', M6' in 7.0.21 hold: M3 is equivalent to continuity, and M4' is easily implied by M1 and M4. Let us show M6': assume that $f(x)(\leq_2 \circ E_2)z$, and show that z = f(x') for some $x' \in (\leq_1 \circ E_1)[x]$. By M6, $f(y) \leq_2 z$ for some $y \in (\leq \circ E_1)[x]$, hence, by M2, z = f(x') for some $x' \in y\uparrow$, and as $y \in (\leq \circ E_1)[x]$, then $x' \in (\leq \circ E_1 \circ \leq)[x] =$ $(\leq \circ E_1)[x]$, the last equality being implied by $(E_1 \circ \leq) \subseteq (\leq \circ E_1)$.

8 Final remarks

Remark 8.0.23. For every finite linear order $\langle X, \leq \rangle$ with more than one element, the assignment $x \mapsto (\geq \circ \leq)[x] = x \downarrow \uparrow (= X)$ defines an order-preserving map $\zeta^{\downarrow\uparrow} : \langle X, \leq \rangle \longrightarrow \langle \mathcal{P}(X), \leq^{\uparrow\downarrow} \rangle$ which is not strongly isotone.

Proof. As \leq is a linear order, then $(\geq \circ \leq) = X \times X$, so $\leq \circ (\geq \circ \leq) \subseteq (\geq \circ \leq) \circ \leq$ and $\geq \circ (\geq \circ \leq) \subseteq (\geq \circ \leq) \circ \geq$, which implies (see 5.1.3 of [11]) that $\zeta^{\downarrow\uparrow}$ is orderpreserving. As $\langle X, \leq \rangle$ is a finite linear order, then there exists a maximum element $a \in X$. As $X = \{a\}\downarrow$, then for every $x \in X$, $x\downarrow\uparrow = X \leq^{\uparrow\downarrow} \{a\}$, but since X has more than one element, then $\{a\} \neq X$, so there is no $y \in X$ such that $y\downarrow\uparrow = \{a\}$.

Remark 8.0.24. For every finite linear order $\langle X, \leq \rangle$ the assignment $x \mapsto (\geq \circ \leq) [x] = x \downarrow \uparrow (= X)$ defines a strongly isotone map $\zeta^{\downarrow\uparrow} : \langle X, \leq \rangle \longrightarrow \langle \mathcal{P}_{\geq}(X), \leq^{\downarrow} \rangle = \langle \mathcal{P}_{\geq}(X), \subseteq \rangle.$

Proof. As \leq is a linear order, then $(\geq \circ \leq) = X \times X$, so $\geq \circ (\geq \circ \leq) \subseteq (\geq \circ \leq) \circ \geq$, which implies (see 5.1.3 of [11]) that $\zeta^{\downarrow\uparrow}$ is order-preserving. For every $x \in X$ and every $F \in \mathcal{P}_{\geq}(X)$, if $x \downarrow \uparrow = X \leq^{\downarrow} F$, then X = F, so $x \in X$, $x \leq x$ and $x \downarrow \uparrow = F$.

References

- [1] Bezhanishvili, G. Varieties of Monadic Heyting Algebras. Part II: Duality theory, *Studia Logica*, ????.
- [2] Bezhanishvili, G. An Algebraic Approach to Intuitionistic Modal Logics over MIPC, PhD dissertation, 199?
- [3] Celani, S. Jansana, R. Priestley Duality, a Sahlqvist Theorem and a Goldblatt-Thomason Theorem for Positive Modal Logic, L. J. of the IGPL, Vol. 7, No 6, pp 683 - 715, 1999.

- [4] Chagrov, A. Zakharyaschev, M. Modal Logic, Oxford University Press, 1997.
- [5] Davey, B.A. Priestley, H.A. Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990.
- [6] Engelking, R. General Topology, PWN Polish Scientific Publishers, Warsawa, 1977.
- [7] Esakia, L.L. Topological Kripke models, Soviet Mathematik Doklade, Vol. 15 No 1, pp 147 - 151, 1974.
- [8] Fischer Servi, G. On Modal Logics with an Intuitionistic Base, *Studia Log*ica Vol. 36, No 2, pp 141-149, 1977.
- [9] Fischer Servi, G. Semantics for a Class of Intuitionistic Modal Calculi, Italian Studies in the Philosophy of Science, M. Dalla Chiara ed. pp 59 -72, Reidel 1980.
- [10] Fischer Servi, G. Axiomatizations for some Intuitionistic Modal Logics, Rendiconti del Seminario Matematico dell' Università Politecnica di Torino, Vol. 42, No 3, pp 179 - 194, 1984.
- [11] Palmigiano, A. Vietoris Endofunctors on (Pre-)Ordered Stone Spaces, unpublished notes, 2003.
- [12] Prior, A. Time and Modality, Clarendon Press, Oxford, 1957.
- [13] Wolter, F Zakharyaschev, M. Intuitionistic Modal Logic.