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Craig Interpolation

• William Craig (1957): For all first-order formulas φ, ψ,  
if φ ⊨ ψ, then there is a first-order formula χ with   
Voc(χ) ⊆ Voc(φ)∩Voc(ψ) and φ ⊨ χ ⊨ ψ. Moreover the 
formula χ in question can effectively constructed from a 
proof of φ ⊨ ψ.  

• Various extensions and variations have been proved 
(e.g., Lyndon interpolation, many-sorted interpolation, 
Otto interpolation). 

• Van Benthem (2008): “Craig’s Theorem is about the last significant property 
of first-order logic that has come to light. […] It seems fair to say that after 
Craig’s theorem, no further significant properties of FOL have been 
discovered.”



Relational Access Restrictions

• A database is a (finite) relational structure over some schema 
S = {R1, …, Rn} 

• Relational access restrictions: restrictions on the way we 
can access the relations R1, …, Rn.



First Example: View-Based Query Reformulation

• Road network database:  Road(x,y) 

• Views:  

• V2(x,y) = “∃ path of length 2 from x to y” = ∃u Road(x,u) ∧ Road(u,y) 

• V3(x,y) = “∃ path of length 3 from x to y” = ∃u,v Road(x,u) ∧ Road(u,v) ∧ Road(v,x) 

• … 

• Observation: V4  can be expressed in terms of V2. 

• Puzzle (Afrati’07): can V5 be expressed (in FO logic) in terms of V3 and V4?



Classic Results

• Querying using views has been around since the 1980s. E.g., 

• Theorem (Levy Mendelzon Sagiv Srivastava ’95): there is an 
effective procedure to decide whether a conjunctive query is 
rewritable as a conjunctive query over a set of views. 

• Open problem (Nash, Segoufin, Vianu ‘10): is there an effective 
procedure to decide if a conjunctive query is answerable on the 
basis of a set of conjunctive views (a.k.a., is “determined” by the 
views)? if so, in what language can we express the rewriting?



Access Restrictions

• View-Based Query Reformulation: 

• Can I reformulate Q as a query using only V1, …, Vn ? 

• I.e., is Q equivalent to a query that only uses the symbols V1, …, Vn 
(relative to the theory consisting of the view definitions)? 

• Query Reformulation w.r.t. Access Methods (more refined): 

• Can I find a plan to evaluate Q using only allowed access methods 
(possibly relative to some theory)? 

• First theory work by Chang and Li ’01, followed by work of Nash, Ludaescher, 
Deutsch, …



Access Methods
• Access method: a pair (R,X) where R is an n-ary relation and X⊆{1, …, n} 

is a set of “input positions” 

• “Relation R can be accessed if specific values are provided for the 
positions in X.” 

• Examples:  

• (Telefoongids(name,city,address,phone#), {1,2}) 

• (R,∅) means free (unrestricted) access to R. 

• (R,{1, …, n}) means only membership tests for specific tuples. 

• There may be any number of access methods for a given relation.



• BindPatt(φ) is the set of access methods “used” by φ.

Access Methods “Used” by a Query

• For example BindPatt(∀y(Rxy → Sxy)) = { (R,{1}), (S,{1,2}) } 

• A “plan” for a query Q is a reformulation Q’ of Q that only uses 
allowed access methods.



Motivation
• Query Reformulation w.r.t. Access Methods (more refined): 

• Can I find a plan to evaluate Q using only allowed access methods (possibly 
relative to some theory)? 

• Example: In the road network example, V5(x,y) admits a first-order plan only the 
access methods (V2,∅) and (V3,{1,2}). 

• Motivation: 

• Answering queries using data behind webforms. 

• Query optimization (if a relation R(x,y) is stored in order sorted on x, access method 
(R,{2}) is much most costly than access method (R,{1}).) 

• …



The Interpolation-Based Approach 
to View-Based Query Reformulation



Key concepts

• Determinacy: V4 is “determined by” (or “answerable from”) V2. 

• Query reformulations: V4 “can be reformulated as a query over V2.”

V4 is 
implicitly defined in 

terms of V2

?xy.V2(x,y) 
⊨ 

?xy.V4(x,y) 



View-Based Query Reformulation

• Base relations R1… Rn, view names V1…Vm 

• View definition theory: T = { ∀x(V1(x) ↔ ψ1(x)), … }, query Q!

• The following are equivalent: 

1. Q is determined by V1…Vm (w.r.t. the theory T). 

2. a certain FO implication θT,Q is valid !

3. Q can be reformulated as a FO query over V1…Vm. In fact, 
every Craig interpolant of θT,Q is such a reformulation.



What is going on?

• From a proof of determinacy we are obtaining an actual 
reformulation. 

• This way of using interpolation to get explicit definitions from 
implicit ones goes right back to Craig’s work. 

• Same technique works for arbitrary theories T (not only view 
definitions). 

• In principle this gives a method for finding query reformulations 
(but FO theorem proving is difficult).



• Question: can we do the same for the case with access methods? 

• Answer: yes, using a suitable generalization of Craig interpolation.



Access Interpolation

• Access interpolation theorem (Benedikt, tC, Tsamoura, 2014): for all first-order 
formulas φ, ψ,  if φ ⊨ ψ, then there is a first-order formula χ with BindPatt(χ) ⊆ 
BindPatt(φ) ∩ BindPatt(ψ) and φ ⊨ χ ⊨ ψ. Moreover the formula χ in question can 
effectively constructed from a proof of φ ⊨ ψ.  

• Can be further refined by distinguishing positive/negative uses of binding 
patterns. 

• Generalizes many existing interpolation theorems (Lyndon, many-sorted 
interpolation, Otto interpolation) 

• Gives rise to a way of testing “access-determinacy” and the existence of 
reformulations w.r.t. given access methods, as well as a method for finding such 
reformulations.



Examples in    
Mathematical Logic

• In set theory, a Δ0-formula is a formula that only uses access method (∈, {2}) 

• In bounded arithmetic, we study formulas that only use access method (≤, {2}). 

• The access interpolation theorem generalizes an interpolation theorem for      
“≤-persistent” formulas by Feferman (1967).



Summary

Querying under Access Restrictions!

1. View-based query reformulation (restricting to a subset of the signature) 

This is the setting of the (projective) Beth theorem. We look for a proof 
of implicit definability (“determinacy”) and, from it, compute an explicit 
definition (“query reformulation”) using Craig interpolation. 

2. Query reformulations given access methods (more refined) 

Same general technique applies, using a suitable adaptation of Craig 
interpolation: access interpolation.



Three Important Subtleties

1. Databases are finite structures. But Craig interpolation for 
first-order logic fails in the finite. 

2. For practical applications, we need effective algorithms. But 
first-order logic is undecidable (we cannot effectively decide if 
the implication θT,Q is valid). 

3. For practical applications, we don’t want just any query 
reformulation, we want one of low cost.



Solutions

• The solution for 1 and 2 is to move to a fragment of first-order 
logic that is decidable and that has the finite model property, 
while still being sufficiently expressive.  

• Natural candidate: the guarded fragment.



Guarded Fragment

!

• All quantification must be guarded. 

φ ::= R(x1…xn) | x=y | ¬φ | φ∧φ | ∃y.G(x,y,z)∧φ(x,y,z) 

• GF has become an extremely successful and well studied fragment of 
first-order logic.  

• Inherits all the good properties of modal logic (robust decidability, finite 
model property, …) 

• Except Craig interpolation.

(Andreka, van Benthem, Nemeti 1998)



Guarded Negation Fragment

• Guarded-Negation fragment (GNFO): a slight further extension of the 
guarded fragment that does have Craig interpolation. 

• Instead of guarding quantifiers we guard the negation. 

φ ::= R(x1…xn) | x=y | G(x)∧¬φ(x) | φ∧φ | ∃y.φ 

• Note: sentential and unary negation can be trivially guarded by the 
identity guard x=x. 

• GNFO retains all the good properties of GF (Barany, tC, Segoufin 2011),  

• It also has (effective) Craig interpolation (Barany, Benedikt, tC 2013; 
Benedikt, tC, Vanden Boom 2014)



Cost-sensitive Query Reformulation
• Every real-world database management system has a cost-estimate 

function for query plans (what is the expected execution time). 

• We are looking for a proof of θT,Q such that the interpolant obtained from it 
constitutes a plan that has a low cost. 

• Idea: explore the space of possible proofs guided by (monotone) plan 
cost function.  

• Under suitable restrictions, it is possible to obtain cost-optimal plans this 
way.  

• Ongoing research, in collaboration between Oxford University (Michael 
Benedikt) and LogicBlox. 

• There will be openings for postdocs at Oxford on this.



Thank you



Solution

• V5(x,y) = ∃u ( V4(x,u) ∧ ∀v ( V3(v,u) → V4(v,y) ) )

x y
uv


