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It is well known that “most” is not first-order definable, and that the proof is
in Barwise and Cooper’s 1981 paper. Actually, Barwise and Cooper present two
theorems that bear on the issue. Their theorem C12 says that, for any pair of
one-place predicates A and B, there is no sentence of classical predicate logic that
is true i↵ “Most A are B” is. (Let’s assume that “Most A are B” means that more
than half of the A’s are B, though the only thing that matters is that “most” is
proportional.) Barwise and Cooper’s C13 states that the foregoing result remains
valid when classical logic is enriched with a unary quantifier Q so defined that
Qx(Ax) is true i↵ more than half of the entities in the domain of quantification
are A’s.

There is a popular legend about the import of these theorems. It originated in
Barwise and Cooper’s own discussion (especially section 1.2, pp. 160-161), soon
became lore, and has meanwhile made it into the textbooks. Here is how your
favourite introduction to logic and semantics puts it:

Quantifiers like many and most are essentially two-place. This can be
proved rigorously, but we will not do so here. Such expressions must, then,
be interpreted as expressions of type hhe,ti,hhe,ti,tii, that is, as two-place
second-order relations. (Gamut 1991: 116)

In the same vein, an eminent philosopher of language teaches his students that:

There are perfectly precise binary quantifiers that cannot be defined in
terms of unary quantifiers. A paradigm example is most, interpreted as
meaning more than half. (MacFarlane 2011: 3)

According to the legend, Barwise and Cooper proved that “most” is not a
unary quantifier. It is plain, however, that this doesn’t follow from Barwise and
Cooper’s results. What Barwise and Cooper showed is that classical predicate
logic lacks the expressive power for capturing the meaning of “most”, even if we
extend that logic with a quantifier that allows us to make statements about most
individuals. The claim that there is no way of representing “most” as a unary
quantifier goes beyond that. To obtain the non-definability results it must be
assumed there is no fixed finite number of things, or else a brute force disjunctive
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enumeration of the relevant cases will do. Only if there is no upper bound on
the finite number of things, such definitions are no longer available; then any
purported first-order definition of “most” fails.

Despite the ingenuity of the proofs, one wonders what bearing their idealiza-
tions might have on our understanding natural language quantification. In what
way is the (in)ability of a logic to define a quantifier relevant? As Barwise and
Cooper themselves remark, it shows first-order logic is not rich enough to cap-
ture all aspects of natural language semantics. From this it just follows we should
consider other logics. But then the discrepancy between the legend and Barwise
and Cooper’s theorems may well disappear. In this note we consider the logic
in Belnap (1970), who proposes a system for studying conditional assertion and
suggests that it can be used to restrict unary quantifiers in a uniform way.

Belnap aims to capture the insight that the a�rmation of a form “If p then
q” is not so much an a�rmation of a conditional as a conditional a�rmation of
the consequent. When a�rming “If p then q”, we only commit ourselves to q on
the condition that p is true. Belnap writes “p/q” for the conditional assertion,
and observes that it can be used to restrict first-order quantifiers in a uniform
way. Belnap’s system for conditional assertion combines assertability conditions
and truth conditions as follows:

The sentence p/q is assertable i↵ p is true. If p/q is assertable, p/q is true
i↵ q is. (Belnap 1970: 3)

To get a feel for the distinctive features of Belnap’s system, we present a simplified
version. For our current purposes it su�ces to combine assertability and truth
conditions (rather than intensionality). Also, rather than using substitution, we
obtain propositions as special cases of formulas and think of asserting an open
formula as asserting the proposition with the free variables x referring to the
values g(x) assigned to it by g. (As usual, g [x/a] is that variable assignment
which assigns x to a and is otherwise identical to g.)

1. If ' is atomic, then k'k
g

is assertable, and k'k
g

= 1 i↵ the usual conditions
apply.

2. k¬'k
g

is assertable i↵ k'k
g

is; if assertable, k¬'k
g

= 1 i↵ k'k
g

= 0.

3. k' ^  k
g

is assertable i↵ k'k
g

or k k
g

is; if assertable, k' ^  k
g

= 1 i↵
k'k

g

= 1 and k k
g

= 1.

4. k' _  k
g

is assertable i↵ k'k
g

or k k
g

is; if assertable, k' _  k
g

= 1 i↵
k'k

g

= 1 or k k
g

= 1.

5. k'/ k
g

is assertable i↵ k'k
g

= 1; if assertable, k'/ k
g

= k k
g

.
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6. k8x'k
g

is assertable i↵ k'k
g[x/a]

is assertable for some a; if assertable, k8x'k
g

= 1 i↵ k'k
g[x/a]

= 1 for all a for which k'k
g[x/a]

is assertable.

7. k9x'k
g

is assertable i↵ k'k
g[x/a]

is assertable for some a; if assertable, k9x'k
g

= 1 i↵ k'k
g[x/a]

= 1 for at least one a for which k'k
g[x/a]

is assertable.

In a way, it is a bit awkward to speak of assertability in the context of an ex-
tensional semantics, and Belnap too felt that a purely semantic approach leaves
out crucial pragmatic aspects of assertability. Our extensional simplification is
even more radical in this regard, and barely justifies speaking of “assertability”.
Perhaps, then, “definedness” would be a better term. However, we will stick to
Belnap’s terminology, if only to stay connected with his work.

Note that assertability conditions may be weaker than expected. In particular,
a conjunctive complex with “^” or “8” is assertable i↵ at least one of its con-
juncts is, and if assertable its assertable parts alone determine whether or not the
complex is true. Also, the distinction between assertability and truth-conditions
only plays a rôle in sentences containing a conditional assertion; otherwise any
sentence is assertable and has its usual truth-conditions.

Having presented his system, Belnap observes that inserting '/ in the imme-
diate scope of a quantifier has the e↵ect of restricting the domain of quantification
to individuals of which ' holds. Thus, if “All crows are black” is symbolised as
8x(Cx/Bx), then stating this sentence has the same e↵ect as stating 8x(Bx) with
the domain of quantification restricted to crows. And, much to Belnap’s own
surprise and delight, the same holds for the existential quantifier:

Having unexpectedly obtained restricted universal quantification by artless
combination, one wonders about restricted existential quantification. [.. .]
After puzzling for a while, one eventually remembers how hard it is to teach
freshmen not to render “Some crows are black” by “9x(if Cx then Bx)”.
Then, thinking of these foolish freshmen, feeling foolish oneself, and hoping
no one is looking, one finally writes down 9x(Cx/Bx) as a possible reading
of “Some crows are black.” And Aristotle be Russell if it doesn’t turn out
that this amounts exactly to that reading of the Aristotelian I-form which
makes “Some crows are black” amount to “Consider the crows: some of
them are black.” (Belnap 1970: 7-8)

This elegant uniformity makes one wonder whether Belnap’s idea of domain-
restriction would work as well for non-classical quantifiers. We believe it does.
Somewhat informally, “most” could be represented as follows:

8. kMx'k
g

is assertable i↵ k'k
g[x/a]

= 1 is for some a; if assertable, kMx'k
g

=
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1 i↵ k'k
g[x/a]

= 1 for more than half of the individuals a for which k'k
g[x/a]

is assertable.

Thus, “Most swans are white” is rendered as “Mx(Sx/Wx)”, which is true i↵more
than half of the swans are white. Observe that in this setting “most” is construed
as a unary quantifier, which refutes the popular opinion about the binary essence
of “most” and kindred expressions.

Before we continue to give the observation in its most general form and demon-
strate its correctness, let us first check some examples to see how Belnap’s analysis
e↵ects domain restriction:

9. All crows are black:

Assume there are crows. Then “8x(Cx/Bx)” is assertable, and it is true i↵
for all a for which kCx/Bxk

g[x/a]

is assertable, kCx/Bxk
g[x/a]

= 1; i↵ for all a
for which kCxk

g[x/a]

= 1, kBxk
g[x/a]

=1; i↵ k8x(Cx,Bx)k
g

= 1.

10. Some crows are black:

Assume there are crows. Then “9x(Cx/Bx)” is assertable, and it is true i↵
for some a with kCx/Bxk

g[x/a]

assertable, kCx/Bxk
g[x/a]

= 1; i↵ for some a
for which kCxk

g[x/a]

=1, kBxk
g[x/a]

= 1; i↵ k9x(Cx,Bx)k
g

= 1.

11. Most crows are black:

Assume there are crows. Then, “Mx(Cx/Bx)” is assertable, and it is true i↵
the a for which kCx/Bxk

g[x/a]

is assertable and kCx/Bxk
g[x/a]

= 1 outnumber
the a0 for which kCx/Bxk

g[x/a

0
]

is assertable and kCx/Bxk
g[x/a

0
]

= 0; i↵ there
are more a for which kCx ^ Bxk

g[x/a]

= 1 than a0 for which kCx ^ ¬Bxk
g[x/a

0
]

= 1; i↵ kMx(Cx,Bx)k
g

= 1.

To generalise Belnap’s observation, we refer to Mostowski (1957), who defines
a quantifier as a functor that assigns to each domain E a logical Q

E

✓ P(E).
(A quantifier is logical i↵, for all X and Y: if X 2 Q and |X| = |Y|, then Y 2

Q.) To begin with, we need the appropriate notion of a definable set, which acts
as domain and argument of the quantifier. Sets (properties) are not assertable,
rather they are assertable parts:

12. k�x.'kE
g

is an assertable part i↵ k'k
g[x/a]

= 1 for some a 2 E; if an assertable
part, k�x.'kE

g

= {a 2 E | k'kE
g[x/a]

is assertable and k'kE
g[x/a]

= 1}.

Note the domain E is made explicit. A first attempt at defining the quantifier
case is:

13. kQx'kE
g

is assertable i↵ k'kE
g[x/a]

= 1 is for some a 2 E; if assertable, kQx'kE
g
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= 1 i↵ k�x.'kE
g

2 Q
E

.

However, this definition does not yet yield the truth-conditions we are after. To see
this, consider k8x(Cx/Bx)kE

g

, and assume there are crows. Then, k8x(Cx/Bx)kE
g

= 1 i↵ k�x.Cx/BxkE
g

2 Q
E

. Writing C for k�x.CxkE
g

and B for k�x.BxkE
g

, we
have: k8x(Cx/Bx)kE

g

= 1 i↵ C \ B = E. That is, everything is a black crow. But
of course, “All crows are black” should allow for non-black non-crows. The point
is: in finding the most general formulation the appropriate domain restriction
has not yet been included. According to Belnap, we are after a formalization
of: ‘Consider the crows, they are all black’. To this end, we suggest treating
kQx('/ )kE

g

as a special case in which conditional assertion induces a kind of
“domain dynamics”:

14. kQx('/ )kE
g

is assertable i↵ k'kE
g[x/a]

= 1 is for some a 2 E; if assertable,

kQx('/ )kE
g

= 1 i↵ k�x.'/ kE
g

2 Qk�x.'kEg .

Assuming there are crows, we now have (in shorthand):

15. All crows are black:

8

E

(C/B) i↵ 8

C

(C \ B) i↵ C \ B = C i↵ C ✓ B

16. Some crows are black:

9

E

(C/B) i↵ 9

C

(C \ B) i↵ C \ B 6= 0

17. Most crows are black:

M
E

(C/B) i↵ M
C

(C \ B) i↵ |C \ B| > |C� (C \ B)| i↵ |C \ B| > |C� B|

This is all as it should be. But it does seem that in its most general form Belnap’s
observation comes at a prize: The side-e↵ects of conditional assertion depend on
the context in which it occurs, and so is not compositional. In other words, if
compositionality is required, conditional assertion does not yield the intended
result; domain restriction has to be enforced separately. Still, it remains true
that to specify the truth-conditions of natural language quantification, domain
restricted unary quantification combined with conditional assertion su�ces. There
is nothing “essentially two-place” about “most”.

The modified Belnap observation dates back to Westerst̊ahl (1985), who anal-
ysed domain restriction in terms of two well known quantifier universals (see also:
Westerst̊ahl 1989, theorem 3.2.3, or Peters and Westerst̊ahl 2006, §4.5). In natu-
ral language two-place monadic quantification is a very common form, and it has
been argued to satisfy both ext and cons:

ext: Q
E

(A,B) i↵ Q0
E

(A,B), for all E,E0
◆ A,B.

���



Unary quantification redux Bart Geurts & Jaap van der Does

cons: Q
E

(A,B) i↵ Q
E

0(A,A \ B), for all E ◆ A,B.

Westerst̊ahl observes that every unary quantifier Q can be relativised to a predi-
cate A thus:

Qr

E

(A,B) i↵ Q
A

(A \ B)

Clearly, Qr satisfies ext and cons. But also conversely, a two-place quantifier Q0

gives rise to a unary quantifier:

(Q0)u
E

(A) i↵ Q0
E

(E,B)

It is easy to see that if Q0 satisfies ext and cons: ((Q0)u)r
E

= Q0
E

. In this sense,
natural language two-place monadic quantifiers can always be reduced to monadic
quantification; i.e. Belnap’s suggestion. From a logical point of view Westerst̊ahl’s
observation may look shallow compared to Barwise and Cooper’s expressibility
results. But as far as natural language is concerned, it is more to the point and
deserves a more prominent place in the textbooks.
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