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Abstract

This paper is an exploration in the light of modal logic of Dunn’s ideas about two
treatments of negation in non-classical logics: perp and star. We take negation as an
impossibility modal operator and choose the base positive logic to be distributive lattice
logic (DLL). It turns out that, if we add one De Morgan law and contraposition to DLL
(call this system K−), then we can prove a natural completeness and hence treat perp in
this modal setting. Moreover, star can be dealt with in the extensions of K−. Based on
these results, a complete table of star and perp semantics for Dunn’s kite of negations is
given. In the last section, we discuss perp and star in relevance logic and their related
logics. The Routley star is interpreted at the end of this paper.

Keywords : perp, Routley star, modal logic, relevance logic, Meyer-Routley semantics

1 Introduction

In the literature of non-classical logics, two kinds of treatment of negations are among the
most eminent:

• (¬∗) : x |= ¬A iff x∗ 6|= A;

• (¬ ⊥) : x |= ¬A iff ∀y(y |= A → y ⊥ x).

The first one is well-known in relevance logic called Routley star. The second one
(called perp1) was used in Goldblatt [1974] to model negation in orthologic2. It turns out
that this agrees with Dunn’s gaggle theory about unary operators. Let’s see how it fits in
gaggle theory.3 The type for ¬ is t¬ : ∨ 7→ ∧. Then the gaggle theoretical definition of ¬
is

∀α(α 6∈ A ∨ (∃y(y ∈ α ∧ ¬y ∈ χ))).4

If we define a binary relation ⊥ (α, β) : ∃y(y ∈ α ∧ ¬y ∈ χ), 5 then the above
gaggle theoretical definition of negation turns out to be the same as that for Goldblatt’s
orthonegation:

¬A ∈ χ iff ∀α(α ∈ A ⇒ α ⊥ χ).

1“Perp” is short for “perpendicular” and means incompatibility in this paper.
2A brief history of perp and star can be found in Dunn [1993].
3Dunn [1993].
4Here we used the so-called U.C.L.A propositions by Anderson-Belnap-Dunn. A U.C.L.A. proposition is

identified with the set of points where the proposition is true.
5This definition is justified by the philosophical interpretation of negations in Dunn [1996]).

1



These two seeingly-unrelated semantic clauses are closely connected: ∀xy(x 6⊥ y ↔
y ≤ x∗). This relation was first discovered and elaborated in Dunn [1993] and Dunn
[1996]. If we denote the complement of the perp relation as C (short for compatibility),
then we have a more transparent presentation:

xCy ⇔ y ≤ x∗.

In his dissertation, Vakarelov gave a modal interpretion of negation6. Routley et. al
[1983] added some axioms about negation to semi-lattice logic and interpreted it as an
impossibility operator. Došen [1986] used propositional intuitionistic logic as a test to
treat negation as a modal operator. His logic N is obtained by adding one De Morgan
law and contraposition to the negation-free fragment of propositional intuitionistic logic.
He showed the completeness of N with respect to a class of Kripke frames. Moreover, he
discussed various extensions of this logic especially Johansson’s minimal logic J .

In this paper,we follow a similar line to that in Vakarelov [1977], Routley et al. [1982]
and Došen [1986]. We first add to distributive lattice logic a negation as an impossibility
operator. The logic K− for perp turns out to be one half of negative modal logic, a dual
logic to Dunn’s positive modal logic. The question arises: how can we apply Dunn’s
translation of perp and star in this background logic? One de Morgan law will play a
crucial role in this connection. Let Ks be K− plus the axiom scheme ¬(A∧B) ` ¬A∨¬B
and ¬> ` ⊥. Ks is the weakest logic that has a star semantics, which is a criteria to
determine whether extensions of K− have a star semantics. The proof for this statement is
similar to the proof of completeness of basic modal logic through Jónsson-Tarski Theorem.

Since the Routley star came from relevance logic, it is important to put it back to
see its relation to perp. In order to embody the idea that negation and implication are
interrelated in relevance logic (¬A ≡def A → ⊥), we define the compatibility relation for
negation in this way: xCy ≡def ∃z(Rxyz). The corresponding logic is just as expected:
the logic by replacing the background distributive lattice logic in K− with B+ but the
proof is quite different. We use a “way-down” method due to Meyer. The extension
with a star semantics can be treated very similarly. At last, we discuss the constant-free
fragments of these logics. They can be regarded as a kind of harmonious “marriage”
between relevance logic and modal logic.

2 Perp and Star in DLL

2.1 K− and Perp

In this paper we will consider a standard propositional language L. In L, we have denu-
merably many propositional letters p, r, q, · · · ; the connectives of L are ∧,∨,¬ (and →).
We use capital English letters A,B, C, · · · or α, β, · · · for formulae of L. Capital Greek
letters will be used for sets of formulae. The symbols ∀, ∃,⇒,⇔, and, or, iff, not will be
used with the usual meanings in the metalanguage. Define L>⊥ as the language enriched
with two constants ⊥ and >.

For the presentations of logics in this paper, we will use the binary consequence system
from Dunn [1995], whose formal objects are pairs of formulas (A,B). They are called
consequence pairs. A `S B denotes that (A,B) is derivable in the logic S.

Definition 2.1 A distributive lattice logic (DLL) is a binary consequence system in the
language L containing the following postulates and rules:

• A ` A

6I am thankful to Prof. Dunn for telling me this history of negation.
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• A ` B, B ` C ⇒ A ` C

• A ∧B ` A,A ∧B ` B

• A ` B, A ` C ⇒ A ` B ∧ C

• A ` C, B ` C ⇒ A ∨B ` C

• A ` A ∨B, B ` A ∨B

• A ∧ (B ∨ C) ` (A ∧B) ∨ (A ∧ C)

¢

The logical system K− is adapted from Dunn’s K+. It contains all the axiom schemes
of DLL,and is closed under the rules in DLL plus the following

• A ` B ⇒ ¬B ` ¬A

• ¬A ∧ ¬B ` ¬(A ∨B)

• A ` >,⊥ ` A

• > ` ¬⊥
Note that K− is defined in the language L>⊥. To put it in an algebraic way, K− is a

distributive lattice with a negative modal operator. So the proof of the completeness has
already covered by Dunn’s gaggle theory. But, since the theory is too complicated to be
presented here while Henkin-style proofs will be used in the other parts of the paper, we
choose the conventional completeness proof.

Definition 2.2 A compatibility frame is a triple 〈W,C,≤〉 with W is a non-empty set,
≤ is a partial order and C a binary relation satisfying the following condition:

If x′ ≤ x, y′ ≤ y and xCy, then x′Cy′.

A perp relation is the complement of a compatibility relation C and a perp frame is
a triple 〈W,T,≤〉 with W is a non-empty set, ≤ is a partial order and T a binary perp
relation. In the paper, we will not distinguish between perp frames and compatibility
frames although we do between perp relations and compatibility relations.

A star frame is also a triple 〈W,≤, ?〉 with W a nonempty set, ≤ a partial order and
? a function on W satisfying the following condition:

If w ≤ v, then v∗ ≤ w∗.

¢

The definitions of truth, validity of consequence pairs and other basic notions are from
Dunn [1995].

Theorem 2.3 If A `K− B, then A |= B.

Proof. Here we just take the characteristic pair ¬A ∧ ¬B ` ¬(A ∨ B) as an example.
w |= ¬A ∧ ¬B ⇒ ∀v(wCv → v 6|= A ∨B) ⇒ w |= ¬(A ∨B).

qed

Now we go for the more difficult completeness. Compared to the proof of completeness
in Dunn [1995], our proof here is easier because we don’t need to coordinate two accessi-
bility relations R2 and R3. In the following we will require that prime theories P satisfy
additionally: > ∈ P and ⊥ 6∈ P . The following lemma is an analogy of Lindenbaum
Lemma in Dunn [1995].
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Lemma 2.4 (Pair Extension Lemma 1) Let A be a consistent theory and B be a set of
formula closed under disjunction. If A ∩B = ∅, then there is a prime theory P such that
A ⊆ P and P ∩B = ∅.

Now we define the canonical model Mc := 〈Wc, Cc,⊆, Vc〉. Its universe consists of all
prime theories of K−. ≤c is the set inclusion. Define PCcQ iff, for all formula ϕ, if ¬ϕ ∈ P ,
then ϕ 6∈ Q. And, for all propositional letters p, P |=c p ≡def P ∈ vc(p) ≡def p ∈ P .

Lemma 2.5 In the above defined canonical frame, ¬ϕ ∈ P iff ∀Q(PCcQ → ϕ 6∈ Q).

Proof. The direction from left to right is trivial. For the other direction, we show by
contraposition. Suppose that ¬ϕ 6∈ P . Now we need to show that there is a prime filter Q
such that PCcQ and ϕ ∈ Q. First note that ϕ is not equivalent to ⊥ for otherwise > 6∈ P ,
which is agaist our definition of prime theories. Therefore [ϕ) is a consistent theory where
[ϕ) is a theory generated by ϕ. Moreover, [ϕ) ∩ ¬−1(P ) = ∅. For, otherwise, there is ψ
such that ¬ψ ∈ P and ϕ ` ψ, which implies that ¬ϕ ∈ P . It is easy to check that ¬−1(P )
is closed under disjunction.7 By appealing to Pair Extension Lemma, we have that there
is a prime theory Q such that ¬−1(P ) ∩Q = ∅ and [ϕ) ⊆ Q. So we are done.

qed

Lemma 2.6 (Truth Lemma) P |= ϕ iff ϕ ∈ P .

Proof. The nontrivial is to show the case for ϕ := ¬ψ for some ψ. Assume that ¬ψ ∈ P .
According to the above lemma, we have ∀Q(PCcQ ⇒ ψ 6∈ Q. By I.H. ∀Q(PCcQ → Q 6|=
ψ). That is to say, P |= ¬ψ. This argument can be reversed to show the other direction.

qed

Theorem 2.7 (Completeness) If A |= B, then A ` B.

Proof. The proof is again an application of Pair Extension Theorem as well as the above
lemma. We may assume that A is not equivalent to ⊥. Suppose that A 6` B. Take ∆
to be the disjunctive closure of B. And [A) is a consistent theory and [A) ∩∆ = ∅. By
P.E.T, there is a prime theory Q such that [A) ⊆ Q and B 6∈ Q. That is to say, A 6|=Mc B.

qed

This theorem says that, if we pick DLL as the background logic, then K− is the
weakest logic that has a perp semantics. Next we will discuss the extensions of this logic
especially KS with which star matches, where Ks is the logic K− plus ¬(A∧B) ` ¬A∨¬B
and ¬> ` ⊥.

2.2 Representation of Ockham Lattices

Definition 2.8 An Ockham lattice is a structure (D,∧,∨,¬, 0, 1), where (D,∧,∨, 0, 1) is
a bounded distributive lattice and ¬ is a dual endomorphism:

• ¬(x ∨ y) = ¬x ∧ ¬y;

• ¬(x ∧ y) = ¬x ∨ ¬y.

¢

7This is the very place where ¬A ∧ ¬B ` ¬(A ∨B) comes in.
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Dunn once raised a question: “it would be nice to somehow fit the Ockham lattices
into the framework of the paper (on perp and star) · · · and represent them.” In this
section,we will give a set theoretic representation of Ockham lattices, which is similar to
that of De Morgan lattices. In the next section, we will use this representation to prove
the completeness of KS with respect to the class of star frames.

Observation: Let D be an Ockham lattice, a, b ∈ D. If a ≤ b, then ¬b ≤ ¬a.

Definition 2.9 Let F = 〈W,?〉 be a star frame. The full concrete lattice F+ associated
with F is the power set 8 of W with a unary operator ¬: ¬(X) = W −{w ∈ W : w∗ ∈ X}.
Any sublattice of a full concrete lattice is called a concrete lattice. It is easy to check that
(F+,∩,∪,¬) is an Ockham lattice (see below). Conversely, for any Ockham lattice L, we
can define a star frame L+ = 〈W,?〉 associated with L where W is the set of all prime
filters on L and P ∗ := {a : ¬a 6∈ P}. Finally, we call (L+)+ the embedding lattice of L
(denoted as: Em(L)).

¢

Since the contexts are always clear, we will not use differnt notations to distinguish
the ¬ in the abstract Ockham lattice and that in the concrete Ockham lattice, which is
also true to the following ∧ and ∨. Now we will just show that, for any Ockham lattice
L, it can be embedded into its embedding lattice, which is an analogy of Jónsson-Tarski
Theorem.

Theorem 2.10 Any Ockham lattice L is isomorphic to a sublattice of its embedding
lattice Em(L).

Proof. First we show that Em(L) is an Ockham lattice.

1. ¬(X ∪ Y ) = ¬(X) ∪ ¬(Y ): P ∈ ¬(X ∪ Y ) ⇔ P ∗ 6∈ X ∪ Y ⇔ P ∗ 6∈ X, P ∗ 6∈ Y ⇔
P ∈ ¬(X) ∧ P ∈ ¬(Y ).

2. ¬(X ∩ Y ) = ¬(X) ∪ ¬(Y ) can be shown similarly.

Probably the crucial part is to show that ? maps prime filters to prime filters, or L+ is
well-defined. In fact, the conditions in the definition of Ockham lattices are the minimum
requirements that make the above defined ? mapping prime filters to prime filters as we
can see below.

1. Since ¬1 ≤ 0 and 0 6∈ P , 1 ∈ P ∗;

2. Since 1 ≤ ¬0 and 1 ∈ P , ¬0 ∈ P and hence 0 6∈ P ∗;

3. Let a ≤ b and a ∈ P ∗. Then ¬b ≤ ¬a and ¬a 6∈ P . It follows that ¬b 6∈ P . That is
to say, b ∈ P ∗;

4. Let a, b ∈ P ∗. It follows that ¬a 6∈ P and ¬b 6∈ P . Since P is prime, ¬a ∨ ¬b 6∈ P .
According to De Morgan laws, ¬(a ∧ b) 6∈ P . So, a ∧ b ∈ P ∗.

5. Let a∨ b ∈ P ∗. That is to say, ¬(a∨ b) 6∈ P . Alternatively, ¬a∧¬b 6∈ P . ¬a 6∈ P or
¬b 6∈ P . So, a ∈ P ∗ or b ∈ P ∗.

8In fact, we can make an intuitionistic case by defining F as the set of all increasing subset of W (X is
increasing iff a ≤ b and a ∈ X implies b ∈ X). And all the notions below would still be well-defined, all the
propositions below would still hold by similar proofs.
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Define f : a ½ {P : a ∈ P}. It is easy to see that it is one-to-one from L to Em(L)
because of Prime Filter Separation property. Now we need to show that it preserves the
operators. Here we only show the case for the non-trivial operator ¬.

P ∈ f(¬a) ⇔ ¬a ∈ P ⇔ a 6∈ P ∗ ⇔ P ∗ 6∈ f(a) ⇔ P ∈ ¬(f(a)).
qed

As we can easily see, this is a generalization of Bialynicki-Birula and Rasiowa’s rep-
resentation of De Morgan lattices9, for De Morgan lattices are always Ockham lattices.
The representation theorem here is the most crucial step in the proof of completeness of
Ks with respect to the class of star frames.

2.3 Algebraic Characterization of Star Frames

In the following we will show that Ockham lattices to Ks is the same as Boolean algebras
with operators to modal logic, or more precisely, as De Morgan lattices to Rfde. We
will omit some regular proofs. A convention: we can take a formula ϕ as a consequence
pair > ` ϕ. Let N be a deductive system. Then we set N ` ϕ ≡def > `N ϕ and
F |= ϕ ≡def > |=F ϕ. Some other notations are clear from contexts.

Lemma 2.11 The following two propositions are about the consequence pair ¬> ` ⊥:

• Let F be a perp frame. Then ¬> |=F ⊥ iff F |= ∀x∃y(xCy).

• The consequence pair ¬> ` ⊥ is canonical in the following sense: If K ′ be any
consistent extension of K− and ¬> `K′ ⊥, then the canonical frame of K ′ satisfies
∀x∃y(xCy).

Proof. Part (1) is trivial. For the second part, we will apply the Pair Extension Theorem.
It suffices to show that, in the canonical frame of N ′, for any prime theory P , there is
a prime theory Q, such that ¬−1(P ) ∩ Q = ∅. First note that ¬−1(P ) is closed under
disjunction and D := {>} can be regarded as a consistent theory. It is easy to check that
¬−1(P ) ∩ D = ∅ for otherwise, since ¬> ` ⊥, ⊥ ∈ P , a contradiction. Now the lemma
follows immediately from the Pair Extension Lemma.

qed

Theorem 2.12 A `Ks B iff A ` B is valid on all the frames satisfying; ∀x∃y∀z(xCz ↔
z v y). In particular, `Ks B iff B is valid on all the frames satisfying; ∀x∃y∀z(xCz ↔
z v y).

Proof. It follows from the above lemma, Theorem 2.7 here, Theorem 2.2 and Lemma 2.3
in Restall [2000].

qed

Let F be the class of star-crossed perp frames, or frames satisfying the above frame
condition. As we can see from the above theorem, the logic Ks is ΛF .

Above we take perp as primitive and search the necessary and sufficient conditions for
perp to be star-crossed by regarding star as secondary. Now we will reverse this direction
by taking star as primitive. Of course, we can define perp from star by Dunn’s famous
translation: xCy :≡ y ≤ x∗. We will show a completeness theorem by algebraic method.

9Dunn [1986].
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It is instructive to keep in mind the slogan in algebraic logic: formulas as terms denoting
propsitions.10

Definition 2.13 Let Φ be a set of variables, L be an Ockham lattice. An assignment
for Φ is a function θ : Φ → L, We can extend uniquely θ to a meaning function θ̄:
Form(Φ) → L satisfying:

• θ̄(⊥) := 0;

• θ̄(p) := θ(p);

• θ̄(¬s) := ¬θ̄(s);

• θ̄(s ∨ t) := θ̄(s) ∨ θ̄(t).

¢

Theorem 2.14 Let ϕ be a formula, F be a star frame, θ an assignment and w ∈ F .
Then

• (F , θ), w |= ϕ iff w ∈ θ̄(ϕ);

• F |= ϕ iff F+ |= ϕ ≈ >;

• F |= ϕ ↔ ψ iff F+ |= ϕ ≈ ψ;

Proof. Here we only note that θ̄(¬ϕ) = ¬θ̄(ϕ) where the second ¬ is the unary operator
on F+.

qed

Corollary 2.15 Let K be a class of star frames and ϕ is a formula. Then,

• K |= ϕ iff CmK |= ϕ ≈ >;

• K |= ϕ ↔ ψ iff CmK |= ϕ ≈ ψ;

where Cm(K) := {F+ : F ∈ K}.
Note that CmK is a class of Ockham lattice,

Lemma 2.16 The Lindenbaum-Tarski algebra of Ks is an Ockham lattice. The Lindenbaum-
Tarski Algebra of Ks is the structure:

LKs(Φ) := (Form(Φ)/ ≡,∨,∧,¬)

where the definition of these operators are evident as usual.

Theorem 2.17 ϕ `Ks ψ iff LKs(Φ) |= ϕ ∧ ψ ≈ ϕ. In particular, `Ks ϕ iff LNs(Φ) |=
ϕ ≈ >.

Proof. The left-to-right is obvious by just taking the canonical valuation. In order to
show the other direction,we will just use the connection between semantic assignment and
syntactic substitution.

qed

Theorem 2.18 (Ockham Lattices Algebraize Ks) ϕ `Ks ψ iff OL |= ϕ ∨ ψ ≈ ψ where
OL is the class of Ockham lattices. In particular, `Ks ψ iff OL |= > ≈ ψ

10Dunn et al.[2001] or Blackburn et al.[2001].
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Proof. The proof of the right-to-left direction is just a combination of the above two
propositions. For the other direction,it is just an induction on the length of the proof of
ϕ ` ψ.

qed

This is of course a very interesting result. But, to logicians, completeness is much
more important. In the following, we will concentrate on that. As expected, the crucial
step is the above representation in Section 2.2 which connect the abstract Ockham lattices
to concrete Ockham lattices. To put it in a professional way, it connects the validity to
provability.

Lemma 2.19 (Soundness) Let F be a star frame. If ϕ `Ks
ψ, then ϕ |=F ψ. And hence,

Cm(Ks) |= ϕ∨ψ ≈ ψ where Ks is the class of star frames while Ks is a deductive system.
In particular, if `Ks

ψ, then |=F ψ. And hence, Cm(Ks) |= > ≈ ψ

Proof. We check step by step.

• contraposition is preserved in F . Let F |= ϕ ` ψ and w |= ¬ψ. It follows that
w∗ 6|= ψ. By the assumption, we have w∗ 6|= ϕ.So w |= ¬ϕ.

• It is easy to see from the above proof that F |= ¬ϕ ∨ ¬ψ ` ¬(ψ ∧ ϕ) and F |=
¬(ϕ ∨ ψ) ` ¬ψ ∧ ¬ϕ.

• F |= ¬(ϕ ∧ ψ) ` ¬ϕ ∨ ¬ψ. w |= ¬(ϕ ∧ ψ) ⇒ w∗ 6|= ϕ ∧ ψ ⇒ w∗ 6|= ϕ or w∗ 6|= ψ ⇒
w |= ¬ϕ ∨ ¬ψ.

• F |= ¬ϕ ∧ ¬ψ ` ¬(ϕ ∨ ψ). The proof is similar.

The proof of the second part is just application of the Corollary 4.5.
qed

Theorem 2.20 (Completeness of Ks with respect to Ks) If Ks |= ϕ ` ψ, then ϕ `Ks ψ.

Proof. We prove by contraposition. Suppose that ϕ 6`Ks ψ. Then by Theorem 4.8, there
is an Ockham lattice L such that L 6|= ϕ ≈ ϕ ∧ ψ. It follows from representation that
there is a complex lattice Lc such that Lc 6|= ϕ ≈ ϕ ∧ ψ. Since any variety is closed
under subalgebra, there is a full complex lattice L0 such that L0 6|= ϕ ≈ ϕ ∧ ψ. Let F be
the underlaying star frame for L0. By Theorem 4.4, ϕ 6|=F ψ. So, if Ks |= ϕ ` ψ, then
ϕ `KS ψ.

qed

This theorem says that Ks is the weakest normal modal logic with a star semantics.
Indeed, Ks to star semantics is the same as K to Kripke semantics and as B+ to Boolean
Meyer-Routley semantics.

2.4 Bidirectional Frames and Galois Connected Negations

In his several papers, Dunn talked about Galois connected negations: the negations sat-
isfies the following Galois property:

A ` [¬]B iff B ` [∼]A.

He also mentioned that the relations of the perp frames for these two negations: ⊥¬
and ⊥∼ are just converse to each other. In this section, we just formalize his argument
and show that a logic system with Galois connected negations is complete with respect
to the class of all bidirectional compatibility frames. Since it is well-known that bidirec-
tional frames are appropriate to tense logics, the completeness below convinces us that
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the Galois-connective logic is the minimal negative tense logic in disguise. 11

Here we will talk about two negative modalities, or more precisely, two impossibility
modalities [¬] and [∼].12 Their intended interpretations are as follows:

• x |= [¬]ϕ iff ∀y(xR¬y → y 6|= ϕ)

• x |= [∼]ϕ iff ∀y(xR∼y → y 6|= ϕ)

Why did we use the above compatibility frames to interpret them? The main reason
is the following observation:

Lemma 2.21 13If A ` [¬]B ⇔ B ` [∼]A, then [¬]A ∧ [¬]B ` [¬](A ∨ B) and [∼]A ∧ [∼
]B ` [∼](A ∨B)

These are exactly two defining axiom schema for the two impossibility modalities,
respectively! The following deductive system is just a combination of the two systems K¬
and K∼ with one defining rule:

A ` [¬]B iff B ` [∼]A

Lemma 2.22 14The following two are equivalent:

• A ` [¬]B iff B ` [∼]A

• the conjunction of the following principles:

1. A ` B ⇒ [¬]B ` [¬]A,
2. A ` B ⇒ [∼]B ` [∼]A
3. A ` [¬][∼]A
4. A ` [∼][¬]A

Although we can give a more concise presentation of the expected system if we add
the first, the addition of the second will give a much more transparent presentation. Let
T− denote the deductive system DLL plus the follong principles:

• A ` >,⊥ ` A

• > ` [¬]⊥, > ` [∼]⊥.

• A ` B ⇒ [¬]B ` [¬]A,

• A ` B ⇒ [∼]B ` [∼]A

• A ` [¬][∼]A

• A ` [∼][¬]A

As Lemma 5.2 shows, we can replace the last four by a single rule:

(Galois Connection) A ` [¬]B iff B ` [∼]A

11The minimal tense logic is called Kt.
12The reason we use [¬] and [∼] instead of ¬ and ∼ because we want to leave some rooms for their duals

〈¬〉 and 〈∼〉, which are included in Dunn’s “Chinese Restaurant Menu”.
13Dunn [1996].
14Dunn [1996].
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Definition 2.23 (Bidirectional frames) A bidirectional frame is a a triple 〈W,R¬, R∼〉
where W is a nonempty set, R¬, and R∼ are two binary relations and R−1

¬ = R∼. A
bidirectional compatibility frame is a 4-tuple 〈W,R¬, R∼,≤〉 where both 〈W,R¬,≤〉 and
〈W,R∼,≤〉 are compatibility frames and R−1

¬ = R∼. And all the formulas are modelled
as expected (especially for the formulas with the two impossibility modalities).

¢

Theorem 2.24 (Soundness) Let F be a bidirectional (compatibility) frame. If A `T− B,
then A |=F B.

Proof. Here we just note that the two axiom schema A ` [¬][∼]A and A ` [∼][¬]A forces
the two accessibility relations R¬ and R∼ are converse to each other.

qed

Now we go for the completeness. Our definition of canonical frame for T− is just a
combination of the two canonical frames for K¬ and K∼. Here are the two canonical
relations:

• PRc
¬Q iff ([¬]ϕ ∈ P ⇒ ϕ 6∈ Q)

• PRc
∼Q iff ([∼]ϕ ∈ P ⇒ ϕ 6∈ Q)

According the canonical model theorem in section 2.1, the only thing that we need to
show is that the canonical frame is bidirectional.

Theorem 2.25 If PRc
¬Q, then QRc

∼P and vice versa.

Proof. Let PRc
¬Q and [∼]ϕ ∈ Q. We need to show that ϕ 6∈ P . Suppose that ϕ ∈ P .

Since ϕ `T− [¬][∼]ϕ, [¬][∼]ϕ ∈ P . By the assumption that PRc
¬Q, [∼]ϕ ∈ Q, which

contradicts our assumption that [∼]ϕ ∈ Q.
qed

Theorem 2.26 A `T− B iff A |=F B for all bidirectional compatibility frames F .

This theorem says that the class of bidirectional compatibility frames to Galois con-
nected negations is the same as that of compatibility frames to pre-minimal negation or
as that of star frames to Ockham negation.

Question: Can we enrich our language to include 〈¬〉 and 〈∼〉 in our above enterprize
and achieve a natural frame completeness? Their intended interpretations are as follows:

• x |= 〈¬〉A iff ∃y(xR¬y ∧ y 6|= A)

• x |= 〈∼〉A iff ∃y(xR∼y ∧ y 6|= A)

First we look at possible classical semantics. Just like in Positive Modal Logic,15

A ` [¬][∼]A and A ` [∼][¬]A are not enough to deal with the enriched language with two
additional modalities 〈¬〉 and 〈∼〉. If we want to make the logic frame complete, we have
to add two more dual to the mentioned: 〈¬〉〈∼〉A ` A and 〈∼〉〈¬〉A ` A. If we include
these two formulas in the deductive system, it is easy to show the completeness just as in
Dunn [1995].

So the hope lies in the so-called new semantics where we consider increasing valuation.
But another difficulty appears. The Galois property cannot force the relations R¬ and
R∼ to be converse to each other.

15Dunn [1995] and Celani and Jansana [1997].
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Lemma 2.27 A ` [¬][∼]A corresponds to R¬ ⊆ (R∼· ≤−1)−1; A ` [∼][¬]A corresponds
to R∼ ⊆ (R¬· ≤−1)−1.

If we can strictly condense the frames, then we have R¬ = R−1
∼ since R¬ = R¬· ≤−1

and R∼ = R∼· ≤−1. But it seems that we can not strictly condense the relations on
canonical models.16 Therefore the natural and successful way to include the above two
negative modalities is to add to T−(the first four are subminimal while the last two are
characteristic)

• A ` B ⇒ 〈¬〉B ` 〈¬〉,
• A ` B ⇒ 〈∼〉B ` 〈∼〉A,

• 〈¬〉⊥ ` >,

• 〈∼〉⊥ ` >
• 〈¬〉〈∼〉A ` A and

• 〈∼〉〈¬〉A ` A.

We call this new system T 4
−. It is easy to show either by Dunn’s classical method or

Celani and Jansana’s “new” method the following theorem:

Theorem 2.28 In classical semantics, A `T 4
−

B iff A |=F B for all bidirectional frames
F ; in intuitionistic semantics, A `T 4

−
B iff A |=F B for all bidirectional compatibility

frames F .

2.5 Dunn’s Kite of Negations

Definition 2.29 Let’s call the negation in K− preminimal negation. Other types of
negations can be defined by adding new principles:

• Quasi-Minimal negation: Preminimal negation + (A ` ¬¬A);

• Intuitionistic negation: Quasi-minimal negation + (A ∧ ¬A ` ⊥);

• De Morgan negation: Quasi-minimal negation + (¬¬A ` A);

• Ortho-negation: Intuitionistic negation + De Morgan negation.

¢

We will treat one by one. It is easy to see that neither quasi-minimal nor intuitionistic
negation has a star semantics. As we have remarked, Ks is the weakest logic with a star
semantics (with DLL as background logic) but ¬(A ∧ B) ` ¬A ∨ ¬B does not hold in
either of them.

Theorem 2.30 A ` ¬¬A corresponds to ∀x∀y(xCy → yCx); moreover, it is canonical.

Proof. The first part is obvious. Now we just show Part (2). Assume that PCcQ and
¬ϕ ∈ Q. We need to show that ϕ 6∈ P . Suppose that ϕ ∈ P . Since ϕ ` ¬¬ϕ, ¬¬ϕ ∈ P .
Therefore, ¬ϕ 6∈ Q, which contradicts our assumption that ¬ϕ ∈ Q.

qed

So, for quasi-minimal negation, the perp frame condition is that C is symmetric.

Theorem 2.31 ¬A ∧A ` ⊥ corresponds to ∀x(xCx). And it is canonical.

16It seems that the relations Rs in Celani and Jansana [1997] can not be condensed, which is also true here.
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Proof. We only show Part (2). Assume that ¬ϕ ∈ P . Since ϕ ∧ ¬ϕ ` ⊥, ϕ 6∈ P . That is
to say, PCcP .

qed

So, the perp frame condition for intuitionistic negation is that C is both symmetric
and reflexive.

It is well-known that de-Morgan negation has a very natural star semantics. Let D
denote K−+(A ` ¬¬A)+(¬¬A ` A). Then it is easy to show that ¬(A∧B) `D ¬A∨¬B
and ¬> `D ⊥. By Theorem 2.20, the star semantics is guaranteed.

Theorem 2.32 ¬¬A ` A corresponds to the star-frame condition: ∀w (w∗∗ ≤ w). And
it is canonical.

Proof. The proof of the correspondence part with star is similar to “play with” the
binary perp relation. Now we show the second part. Assume that ϕ ∈ P ∗∗. It follows
that ¬ϕ 6∈ P ∗. Further, we have ¬¬ϕ ∈ P . Since ¬¬ϕ ` ϕ, ϕ ∈ P .

qed

As for the perp frame conditions for de Morgan negations, we cite the results from
Restall [2000]:

Theorem 2.33 Let F be a perp frame. ¬¬A |=F A iff F |= ∀x∃y(xCy ∧ ∀z(yCz →
z ≤ x)). And A `D B iff it is valid on all the perp frames which are symmetric and
additionally satisfy the condition: ∀x∃y(xCy ∧ ∀z(yCz → z ≤ x)).

We can say little more about the perp semantics for ortho-negation because it is a
combination of intuitionistic and de Morgan negations and the defining consequence pairs
are canonical. Also the star semantics for orthonegation is obvious.

Theorem 2.34 • A ∧ ¬A ` ⊥ corresponds to ∀w(w ≤ w∗); ¬¬A ` A corresponds to
∀(w∗∗ ≤ w).

• Both consequence pairs are canonical with respect to star semantics.

• Combining the above two conditions together, we have A `Ko B iff it is valid on all
star frames satisfying that w∗ = w where Ko is K−+ Ortho-negation axioms.

Since we choose the background lattice logic to be distributive, ortho-negation col-
lapses to classical negation. For x |= ¬A iff x∗ 6|= A iff x 6|= A. Now we summarize what
we have achieved for the semantical analysis of Dunn’s kite of negations. Let (?) and (∗)
be the frame conditions that (≤ ◦R◦ ≤−1) ⊆ R and that ∀x∃y(xIy ∧ ∀z(yIz ⇒ z ≤ x)),
respectively.

NEGATION STAR PERP
Pre-minimal No (?)

Quasi-minimal No (?) and R is symmetric
Intuitionistic No (?), R is symmetric and reflexive
De Morgan x = x∗∗ (?), R is symmetric and (∗)

Orthonegation x = x∗ (?), R is symmetric, reflexive and (∗)
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3 Perp and Star in Relevance Logic

In this section, we apply the above propositions about perp and star in DLL to the basic
positive relevance logic B+ and get one way in which relevance logic and modal logic can
have a “happy marriage”.

3.1 BN and Compatibility Meyer-Routley Frames

As you can see from above section, K− and Ks are the weakest DLL′s that can be associ-
ated with perp and star semantics, respectively. In Došen [1986], he obtained the logic N
by adding the impossibility modality to the negation free fragment of propositional intu-
itionistic logic and shown the completeness of N with respect to the class of compatibility
frames. What is more interesting is that the “marriage” between the relation for negation
and the partial relation for implication in N is a “chemical” and harmonious one. Let
H be Heyting’s propositional intuitionisitc logic. Define RN :=≤ ◦ ≤−1. It is easy to
show that the so-defined relation is antitonic in both places, and hence is a compatibility
relation.

Theorem 3.1 `H A iff A is valid on all the above-defined compatibility frames.17

In this section, we will take a similar enterprize in relevance logic. The relevant
language and conventions are the same as in Routley and Meyer [1972] except that we will
not include t in the language L. For transparency,18 we will sometimes denote principal
arrows as ≤. As can be seen easily, ≤ here can be also regarded as ` in DLL. We just
list all the axioms and rules of the basic positive relevance logic B+:

• A ≤ A

• A ∧B ≤ A,A ∧B ≤ B

• (A → B) ∧ (A → C) ≤ A → B ∧ C)

• A ≤ A ∨B, B ≤ A ∨B

• (A → C) ∧ (B → C) ≤ (A ∨B → C)

• A ∧ (B ∨ C) ≤ (A ∧B) ∨ C

• A,A ≤ B ⇒ B

• A,B ⇒ A ∧B

• A ≤ B, C ≤ D ⇒ B → C ≤ A → D

Definition 3.2 A Meyer-Routley frame is a 3-tuple F := 〈W, 0, R〉 where W is a nonempty
set, R a ternary relation,0 is the base world, and, if we define x ≤ y ≡def R0xy, R should
additionally satisfies the following monotonicity conditions:

• x ≤ x

• x′ ≤ x and Rxyz implies Rx′yz;

• y′ ≤ y and Rxyz implies Rxy′z;

• z′ ≥ z and Rxyz implies Rxyz′.

17Dunn [1996].
18The reason is obvious from the semantics below: the semantic consequence is defined in terms of truth

preservation at the base world 0 in frames. Besides, we want to follow the notations from type theory and
lambda calculus, with which relevance logic has a strong connection.
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A Meyer-Routley model M is a 4-tuple M := 〈W,R, 0, v〉 where 〈W,R, 0〉 is a Meyer-
Routley frame and the interpretation v is a function: P → 2W (where P is the set of
propositional letters) satisfies the hereditary condition:

x ∈ v(p) and x ≤ y implies y ∈ v(p) for arbitrary propositional letter p.

Then we can extend the interpretation v to model arbitrary formulas. Here we only
give the semantic clause for →-formulas

x |= A → B iff for all y, z ∈ W,Rxyz, y |= A implies z |= B.

A is verified on v if 0 |= A. A is valid if A is verified on all interpretations.
¢

Theorem 3.3 (Routley-Meyer) `B+ A iff A is valid on all Meyer-Routley frames.

Definition 3.4 A compatibility Meyer-Routley frame 19 is a a 4-tuple 〈W,R, C, 0〉 where
〈W,R, 0〉 is a Meyer-Routley frame and

xCy iff ∃z(Rxyz).

It is easy to check that, if xCy, x′ ≤ x and y′ ≤ y, then Cx′y′.
¢

What is the weakest relevance logic system that has such a semantics? In order to
answer the question, we first extend our language L to L⊥> by adding propositional
constant ⊥ and > and define ¬A ≡def A → ⊥.20 Here we treat ¬ as primitive in the
language L⊥>. Let BN denote the logic system including all the axiom schemes and rules
in B+ in the extended language L>⊥ plus the following new axiom schemes:21

• ¬A ∧ ¬B ≤ ¬(A ∨B);

• A ≤ >;⊥ ≤ A;

• > ≤ ¬⊥;

and one more rule involving negation:

(contraposition) A → B ⇒ ¬B → ¬A.

Note that the first axiom scheme and the contraposition rule are redundant. But,in
order for some comparisons in the last section, we keep them in the axiom scheme system.
In addition to all those semantic clauses in B+, we need two extra ones:

• x 6|= ⊥ for all x

• x |= ¬A iff ∀y(xCy → y 6|= A).

The second one is dispensable here. We can easily see that x |= ¬A iff x |= A →
⊥,which is the reason why we define xCy as ∃z(Rxyz).

19We could also define compatibility Meyer-Routley frames in such a way that R and C are totally indepen-
dent of each other. But such a kind of “marriage” is just “getting together” by name without much significance
although it is legal. What we are really interested is the interaction between R and C so that we can explore
the meaning of star.

20Another type of definition of ¬ through constants has been pursued in Mares [1993] in R. There he used
the constant f .

21Recall that we did the same to DLL.
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Theorem 3.5 (Soundness) Let F be a compatibility Meyer-Routley frame. If `BN
A,then

F |= A.

Since there is a kind of subtlety in Henkin-style proofs of completeness in relevance
logic, we will repeat the fundamental notions that can be found in Dunn [1986].

Definition 3.6 A Π-theory Λ is a non-empty set of formulas satisfying the following two
closure conditions:

• If `Π A → B (which means Π ` A → B) and A ∈ Λ, then B ∈ Λ;

• If A ∈ Λ and B ∈ Λ, then A ∧B ∈ Λ.

It is easy to see that > belongs to every theory. A Π theory is consistent if it does
not include all formulas in the language. A Π consistent theory Λ is prime if, for any
A ∨ B ∈ Λ, A ∈ Λ or B ∈ Λ. It is a regular Π-theory if Π ⊆ Λ. A prime regular
Π-theory is called normal. In canonical models, normal theories will function as base
worlds. A Π theory Λ is contrapositive iff whenever A → B ∈ Λ, ¬B → ¬A ∈ Λ. It
is detached iff whenever A → B, A ∈ Λ, B ∈ Λ. It is affixed iff whenever A → B ∈ Λ,
(B → C) → (A → C) ∈ Λ and (C → A) → (C → B) ∈ Λ. A Π theory Λ is stable iff it is
consistent, affixed, contrapositive and detached.

¢

Now we use the “way-down” method due to Meyer to find a normal BN theory from
any regular stable BN theory. For a regular stable BN theory ∆, we recursively define a
set MT (∆)22 of formulas:

• p ∈ MT (∆) iff p ∈ ∆;

• A ∧B ∈ MT (∆) iff A ∈ MT (∆) and B ∈ MT (∆);

• A ∨B ∈ MT (∆) iff A ∈ MT (∆) or B ∈ MT (∆);

• A → B ∈ MT (∆) iff (i) A → B ∈ ∆ (ii) If A ∈ MT (∆), then B ∈ MT (∆);

• ¬A ∈ MT (∆) iff A 6∈ MT (∆) and ¬A ∈ ∆;

• ⊥ 6∈ MT (∆),> ∈ MT (∆).

Note that the clause for ¬-formulas can be derived from that for →-formulas.

Lemma 3.7 Let ∆ be a regular stable BN theory and MT (∆) defined as above. Then
MT (∆) ⊆ ∆ and MT (∆) is a normal BN theory.

Proof. It is easy to show by induction on the complexity of A that MT (∆) ⊆ ∆. By
definition, MT (∆) is consistent and prime. It remains to show that it is regular, i.e. it
is closed under all the inference rules and includes all the instances of axioms schemes in
BN . Here we just show that it (1) is closed under suffixing rule and (2) includes all the
instances of ¬A ∧ ¬B ≤ ¬(A ∨ B)23. For the other cases, either the proofs have been
covered in Dunn [1986] or can be shown similarly.

1. Let A → B ∈ MT (∆). We need to show that (B → C) → (A → C) ∈ MT (∆).
Since ∆ is stable and A → B ∈ ∆, (B → C) → (A → C) ∈ ∆. Assume that
B → C ∈ MT (∆). We need to show that A → C ∈ MT (∆). First note that
A → C ∈ ∆. It remains to show that C ∈ MT (∆) whenever A ∈ MT (∆). If

22MT means metatruth.
23In fact, this case has been covered in Dunn [1986] if we think it in terms of ⊥: (A → ⊥) ∧ (B → ⊥) ≤

(A∧B) → ⊥. Here we prove that it belongs to MT (∆) both as an illustration and to save energy for the logic
BN in the below section 3.3.
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A ∈ MT (∆), then B ∈ MT (∆) for A → B ∈ MT (∆). Therefore C ∈ MT (∆) for
B → C ∈ MT (∆) by assumption.

2. First note that ¬A ∧ ¬B → ¬(A ∨ B) ∈ ∆. Assume that ¬A ∧ ¬B ∈ MT (∆). It
follows that (1) both ¬A ∈ ∆ and ¬B ∈ ∆; (2) A 6∈ MT (∆) and B 6∈ MT (∆). We
need to show that ¬(A ∨ B) ∈ MT (∆),i.e. ¬(A ∨ B) ∈ ∆ and A ∨ B 6∈ MT (∆).
Obviously, by (2), A ∨ B 6∈ MT (∆). Moreover, ¬A ∧ ¬B ∈ ∆. Since ∆ is regular,
¬(A ∨B) ∈ ∆. So, ¬(A ∨B) ∈ MT (∆).

qed

The following definition is from Slaney [1987].

Definition 3.8 An immediate consequence is any of the following five cases:

1. A ∧B is an immediate consequence of A and B;

2. B is an immediate consequence of A → B and A;

3. ¬B → ¬A is an immediate consequence of A → B;

4. (C → A) → (C → B) is an immediate consequence of A → B;

5. (B → C) → (A → C) is an immediate consequence of A → B;

A derivation of formula A from set X in logic BN is a finite sequence of formulas, the
last of which is A and each of which is either a member of X, a theorem of BN , or an
immediate consequence of earlier ones.

¢

Lemma 3.9 Let 6`BN A. There is a consistent regular stable BN theory ∆A such that
A 6∈ ∆A.

Proof. Without loss of generality, we assume that the cardinality of the language is
countable. First we enumerate all the formulas Bi’s in the language L⊥> such that each
formula appears infinitely many times in the enumeration. Now we define a sequence of
set of formulas recursively:

1. ∆0 := {>};
2. ∆n+1 := ∆n iff there is a derivation of A from ∆n ∪ {Bn+1}; ∆n+1 = ∆n ∪ {Bn+1}

otherwise.

Define ∆ :=
⋃

n ∆n. Note that A 6∈ ∆ for otherwise there is a derivation of A from
some ∆n, which is impossible according to the recursive definition.

qed

Corollary 3.10 If 6`BN
A, then there is a normal theory ΠA such that A 6∈ ΠA.

It is time to show the completeness. First we define the canonical model MΠ, which
is determined by the normal BN theory Π:

• WΠ consists of all prime Π-theories;

• 0Π is the normal theory Π;

• RΠΓ∆Θ iff, for any formulas A and B, if A → B ∈ Γ and A ∈ ∆, then B ∈ Θ. It is
easy to see that we can derive from this clause that CΠΓ∆ iff ¬−1Γ ∩∆ = ∅.

Note that the canonical frame FΠ := 〈WΠ,⊆, RΠ, CΠ〉 is a compatibility Meyer-
Routley frame. The canonical valuation is: Γ |=Π p iff p ∈ Γ. The proof of the Truth
Lemma follows directly from the following well-known propositions in relevance logic:
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Lemma 3.11 If Π is a normal BN theory and A → B 6∈ Π, then there is a prime Π
theory Γ such that A ∈ Γ but B 6∈ Γ.

Lemma 3.12 If Σ, Γ, ∆ are Π theories, RΠΣΓ∆ and A 6∈ ∆, then there are prime Π
theories Γ′ ⊇ Γ and ∆′ ⊇ ∆ such that A 6∈ ∆′ and RΠΣΓ′∆′.

Lemma 3.13 (Existence Lemma) Let Σ be a prime Π theory and A → B 6∈ Σ. Then
there are prime Π theories, Γ′ and ∆′ such that RΠΣΓ′∆′, A ∈ Γ′ but B 6∈ ∆′.

Lemma 3.14 (Truth Lemma) For any formula A and prime Π theory Γ, Γ |=Π A iff
A ∈ Γ.

Theorem 3.15 (Completeness) If A is valid on all compatibility Meyer-Routley frames,
then `BN

A.

Proof. Suppose that 6`BN
A. By Corollary 3.10, there is a normal BN theory Π such

that A 6∈ Π. By appealing to the Truth Lemma, we have that there is a compatibility
Meyer-Routley frame FΠ such that F 6|=Π A.

qed

3.2 BS and Being Star-Crossed

The treatment of star is also similar to that in DLL.

Definition 3.16 A compatibility Meyer-Routley frame F := 〈W,R,C,≤〉 is star crossed
if F additionally satisfies the following condition:

(∗) : ∀x∃y∀z(xCz ↔ z ≤ y).

¢

Now what principles can be added to BN to make the frames appropriate to this logic
be star crossed? The answer is the same as that to DDL: ¬(A ∧ B) → ¬A ∨ ¬B and
¬> → ⊥. Let BS be the logic BN plus these two axiom schemes. Since BS has the full
power of B+, the following variant of Pair Extension Lemma is just immediate.

Lemma 3.17 (Pair Extension Lemma 2) Let Σ be a Π theory, ∆ is closed under dis-
junction and Σ ∩∆ = ∅. Then there is a Σ′ ⊇ Σ such that Σ′ ∩∆ = ∅ and Σ′ is a prime
Π theory.

Theorem 3.18 `BS A iff A is valid on all star-crossed compatibility Meyer-Routley
frames.

Proof. In order to show the left-right direction, we only need to check that all instances
of the above two new axioms are valid on any star crossed compatibility frames, which is
easy.

Now for the more difficulty direction. It is easy to see that ¬(A ∧ B) → ¬A ∨ ¬B ∈
MT (∆) and ¬> → ⊥ ∈ MT (∆) for any regular stable BS theory ∆. Therefore, if 6`BS

A,
then there is a normal BS theory Π such that A 6∈ Π.

By appealing to the above lemma, we have that for any Π prime theory Σ, there is
a Π prime theory Θ such that ΣCΠΘ and, if we define Σ∗ := {A : ¬A 6∈ Σ}, then Σ∗ is
also a prime Π theory and ΣCΠΛ iff Λ ⊆ Σ∗. Here we only show the last part ΣCΠΛ iff
Λ ⊆ Σ∗.
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Assume that ΣCΠΛ. Let A ∈ Λ. By the definition of CΠ, ¬A 6∈ Σ. That is to say,
A ∈ Σ∗. Conversely, assume that Λ ⊆ Σ∗. Let ¬A ∈ Σ. It follows that A 6∈ Σ∗ and hence
A 6∈ Λ. So ΣCΠΛ.

qed

3.3 Conservation

In the above we work with the language L>⊥ which includes two constants > and ⊥. In
the following we will work with the language L without these constants. It is natural to
ask what are the L fragments of BN and BS , respectively? Let BN be the logic B+ in
the language L plus the axiom scheme ¬A∧¬B → ¬(A∨B), the more important axiom
scheme:

(δ): (A → C) ∧ ¬B → (A ∨B) → C

and one extra rule:

A → B ⇒ ¬B → ¬A.

The definition of compatibility Meyer-Routley frames is the same as that in the previ-
ous sections. But the definition of compatibility Meyer-Routley models is different from
that before. First we have to delete all the semantic clauses for formulas involving ⊥. Sec-
ondly, the modelling condition for ¬ formulas can not derived from that for → formulas.
So we have to add a new one for ¬-formulas:

• x |= ¬A iff ∀y(xCy → y 6|= A).

Theorem 3.19 Let F be a compatibility Meyer-Routley frame. If `BN A, then A is valid
on all compatibility Meyer-Routley frames.

Proof. The only necessary thing is to show that, for any compatibility Meyer -Routley
frame F : (δ) is valid on F . Suppose that x |= (A → C) ∧ ¬B. We need to show that
x |= A ∨ B → C. Let Rxyz and y |= A ∨ B. Since x |= ¬B, y 6|= B. Therefore y |= A.
This implies that z |= C for x |= A → C. So x |= A ∨B → C.

qed

Theorem 3.20 6`BN A iff A is not valid on all compatibility Meyer-Routley frames.

Before we show the main theorem, we will prove several lemmas and then the main
theorem will follow directly from these lemmas. We will use a similar method to that in
Section 3.1. Assume that 6`BN A. Then there is a regular stable BN theory ∆ such that
A 6∈ ∆ (note that ∆ is consistent of course). Define MT (∆) in the same way except that
we don’t need the two clauses about > and ⊥.

Lemma 3.21 MT (∆) ⊆ ∆ and MT (∆) is a normal BN theory.

Proof. Here we only check that (A → C) ∧ ¬B → (A ∨ B) → C ∈ MT (∆). First note
that it is indeed in ∆. Assume that (A → C) ∧ ¬B ∈ MT (∆). We need to show that
A∨B → C ∈ MT (∆). Similarly, it is obvious that A∨B → C ∈ ∆. Let A∨B ∈ MT (∆).
Since ¬B ∈ MT (∆), B 6∈ MT (∆). Therefore A ∈ MT (∆). And hence C ∈ MT (∆). So
A ∨ B → C ∈ MT (∆). What this claim says is that if 6`BN A, there is a normal BN
theory Π such that A 6∈ Π.

qed
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We can define the canonical model determined by Π as above except that we need an
independent clause for CΠ: ΓCΠ∆ iff ¬−1Γ ∩∆ = ∅, which can not be derived from the
definition of RΠ. Define: RC

ΠΓ∆Θ ≡def RΠΓ∆Θ and CΠΓ∆. Obviously, the so-defined
canonical frame FΠ := 〈WΠ, RC

Π , CΠ,⊆〉 is a compatibility Meyer-Routley frame. The
modelling conditions are a little different that in Section 3.1:

• Γ |=Π A → B iff ∀∆, Θ, if RC
ΠΓ∆Θ and ∆ |=Π A, then Θ |=Π B (note that here we

have strenghened the accessibility relation from RΠ to RC
Π);

• Γ |=Π ¬A iff ∀∆(CΠΓ∆ → ∆ 6|=Π A).

Lemma 3.22 Let Π be the normal BN theory. If A → B 6∈ Π, then there is a Π prime
theory Γ such that A ∈ Γ but B 6∈ Γ.

Lemma 3.23 Let Σ be a prime Π theory and A → B 6∈ Σ. Then there are two Π theories
Γ and ∆ such that RΠΣΓ∆, A ∈ Γ and B 6∈ ∆.

Proof. The proof here is similar to that of lemma 4 in Priest and Sylvan [1992].
qed

Lemma 3.24 (Squeezing Lemma) If Σ is a prime Π theory, and Γ, ∆ are Π theories,
RΠΣΓ∆ and D 6∈ ∆, then there are prime Π theories Γ′,∆′ such that Γ ⊆ Γ′, ∆ ⊆
∆′, D 6∈ ∆′ and RC

ΠΣΓ′∆′.

Proof. First note that by appealing to Pair Extension Lemma we can get a prime Π
theory ∆′ such that D 6∈ ∆′, RΠΣΓ∆′ and ∆ ⊆ ∆′. The next step is the most crucial in
the whole proof. Let

• Θ1 := {A : ∃B(B 6∈ ∆′ ∧A → B ∈ Σ)};
• Θ2 := {A : ¬A ∈ Σ}.
• Θ := Θ1 ∪Θ2.

Now we show that Θ is closed under disjunction. First it is easy to see that both
Θ1 and Θ2 are closed under disjunction. In order to show the closure of Θ, it suffices
to show that, for any A1 ∈ Θ1 and any A2 ∈ Θ2, A1 ∨ A2 ∈ Θ. Since A1 ∈ Θ1, there
is a B1 such that B1 6∈ ∆′ and A1 → B1 ∈ Σ. Moreover, ¬A2 ∈ Σ. It follows that
¬A2 ∧ (A1 → B1) ∈ Σ. Since (A1 → B1) ∧ ¬A2 → ((A1 ∨ A2) → B1) ∈ BN ⊆ Π,
(A1 ∨A2) → B1 ∈ Σ. By the definition of Θ1, A1 ∨A2 ∈ Θ1 ⊆ Θ.

Next we show that Γ ∩ Θ = ∅. Suppose that there is a A ∈ Γ ∩ Θ. Then there is a
B such that A → B ∈ Σ, B 6∈ ∆′ and A ∈ Γ. Since RΠΣΓ∆′. Then we get that B ∈ ∆′.
This is a contradiction.

By Pair Extension Lemma, we obtain a prime Π theory Γ′ such that Γ ⊆ Γ′, Γ′∩Θ = ∅.
It is easy to check that RC

ΠΣΓ′∆′.
qed

Combining above three, we can get the following Existence Lemma:

Lemma 3.25 (Existence Lemma for →-formulas) Let Σ be a prime Π theory and A →
B 6∈ Σ. Then there are two prime Π theories Γ and ∆ such that RC

ΠΣΓ∆, A ∈ Γ and
B 6∈ ∆.

Lemma 3.26 (Existence Lemma for ¬ formulas) If Σ is a prime Π theory and ¬A 6∈ Σ,
then there is a prime Π theory Γ such that A ∈ Γ and ΣCΠΓ.
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Proof. First note that ¬−1Σ is closed under disjunction. Let [A) denote the Π theory
generated by A. In order to apply Pair Extension Lemma, we only need to show that
¬−1Σ ∩ [A) = ∅. Suppose not. Then there is a formula B such that `Π A → B and
¬B ∈ Σ. It follows that ¬A ∈ Σ, which contradicts our assumption that ¬A 6∈ Σ.

qed

Lemma 3.27 (Truth Lemma) Γ |=Π A iff A ∈ Γ.

Now we return to the proof of the main theorem. Since A 6∈ Π, we have that FΠ, 0Π 6|=Π

A. So A is not valid on all compatibility Meyer-Routley frames.

Corollary 3.28 (Conservation 1) Let A be a formula in the language L. Then `BN A
iff `BN

A. That is to say, BN is conservative over BN with respect to the language L.

Since the binary compatibility relation is defined from the ternary relation R, the
following conservation is immediate:

Corollary 3.29 (Conservation 2)Let L+ be the labguage L without the connective ¬ and
A be a formula in L+. Then `B+ A iff `BN A. In other words, BN is a negative
conservative extension of B+.24

Next we will show another expected conservation result after the above one. Let BS
denote the logic BN plus the axiom scheme:

¬(A ∧B) → ¬A ∨ ¬B.

The proof of the conservation of BS over BS is similar to the above one.

Corollary 3.30 (Conservation 3) Let A be a formula in the language L. Then `BS A
iff `BS

A. That is to say, BS is conservative over BS with respect to the language L.

If we take BM and its frames (called BM frames where R and ∗ are independent of
each other) as primitive25, BS can be taken as an extension of BM . Similarly, we can
show that

Theorem 3.31 `BS A iff A is valid on all the BM frames satisfying:

(?) : ∀xy(y ≤ x∗ ↔ ∃z(Rxyz))

After applying Dunn’s translation between perp and star, we get exactly the condition:
∀xy(xCy ↔ ∃z(Rxyz)) that we have imposed in the definition of compatibility Meyer-
Routley frames.

Now it remains to explain the meaning of the Routley star in our context. In fact,
according to the above analysis, for any point x in the compatibility Meyer-Routley frame,
x∗ is defined by the following first order formula Sx(y) which involves only R and ≤:

∀z(∃w(Rxzw) ↔ z ≤ y).
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