An interpolation theorem for first-order formulas with relational access restrictions

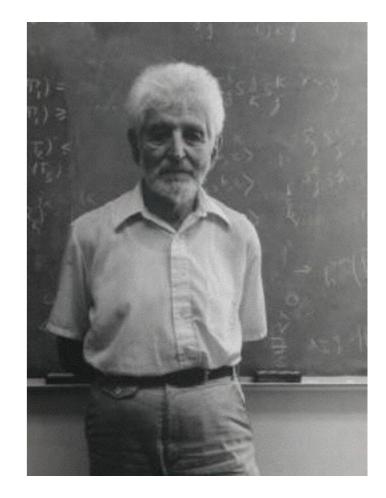
> Balder ten Cate LogicBlox & UC Santa Cruz

on the occasion of Johan van Benthem's retirement

in equality

Craig Interpolation

• William Craig (1957): For all first-order formulas ϕ , ψ , if $\phi \models \psi$, then there is a first-order formula χ with $Voc(\chi) \subseteq Voc(\phi) \cap Voc(\psi)$ and $\phi \models \chi \models \psi$. Moreover the formula χ in question can effectively constructed from a proof of $\phi \models \psi$.



- Various extensions and variations have been proved (e.g., Lyndon interpolation, many-sorted interpolation, Otto interpolation).
- Van Benthem (2008): "Craig's Theorem is about the last significant property of first-order logic that has come to light. [...] It seems fair to say that after Craig's theorem, no further significant properties of FOL have been discovered."

Relational Access Restrictions

- A **database** is a (finite) relational structure over some schema $S = \{R_1, ..., R_n\}$
- **Relational access restrictions**: restrictions on the way we can access the relations R₁, ..., R_n.

First Example: View-Based Query Reformulation

- Road network database: Road(x,y)
- Views:
 - $V_2(x,y) = "\exists path of length 2 from x to y" = \exists u Road(x,u) \land Road(u,y)$
 - $V_3(x,y) = "\exists path of length 3 from x to y" = \exists u, v Road(x,u) \land Road(u,v) \land Road(v,x)$
 - ...
- **Observation**: V_4 can be expressed in terms of V_2 .
- **Puzzle** (Afrati'07): can V_5 be expressed (in FO logic) in terms of V_3 and V_4 ?

Classic Results

- Querying using views has been around since the 1980s. E.g.,
- **Theorem** (Levy Mendelzon Sagiv Srivastava '95): there is an effective procedure to decide whether a conjunctive query is rewritable as a conjunctive query over a set of views.
- **Open problem** (Nash, Segoufin, Vianu '10): is there an effective procedure to decide if a conjunctive query is answerable on the basis of a set of conjunctive views (a.k.a., is "determined" by the views)? if so, in what language can we express the rewriting?

Access Restrictions

- View-Based Query Reformulation:
 - Can I reformulate Q as a query using only V_1, \ldots, V_n ?
 - I.e., is Q equivalent to a query that only uses the symbols V1, ..., Vn (relative to the theory consisting of the view definitions)?
- Query Reformulation w.r.t. Access Methods (more refined):
 - Can I find a plan to evaluate Q using only allowed access methods (possibly relative to some theory)?
- First theory work by Chang and Li '01, followed by work of Nash, Ludaescher, Deutsch, …

Access Methods

- Access method: a pair (R,X) where R is an n-ary relation and X⊆{1, ..., n} is a set of "input positions"
 - "Relation R can be accessed if specific values are provided for the positions in X."
- Examples:
 - (Telefoongids(name,city,address,phone#), {1,2})
 - (R,Ø) means free (unrestricted) access to R.
 - (R,{1, ..., n}) means only **membership tests** for specific tuples.
- There may be any number of access methods for a given relation.

Access Methods "Used" by a Query

• BindPatt(ϕ) is the set of access methods "used" by ϕ .

- For example BindPatt($\forall y(Rxy \rightarrow Sxy)$) = { (R,{1}), (S,{1,2}) }
- A "plan" for a query Q is a reformulation Q' of Q that only uses allowed access methods.

Motivation

- Query Reformulation w.r.t. Access Methods (more refined):
 - Can I find a plan to evaluate Q using only allowed access methods (possibly relative to some theory)?
- Example: In the road network example, V₅(x,y) admits a first-order plan only the access methods (V₂,Ø) and (V₃,{1,2}).

Motivation:

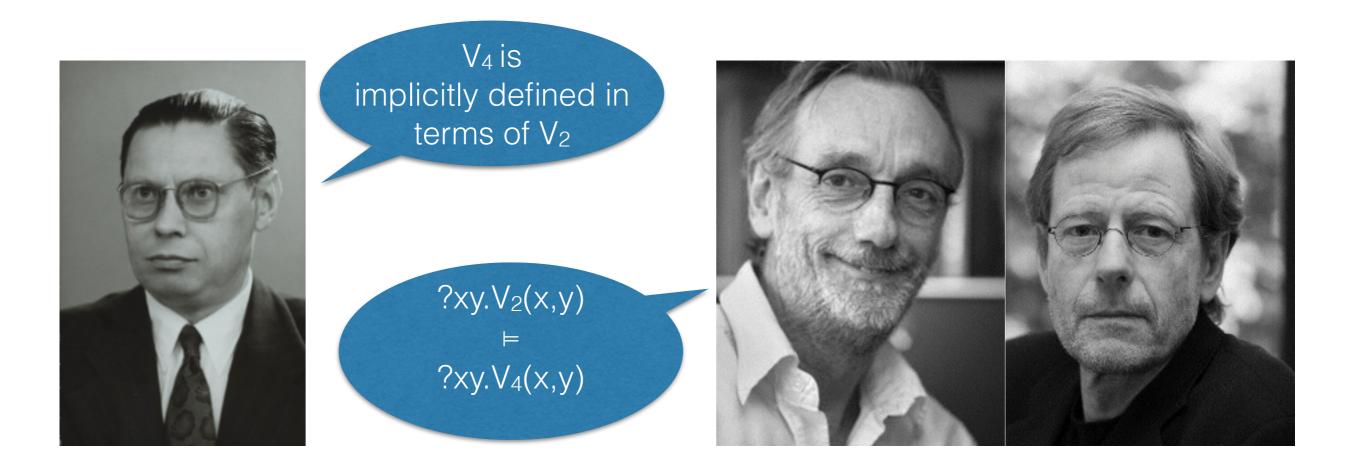
- Answering queries using data behind webforms.
- Query optimization (*if a relation* R(x,y) *is stored in order sorted on x, access method* (R,{2}) *is much most costly than access method* (R,{1}).)

• ...

The Interpolation-Based Approach to View-Based Query Reformulation

Key concepts

- **Determinacy**: V₄ is "determined by" (or "answerable from") V₂.
- Query reformulations: V₄ "can be reformulated as a query over V₂."



View-Based Query Reformulation

- Base relations $R_1 \dots R_n$, view names $V_1 \dots V_m$
- View definition theory: $T = \{ \forall \mathbf{x}(V_1(\mathbf{x}) \leftrightarrow \psi_1(\mathbf{x})), \dots \}, \text{ query } Q$
- The following are equivalent:
 - 1. Q is determined by $V_1...V_m$ (w.r.t. the theory T).
 - 2. a certain FO implication $\theta_{T,Q}$ is valid
 - 3. Q can be reformulated as a FO query over $V_1...V_m$. In fact, every Craig interpolant of $\theta_{T,Q}$ is such a reformulation.

What is going on?

- From a proof of determinacy we are obtaining an actual reformulation.
- This way of using interpolation to get explicit definitions from implicit ones goes right back to Craig's work.
- Same technique works for arbitrary theories T (not only view definitions).
- In principle this gives a method for finding query reformulations (but FO theorem proving is difficult).

- **Question**: can we do the same for the case with access methods?
- Answer: yes, using a suitable generalization of Craig interpolation.

Access Interpolation

- Access interpolation theorem (Benedikt, tC, Tsamoura, 2014): for all first-order formulas φ, ψ, if φ ⊨ ψ, then there is a first-order formula χ with BindPatt(χ) ⊆ BindPatt(φ) ∩ BindPatt(ψ) and φ ⊨ χ ⊨ ψ. Moreover the formula χ in question can effectively constructed from a proof of φ ⊨ ψ.
- Can be further refined by distinguishing positive/negative uses of binding patterns.
- Generalizes many existing interpolation theorems (Lyndon, many-sorted interpolation, Otto interpolation)
- Gives rise to a way of testing "access-determinacy" and the existence of reformulations w.r.t. given access methods, as well as a method for finding such reformulations.

Examples in Mathematical Logic

- In set theory, a Δ_0 -formula is a formula that only uses access method (\in , {2})
- In bounded arithmetic, we study formulas that only use access method (\leq , {2}).
- The access interpolation theorem generalizes an interpolation theorem for "≤-persistent" formulas by Feferman (1967).

Summary

Querying under Access Restrictions

1. View-based query reformulation (restricting to a subset of the signature)

This is the setting of the (projective) Beth theorem. We look for a proof of implicit definability ("determinacy") and, from it, compute an explicit definition ("query reformulation") using Craig interpolation.

2. Query reformulations given access methods (more refined)

Same general technique applies, using a suitable adaptation of Craig interpolation: access interpolation.

Three Important Subtleties

- 1. Databases are finite structures. But Craig interpolation for first-order logic fails in the finite.
- 2. For practical applications, we need effective algorithms. But first-order logic is undecidable (we cannot effectively decide if the implication $\theta_{T,Q}$ is valid).
- 3. For practical applications, we don't want just any query reformulation, we want one of low cost.

Solutions

- The solution for 1 and 2 is to move to a fragment of first-order logic that is decidable and that has the finite model property, while still being sufficiently expressive.
- Natural candidate: the guarded fragment.

Guarded Fragment

(Andreka, van Benthem, Nemeti 1998)

• All quantification must be guarded.

 $\varphi ::= \mathsf{R}(x_1...x_n) \mid x = y \mid \neg \varphi \mid \varphi \land \varphi \mid \exists y. G(x,y,z) \land \varphi(x,y,z)$

- GF has become an extremely successful and well studied fragment of first-order logic.
- Inherits all the good properties of modal logic (robust decidability, finite model property, ...)
- Except Craig interpolation.

Guarded Negation Fragment

- Guarded-Negation fragment (GNFO): a slight further extension of the guarded fragment that does have Craig interpolation.
- Instead of guarding quantifiers we guard the negation.

 $\varphi ::= R(x_1...x_n) \mid x = y \mid G(\boldsymbol{x}) \land \neg \varphi(\boldsymbol{x}) \mid \varphi \land \varphi \mid \exists \boldsymbol{y}.\varphi$

- Note: sentential and unary negation can be trivially guarded by the identity guard x=x.
- GNFO retains all the good properties of GF (Barany, tC, Segoufin 2011),
- It also has (effective) Craig interpolation (Barany, Benedikt, tC 2013; Benedikt, tC, Vanden Boom 2014)

Cost-sensitive Query Reformulation

- Every real-world database management system has a cost-estimate function for query plans (what is the expected execution time).
- We are looking for a proof of $\theta_{T,Q}$ such that the interpolant obtained from it constitutes a plan that has a low cost.
- Idea: explore the space of possible proofs guided by (monotone) plan cost function.
- Under suitable restrictions, it is possible to obtain cost-optimal plans this way.
- Ongoing research, in collaboration between Oxford University (Michael Benedikt) and LogicBlox.
- There will be openings for postdocs at Oxford on this.

Thank you

Solution

• $V_5(x,y) = \exists u (V_4(x,u) \land \forall v (V_3(v,u) \rightarrow V_4(v,y)))$

