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“Hyperintensional contexts are simply contexts which do not respect logical
equivalence.” (Cresswell 1975; cf. Carnap 1947)

Examples: contexts of ascriptions of

belief, aprioricity, desire, aboutness, causality, explanation, grounding,. . .

“The twenty-first century is seeing a hyperintensional revolution.” (Nolan 2014)
↪→ what is the logic and semantics for hyperintensional metaphysics!?

Worries:

Extension ↪→ Intension ↪→ . . .︸︷︷︸
natural stopping point?

↪→ (Interpreted) Syntax?

Notions, such as aboutness and grounding, seem unclear and ambiguous.
And some of the formal accounts, where existing at all, look a bit baroque.

Don’t we have hyperintensional semantics? (Situation semantics,. . .)
Metaphysics merely needs to catch up with philosophy of language?



Is the future of philosophical logic hyperintensional?
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The following will be very elementary, preliminary, and programmatic.



The Formal Structure of Hyperintensions

If [subject matters] are to be introduced, the conservative choice
would be Lewisian subject matters. . . equivalence relations on, or
partitions of, logical space. I will argue for going one step further, to
similarity relations on, or “divisions” of, logical space. . . a division’s
cells can overlap. . . A division’s cells are incomparable, so allowance
has not been made for “nested” truthmakers (Yablo 2014)

The grounding operator. . . is variably polyadic; although it must
take exactly one argument to its ‘right’, it may take any number of
arguments to its ‘left’. . . all of the grounds must be relevant to
conclusion (Fine 2012)



(Schaffer 2012: “grounding is something like metaphysical causation”.)

Mackie (1980):

62 CAUSAL REGULARITIES

occur without there having occurred, just before in the right
region, any assemblage of conditions which is always followed
by P. But at present I am considering cases where this is not
so. That is, we may have a pair of (roughly) converse universal
propositions, 'All (ABC or DGH or JKL) are followed by P*
and 'All P are preceded by (ABC or DGH or JKL}\

In discussing such forms of regularity, it will be convenient
to use the terms 'necessary condition' and 'sufficient condition'
in senses different from, though related to, the senses in which
these phrases were used in Chapter 2, There, a necessary condi-
tion, for example, was related to a counterfactual conditional;
iX was a necessary condition for T' meant 'If X had not
occurred, Y would not', where 'X' and 'Y' stood for particular
events. But we are now using letters to stand for types of event
or situation, and 'X is a necessary condition for T' will mean
that whenever an event of type T occurs, an event of type X
also occurs, and 'X is a sufficient condition for T' will mean
that whenever an event of type X occurs, so does an event of
type T.

Then in the case described above the complex formula '(ABC
or DGH or JJfCL)' represents a condition which is both necessary
and sufficient for P: each conjunction, such as *ABC\ represents
a condition which is sufficient but not necessary for P. Besides,
ABC is a minimal sufficient condition: none of its conjuncts is
redundant: no part of it, such as AB, is itself sufficient for P.
But each single factor, such as A} is neither a necessary nor a
sufficient condition for P. Yet it is clearly related to P in an
important way: it is an insufficient but non-redundant part of an
unnecessary but sufficient condition: it will be convenient to call
this (using the first letters of the italicized words) an mus con-
dition.5

Mill includes in his assemblages of conditions states, that is,
standing conditions, as well as what are strictly speaking events.
He also stresses the importance of factors which we should
naturally regard as negative, for example the absence of a
sentry from his post. It may be the consumption of a certain
poison conjoined with the non-consumption of the appropriate

s This terrrij 'inus condition', was introduced in 'Causes arid Conditions', having
been suggested by D. C, Stove; the term 'minimal sufficient condition' was used
by K. Marc-Wogau in 'On Historical Explanation', Theoria, xxviii (1963).

A, B, C,. . . above can also be negative: e.g., C is the absence of C.

E.g.: “It may be the consumption of a certain poison conjoined with the non-
consumption of the appropriate antidote which is invariably followed by death.”



This motivates the following formal structure of hyperintensions:

Let S be a finite, non-empty set of elementary states of affairs, such that
for every p in S, there is a unique “negation” p in S (and p = p).

Definition
X is a hyperintension (over S) iff
X ⊆℘(S)\{∅}, such that there are no X ,Y in X : X ⊂ Y .

An X ∈ X is a (potential) ground of X / reason for X / way of X being true.

If X is a hyperintension, its set min(X ) of minimal elements equals X .
Minimality is supposed to capture relevance / non-redundancy of grounds.

Let s ⊆ S: s |= X iff there is a ground X ∈ X , such that s ⊇ X .

Mathematicians are studying hyperintensions under different names
(for arbitrary S without ·): “Sperner families” (combinatorics), “clutters”
(optimization), “simple hypergraphs” (hypergraph theory),. . .

Let H(S) be the set of all hyperintensions over S.



Examples of hyperintensions:

{{a,b,c},{d ,e, f},{j,k , l}}
{{a,b,c},{a,a,b}}
{{p}}
{{p,q},{p,q}}

From hyperintensions one can determine intensions and (relative to the actual
world) extensions.

E.g., {{p}} , {{p,q},{p,q}} (cf. Barwise and Perry 1983),
but they determine the same classical intension and extension:

for every maximally consistent s ⊆ S,

s |= {{p}} iff s |= {{p,q},{p,q}},

and with respect to the actual world @⊆ S:

@ |= {{p}} iff @ |= {{p,q},{p,q}}.



Basic Logical Operations on Hyperintensions

Which hyperintension is to count as the negation of, e.g., {{p,q},{p,q}}?
The answer is underdetermined by classical intensions/extensions.

But here is a natural proposal:

Definition

For all X ⊆ S, let X be the set {p |p ∈ X}.

For every hyperintension X , we define

¬X = min ({Y ⊆ S | ∀X ∈ X ,Y ∩X , ∅})

E.g., ¬{{p,q},{p,q}}= {{p},{q,q}}

So each ground in ¬X contradicts, or rules out, every ground in X ,
and the grounds of ¬X are minimal having this property.



Apart from ·, our negations are well known to mathematicians, in very different
contexts, as ‘blockers’ or ‘transversal hypergraphs’:

E.g., if X is the set of arc-sets of paths from node a to b in a graph,
then ¬X is the set of minimal cuts that separate b from a (suppressing ·).

Theorem
For all hyperintensions X (on S):

1 ¬¬X = X .

2 For all s ⊆ S: s |= ¬X iff S \ s 6|= X .

(And this second property determines negation uniquely.)

The proof is easy but not completely trivial.

(Note that 2 above relates to Routley and Routley’s 1972 star operator for ¬.)



Next we turn to the conjunction and disjunction of hyperintensions.

The obvious proposal is (think of truthmaker semantics!):

Definition
For all hyperintensions X ,Y (on S), we define

X ∧Y = min ({X ∪Y |X ∈ X ,Y ∈ Y }),
X ∨Y = min (X ∪Y ).

Theorem
For all hyperintensions X ,Y (on S):

¬(X ∧Y ) = ¬X ∨¬Y , ¬(X ∨Y ) = ¬X ∧¬Y .

Indeed, with X ≤ Y iff for every X ∈ X there is a Y ∈ Y , such that X ⊇ Y
[iff for all s ⊆ S, if s |= X then s |= Y ]

H(S) becomes the free De Morgan algebra with generators {{p}} (p ∈ S).



Remark: What if we simply eliminate inconsistent grounds whenever the occur?

Let X = {{p,q},{p, r},{q, r}}, Y = {{p}}.

¬X = {{p, r},{p,q},{q, r}}, ¬Y = {{p}}.

X ∧Y = {{p,q},{p,p, r}} Consistent7−→ {{p,q}}.

¬(X ∧Y ) = {{p},{q}} ,

¬X ∨¬Y = {{p},{p,q},{q, r}}.

Moral: In order to maintain both the {{. . .},{. . .}, . . .} format and our standard
logical laws, one needs the information that is encoded in inconsistent grounds!



Example I: Relevance, Parts, Grounds

Let L be the language of propositional logic with finitely many propositional
variables (from a given non-empty set S) and with ¬,∧,∨.

Definition
A hyperintensional valuation on L is a function V : L → H(S), such that

V (¬α) = ¬V (α), V (α∧β) = V (α)∧V (β), V (α∨β) = V (α)∨V (β).

Question: How do we determine the atomic case?

Here is one option (in line with truthmaker semantics and situation semantics):

Atomic case: V (p) = {{p}}.

If we then finally define

α1, . . . ,αn |= β iff for all V : V (α1∧ . . .∧αn)≤ V (β),

we get precisely FDE or tautological entailment (a fragment of relevance logic).



In a sense, this is but a different presentation of van Fraassen’s (1969)
truthmaker semantics for FDE (see also Kit Fine’s recent work on this):

While the grounds in our hyperintensions are minimal, van Fraassen takes
certain supersets of our hyperintensions to be the sets of truthmakers.

Advantages of the present approach: there is no need for “false-making”.

Yablo (2014) contrasts “recursive” with “reductive” (“non-excessive”)
truthmakers: our approach shows that there is some kind of minimality
that is built already into recursive truthmaking.

There are further natural relations to be studied:

– cf. Yablo (2014) on “inclusive entailment”:

α |=∗ β iff for all V : for every X ∈ V (α) there is a Y ∈ V (β), such that
X ⊇ Y , and for every Y ∈ V (β) there is an X ∈ V (α), such that X ⊇ Y .

– Close to Fine (2012) (here ‘V (p) = {{p}}’ should not be assumed):

α1, . . . ,αn (potentially) ground β (in V ) iff V (α1∧ . . .∧αn)⊂ V (β).



Example II: Fuzziness

Theorem
Let V be a hyperintensional valuation on L .

Let st : S→ [0,1] measure the “strength” f (p) of p, such that
st(p) = 1− st(p).

Let St : H(S)→ [0,1] measure the “strength” of grounds for arbitrary
hyperintensions, with

St(H ) = maxX∈H minp∈X st(p)

(call this the ‘Weakest Link Principle’).

Then St ◦V is a fuzzy valuation on L by which ¬ corresponds to 1− x,
∧ to min, and ∨ to max. In particular, St(V (¬α)) = 1−St(V (α)).

The proof relies on Edmonds and Fulkerson’ (1970) Bottleneck Theorem.



Example III: Modalities

I will only give an example here:

V (�(p∨q),w) =

{{〈w ′1,p〉,〈w ′2,p〉},
{〈w ′1,p〉,〈w ′2,q〉},
{〈w ′1,q〉,〈w ′2,p〉},
{〈w ′1,q〉,〈w ′2,q〉}}

w |=M �(p∨q)
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!

V (p∨q,w ′1) =

{{〈w ′1,p〉},{〈w ′1,q〉}}

F(w ′1) = {p,q}

w ′1 |= p∨q

V (p∨q,w ′2) =

{{〈w ′2,p〉},{〈w ′2,q〉}}

F(w ′2) = {p,q}

w ′2 |= p∨q

Intensionally, such modal operators correspond to those of normal modal logic.

The underlying intensional logic for ¬,∧,∨ is classical.



But there are alternative options—here is another example of what one can do:

V (p∨q,w) =

{{〈w ,p〉},{〈w ,q〉}}

V (^(p∨q),w) =

{{〈w ′1,p〉,〈w ′1,q〉},
{〈w ′1,p〉,〈w ′2,q〉},
{〈w ′1,q〉,〈w ′2,p〉},
{〈w ′2,p〉,〈w ′2,q〉}}

w |=M ^(p∨q)

!
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F(w ′1) = {p,q}

F(w ′2) = {p,q}

With such a semantics, ^(p∨q)→ ^p∧^q becomes logically true.

You may take the spaghetti or the Wiener Schnitzel |=
You may take the spaghetti and you may take the Wiener Schnitzel

(Free Choice Permission; cf. Kamp 1973)



Conclusions

There is a natural set-theoretic format for hyperintensions:
hyperintensions are sets of minimal grounds. This allows also for natural
logical operations on hyperintensions.

(If we don’t trust the metaphysics, maybe we trust the maths?)

Hyperintensional semantics for relevance, aboutness, grounding, and
modalities might solve problems of purely intensional accounts.

There are lots of potential further applications: conditionals (e.g.,
counterfactuals—cf. Fine 2012), belief, knowledge (Gettier cases!),
dynamic epistemic logic, quantifiers, adverbs, probability, grounded
type-free truth, grounding in mathematics, implicatures,. . .

There is a lot to do: The corresponding logics need to be explored.
For infinite S, minimal grounds do not exist for free anymore.
The relation to situation semantics, event semantics, justification logic,. . .
should be determined. And so on.



Is the future of philosophical logic hyperintensional?

And the answer is. . . TO BE CONTINUED.

Theorem
johan ∧ retirement |= ⊥.

Proof: Obvious.



Is the future of philosophical logic hyperintensional?

And the answer is. . . TO BE CONTINUED.

Theorem
johan ∧ retirement |= ⊥.

Proof: Obvious.



Appendix: Modalities

In the previous example, if the grounding operator is meant to be factive (as it is
usually taken to be), then it is useful to introduce points of evaluation.

More generally, this is so if one turns to languages with modalities; e.g.:

Let W be a non-empty set of worlds.

Let SW = {〈w ,p〉 |p ∈ S,w ∈W} be our new set of elementary states of
affairs, such that 〈w ,p〉= 〈w ,p〉.

Let R ⊆W ×W (the accessibility relation).

Definition (TO BE CONTINUED)

V : L�×W → H(SW ) is a hyperintensional valuation on L� w.r.t. R iff

V (¬α,w) = ¬V (α,w), V (α∧β,w) = V (α,w)∧V (β,w),
V (α∨β,w) = V (α,w)∨V (β,w).

V (p,w) = {{〈w ,p〉}}.



Definition (CONTINUED)

V (�α,w) = min({∪w ′:wRw ′ c(w ′) |c : w ′ ∈W 7→ V (α,w ′)}).
(“A reason for �α is a conjunction of reasons for α distributed over all
accessible worlds.”)

V (^α,w) = min(∪w ′:wRw ′ V (α,w ′)).
(“A reason for ^α is a reason for α at an accessible world.”)

V determines for each α and w the potential grounds for α at w .

Finally, in order to define truth at a world (and thus the intension mapping),
one needs to equip each world with its obtaining states of affairs:

Definition
M = 〈W ,R,V , I〉 is a hyperintensional model for L� iff

W , ∅, R ⊆W ×W ,

V : L�×W → H(SW ) is a hyperintensional valuation on L� w.r.t. R,

F : W →{s ⊆ S |s is maximally consistent}.

w |=M α iff there is a ground X ∈ V (α,w), s.t. for all 〈w ′,p〉 ∈ X : F(w ′) 3 p.



But there are alternative options, too.

Let us restrict the modal language so that there are no nestings of ^.
And let us determine hyperintensions for ^ differently now:

For all X = {〈w ,p〉,〈w ,p′〉, . . .} ∈ V (α,w), for all w ′ ∈W , let

X w ′ = {〈w ′,p〉,〈w ′,p′〉, . . .}.

V (^α,w) = min({∪X∈V(α,w) X c(X) |c : V (α,w)→{w ′ : wRw ′}}).

(“Distribute all reasons for α in some way over accessible worlds:
the conjunction of such a distribution of reasons is a reason for ^α.”)
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