Implicit Probabilities in Update Semantics

Henk Zeevat

Update semantics is both the first ([Karttunen, 1976]) and the final proposal in discourse se-
mantics/dynamic semantics. Update semantics consists in a definition of information states and
an update function or relation specified recursively for some update language. All proposals
in dynamic semantics and discourse semantics have an interpretation for some instantiation
of these two parameters. A proposal in dynamic semantics that cannot be interpreted in an
update semantics should presumably be given up.

Update semantics moreover has a naturalistic interpretation as a formal treatment of what
goes on when a human interpreter interprets and accepts a natural language utterance or
some other perceptual input. It is a good basis for a family of consequence relations, the
simplest one being that an update of the consequence on all information state updated with the
premises is a fix point. Update semantics is preluded by [Karttunen, 1976] and [Heim, 1983],
but [Veltman, 1996] first turned it into proper logical proposal.

Unfortunately, the naturalistic interpretation of update semantics is flawed by the absence of
probabilistic reasoning in most versions of update semantics'!. This means in particular that
the process of interpretation for natural language utterances and perhaps the most important
source of information for humans: visual signals cannot be integrated in the model. While
non-stochastic visual interpretation does not exist, the underdetermination of meaning by form
also known as the massive ambiguity of NL utterances, the main motivation behind modern
computational linguistics, has not received sufficient theoretical attention in natural language
semantics and pragmatics. It would seem to follow from the underdetermination of meaning by
form that the problem of meaning selection is at least as important as the problem of meaning
combination which is standardly taken to be the central problem of the field. It should —as in
vision— be one of the two central problems.

This note is an attempt to show that these probabilities are already implicit in eliminative
update semantics as such.? One merely needs to make some assumptions about sampling and
correlations and one has the basic probabilistic notions. This paper develops the probabilities
in the most basic way to establish that eliminative update semantics comes with a natural
assignment of subjective probabilities to the sentences that are not yet true or false.

[Haas-Spohn, 1995] defines an epistemic alternative as one that the subject cannot rule out as
being the actual world on the basis of the information that the subject has at her disposition
about the actual world, given unlimited opportunities of investigating the alternative. This

LAn exception is [Kooi, 2003] or [Van Benthem et al., 2009] that however follow a quite different route.

2The construction below is my reaction to the doubts of some colleagues that the scheme for Bayesian
pragmatics briefly discussed towards the end of this note can be formalised. In fact —as I discovered very
recently— [Bacchus et al., 1996] already defends a similar position about “subjective” probabilities underpinned
by a similar formalisation and aiming for a similar goal: the reduction of default logic to probabilities.
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criterion can be generalised to probabilities. The subject believes on the basis of her experiences
that a correlation in the actual world can be estimated as having a certain strength. Sampling in
the given alternative provides an imperfect check on whether the correlation in the alternative
is as strong as in the actual world, as far as the subject knows. The check can then be used to
adapt the probability that the alternative is the actual world. The alternative can still be the
actual world but with a certain probability that goes down if the the strengths of its correlations
do not match the observations of the actual world within the experience of the subject. If the
updates conform better with the correlations in the world, its probability will go up again.

This means that all sentences that are not already true or false in the information state receive
a probability by summing up the probability of all the worlds in which they are true. In the
finite case —the case that will be worked out below— that gives ps(¢) = Syefjpjnifo)P(w). -

Can this be formalised? The answer is that one needs assumptions about sampling and corre-
lations and needs to deal with the relation of probability and the set of elements of the update
semantics. The simplest version results by assuming (1) that all worlds in information states
have a domain that has a cardinality smaller than some given n, (2) that sampling for a cor-
relation is a question of counting all relevant observations for the correlation in the world and
(3) that the subject assumes a finite set of correlations.

Assumption (3) can be seen as one kind of beliefs of the subject. She would believe that certain
event types are causally connected, i.e. that a correlation exists, while other event types are
not correlated. [Bacchus, 1990] formalises correlations as [¢|¥], ..., and under his semantics
it is guaranteed that such correlations have a value ¢ as soon as 31, ..., x,%. This is unnatural
for arbitrary formulas, but the semantics is a good approximation if the correlations are beliefs
of the subject. The belief of the subject that a correlation exists is the belief that ¢ can be
approximated with arbitrary precision by taking large enough samples of instances of 1. The
belief in a correlation therefore goes together with assuming that there are enough instances for
the correlation to be measured appropriately so that belief alternatives in an update semantics
will have enough instances for a correlation the subject believes in. (3) can also be seen as a
restatement of the important point of [Pearl, 2000] that people have reliable judgments about
the dependence and independence of stochastic variables.

(2) gives Bacchus’ approach to probabilistic first order logic using finite worlds in which correla-
tions [A|X](1),,...,(1), are assigned the value ‘{‘?2;1w;:;“5é§f;[fleffﬁ‘ in worlds w. (1) would
seem to be the most problematic assumption. It is however defensible since one is modelling
finite creatures making generalisations about a finite universe based on finite set of observa-
tions and not mathematical reasoning or mathematical physics. One can still add mathematics
by constructing the worlds as the combination of an invariant infinite mathematical structure
and a finite model with certain axioms about their connections, as long as the correlations one
assumes are based on the finite model alone. If this is not sufficiently convincing yet, (1) can
be given up, switching to probability density functions and infinite information states made
up from infinite worlds. In that case, one can no longer rely on Bacchus’ simple definition of
sampling and needs to come up with a more contentful notion of sampling.

Think of an information state o as a sequence of updates 0 =< 1, ..., ¢, > with the ¢; taken
from a first order language L. Let the empty information state 1 = W, the set of all models
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for some finite L with domains of cardinality k& < n, with n chosen sufficiently high. W is
finite modulo isomorphism. 1[o] is the set of alternative worlds that survive the sequence of
updates. Let p be an assignment of probabilities to W, assigning values p(w) € [0, 1] and such
that ¥,cw = 1. p will automatically assign a probability to sentences of the language L by
setting p(p) = Lypep(w) Assume further that K is a finite set of correlations [A|X]z, . .,
the correlations the subject believes in.

The probability assignments needed are assignments p, which have been updated with o by
means of Bayes’ rule (1).

(1) polw) = plw|o) = epiale)

p(o) can be defined as the sum of the p(w) for w = o, i.e. p(0) = Lyerop(w).
The central step is determining p(o|w).

Crucially, some consequences of ¢ will be observations that are relevant to correlations in K.
Let ¢ be a consequence of o. If there is a correlation [A|X];, .. 4, € K such that o = ¢ « 64
or o = —p; <> A where 6 is a unifier for x1,...,z, and o | X, ¢ is a relevant observation.

The strongest condition X is needed that would predict ¢ and is a consequence of o. For this,
we look at all correlations [A|X],, .. », € K such that o = ¢ « 0(=)A for which o = 6X.
We now form the new correlation [A|X; ... Xy]z, . 2, , normalising to the positive case. One
can now determine the value v of the new correlation in w? by counting {<z1,...;,zm > wkE
XiAo  AXpANAZ1, . xm]and {< 21,0 @ >t w E Xa A LA X2, -, 2]} and taking
the quotient.

p(olw) =11, is relevantP(¢|w). We can now compute the result of Bayes’ rule for the probability
of w on the basis of ¢ and the prior.

Let Py be the set of assignments to W. Let @ = {p(w|o) : p € P,}. Let ¢,(w) = %
and let P, ={¢s : (A o) =1A¢q € Q}. P, contains the rational assignments for o that assign

1 to the elements of ¢ and that have learnt from the observations contained in o.

The construction can be refined in many ways. It is possible to shift to probability density
functions to accommodate an infinite number of worlds, basing the needed o-algebra on the
values of the correlations.* It is possible to allow infinite models by introducing a notion of
finite sampling as the basis for values to regularities®. It is sensible to also allow correlations
whose value changes with time in a continuous way. It is possible —and necessary for many

3There is at least one instance of the conjunction on the right hand side. A correct worry is that there may be
too little instances for the integrated correlation in w to be interesting in helping to determine the probability
that w is the actual world. A way out is to stipulate that there should be a minimum number of instances
of the right hand side for a correlation to have a value with respect to w. If this is enforced, certain relevant
observations do not change the prior probability and they should not.

4This produces the rather puzzling notion of being epistemically possible with zero probability.

5This is preferable even for the finite case, but there many options for filling in the notion of a finite sample

321



Implicit Probabilities Henk Zeevat

applications— to develop accounts of how to come to believe in new regularities and how to lose
faith in old ones: it is not rational to keep variables independent if one observes a correlation,
it is not rational to maintain dependencies if they do not show up in the observations.

There are also many ways to come to a combination of o with a set of probabilities. Information
states o determine a combination (1[o], P,) as defined above and can be described as remem-
bering all the incoming information that is used to refine the probability assignments. But one
could also first refine the assignments, forgetting the information on which the refinement is
based. In that case, one obtains information states (1[o], Pros). One can even assume that
there are innate constraints on the assignments before any learning starts.

The construction allows the comparison of sentences under rational probability assignments.
This can be written as ¢ < 1. There are two obvious interpretations for this comparison. For
all rational p, p(p) < p(¥)) and the even stricter: for all rational p and ¢, p(p) < q(¥)).

The notion can be added to the first order update language L that we considered so far. If ¢
and 1 are formulas of L, ¢ < ¢ is a formula of L(<). For L-formulas, one already has o |= ¢ iff
1[o][¢] = 1]o]. Proper L(<)-formulas do not define updates, but are interpreted in an extension
of o0 = ¢ to L(<) defined by P,, as above. This seems right. One can come to believe that
the probabilities are different from what one thinks by finding out more about what should
have been the case if one’s experience were more like a proper sample of a correlation, e.g. by
more observations or proper statistical evidence, but not by learning facts about inequalities of
stochastic parameters, except where these can be interpreted as statements about evidence.

My preference is for the second stricter notion of ¢ < 1, since the first still allows a uniform
small advantage to be decisive. Suppose I see somebody and cannot quite decide whether it is
Mary or Sue, but have a small preference for it being Mary. Then it does not seem rational
to decide it is Mary, since there is still a serious possibility that it is Sue. Under the second
interpretation, it will be rational to decide for Mary: the worst probability for Mary is better
than the best one for Sue.

The comparison relation is a properly dynamic relation, because of ongoing learning. But it is
also non-monotonic for classical reasons. Suppose o |= ¢ < 1. It is still quite possible that one
discovers that 1) is not the case and that ¢ is true. Then o[-y A ¢] = ¢ < . The contribution
to the probability of ¢ and v from the worlds where ¢ was false and 1 true has been eliminated.

The construction can be applied in semantics, in the formalisation of Bayesian interpretation,
in intention recognition, in belief revision and in defaults.

In semantics, it gives new operators ¢ > 1 and —(¢p < T) and ¢ > - that can perhaps be
used in the analysis of epistemic modalities like may, might and must and for operators like
likely and unlikely.5 We will not explore this connection further at this point.

Bayesian interpretation as such can be formalised directly in probability theory if the aim is

SThe observation that there are connections between probability and modality and that gradability of modal
judgments is a good argument for exploring these connections is due to Dan Lassiter (talk, Paris, January 2013).
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limited to stochastic interpretation. [Zeevat, 2014] makes the case that linguistics provides a
largely symbolically definable and largely deterministic causal model of language production
that can be used in conjunction with prior probability in Bayesian natural language interpre-
tation. What is described above is a logical reconstruction of such prior probabilities. An
axiomatisation of the causal model as a relation produce(”¢”, s)” that can be added to o inter-
prets a stronger version of Bayesian interpretation as in (2).

(2) o Einterpret(s,”¢”) iff
o = ¢ Aproduce(””,s) > ¢ A produce(’¢”, s) for all ¢ such that
ocFp o

The formulation using the stricter definition of ¢ < % is a formal version of Gricean intention
recognition. In a recognition of e.g. Bill approaching in the corridor there is not just the acti-
vation of Bill by the signal and the probability that Bill caused the signal, but the realisation
that competing activated objects that by the fact of their activation have a certain probability
cannot have enough probability to win from the winner. And that is precisely what the in-
equality says. Using the weaker interpretation of the inequality, one obtains classical Bayesian
interpretation with uncertainty. The strong version can be seen as giving a probabilistic logic
of interpretation (comparable to e.g. abductive reasoning as in [Hobbs et al., 1990]) in which
one can conduct pragmatics and semantics using linguistic knowledge, knowledge about the
speaker, the context and the world and stochastic knowledge, including stochastic relations
emerging from linguistics. Pursuing this further is however not the subject of this note.

A third application is belief revision and counterfactuals. The problem is of the same kind as
Bayesian interpretation: an optimisation problem. If o = —¢ and the subject learns ¢ what
should the subject do? She should find the substate 7 of ¢ that is consistent with ¢, maximal
(there are no larger substates consistent with ¢) and has the highest prior probability. With
strong inequalities, this puts a presupposition on the use of a counterfactual: that the best re-
vision can be recognised. There will be cases in which belief revision is not determined, because
none of the possibilities gain the upperhand in prior probability. The weak interpretation will
nearly always give a result, but would not make coordination on the same revision probable in
interpreting counterfactuals.

Finally, the strong version of ¢ > 1 can be used as a semantics for defaults.

Under the current view, a default statement like “quakers are pacifists” would come out as “it
is more likely beyond uncertainty that a is a quaker and a pacifist than that a is a quaker and
not a pacifist”. A set of such statements gives a partial order over propositions.

A reconstruction of default logic should be possible®. What is not possible however is a recon-
struction of an update logic of defaults, since that would require updates with ¢ > ¢ and those
are not determinate. We could at most constrain Py to meet certain inequalities before refining
by o.

"Between codes for the formula expressing the intention “p” and strings of words s. The classical formalisation

is easier on infinite models. One could however interpret production rules as causal correlations with a high
probability instead of using implications.
8See also the treatment of default reasoning in [Bacchus et al., 1996]
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It seems posisble to reconstruct a default logic within the current set-up as in (3). Further work
is however necessary.

(3)  Hard updates are added to 1.
Inequalities are treated as tests.
presumably ¢ is defined as ¢ > —p.
©1...9n,ineq ... ineq, = presumably ¢
iff
Vo(ole1]. .. [en] FEineq ... ineqn = olpi]...[en] E Y > —0)

The main thesis of this note is that there is a sense in which subjective probabilities are already
present in information states for eliminative update semantics. Computing them in order to
formalise probabilistic reasoning has a serious potential in semantics, the theory of interpreta-
tion and in default reasoning. Such information states have uncertain prior probabilities and
can do Bayesian reasoning uniformly to deal with a number of at first sight quite different
applications. The second thesis is that the strong criterion for choosing between alternatives is
important in all of these applications. It is the difference between gambling on the most likely
candidate and rationally discarding candidates that could not win in the light of the currently
available evidence.
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