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Abstract

If Visser’s rules are admissible for an intermediate logic, they form a basis
for the admissible rules of the logic. How to characterize the admissible
rules of intermediate logics for which not all of Visser’s rules are admissible
is not known. Here we study the situation for specific intermediate logics.
We provide natural examples of logics for which Visser’s rule are derivable,
admissible but non-derivable, or not admissible.
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1 Introduction

Admissible rules, the rules under which a theory is closed, form one of the most
intriguing aspects of intermediate logics. A rule A/ B is admissible for a theory
if B is provable in it whenever A is. The rule A/ B is said to be derivable if the
theory proves that A → B. Classical propositional logic CPC does not have any
non-derivable admissible rules, because in this case A/ B is admissible if and
only if A → B is derivable, but for example intuitionistic propositional logic
IPC has many admissible rules that
are not derivable in the theory itself. For example, the Independence of Premise
rule IPR

¬A → B ∨ C / (¬A → B) ∨ (¬A → C)

is not derivable as an implication within the system, but it is an admissible rule
of it. Therefore, knowing that ¬A → B ∨ C is provable gives you much more
than just that, because it then follows that also one of the stronger (¬A → B)
or (¬A → C) is provable. Thus the admissible rules shed light on what it means
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to be constructively derivable, in a way that is not measured by the axioms or
derivability in the theory itself.
We wonder what the situation is for logics in between classical and intuitionistic
logic, the so-called intermediate logics. In particular, how do Visser’s rules
behave in other intermediate logics; are they admissible, derivable, do they
form a basis? The special interest in Visser’s rules stems from the fact that
this collection of rules is the basis for the admissible rules of IPC (see below),
as well as for some other well-known intermediate logics. In this paper we give
an overview of the partial answers to the questions above and add some new
observations.
This paper is dedicated to Dick, on the occasion of his 65th birthday. Dick
has stirred my interest in intuitionistic logic, one of the subjects that I have
loved ever since. I have learned a lot from him, not only through discussions on
mathematics, but also in ways that are more difficult to describe. Dick possesses
forces of teaching someone while being silent and only looking surprised, enthu-
siast or unconvinced. I am enjoying and benefiting from his remarks, whether
silent or not, till today.
Acknowledgement I thank Jaap van Oosten and Albert Visser for useful con-
versations on realizability, and Jaap also for proving that IPR is not effectively
realizable (Proposition 18).

2 Overview

Here we briefly summarize what is known about Visser’s rules and intermediate
logics. In the last section we provide the proofs of the observations below that
are new. We will only be concerned with intermediate logics, i.e. logics between
(possibly equal to) IPC and CPC.

The situation for IPC

First, let us briefly recall the situation for IPC. As said, this logic has many
non derivable rules. In [8], using results from [5], it has been shown that the
following rules form a basis for the admissible rules of IPC, i.e. that all admissible
rules can be derived from Visser’s rules and the theorems of IPC. Visser’s rules
is the collection of rules V = {Vn | . . . n = 1, 2, 3, . . .}, where

Vn (
n∧

i=1

(Ai → Bi) → An+1 ∨An+2) ∨ C /

n+2∨

j=1

(
n∧

i=1

(Ai → Bi) → Aj) ∨ C.

The mentioned result is a syntactical characterization of the admissible rules
of IPC. There are also result of a more computational nature: in [17] Rybakov
showed that admissible derivability for IPC, |∼ , is decidable, and in the beautiful
paper [6] Ghilardi presented a transparent algorithm for |∼ .
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Remarks on Visser’s rules

Visser’s rules are an infinite collection of rules, that is, there is no n for which
V(n+1) is derivable in IPC extended by the rule Vn [9]. Note that on the other
hand Vn is derivable from V(n+1) for all n. In particular, if V1 is not admissible
for a logic, then none of Visser’s rules are admissible. The independence of
premise rule IPR

¬A → B ∨ C / (¬A → B) ∨ (¬A → C)

is a special instance of V1. Having IPR admissible is strictly weaker than the
admissibility of V1; below we will see examples of logics for which the first one
is admissible while the latter is not.
Note than when Visser’s rules are admissible, then so are the rules

Vnm (
n∧

i=1

(Ai → Bi) →
m∨

j=n+1

Aj) ∨ C/

m∨

h=1

(
n∧

i=1

(Ai → Bi) → Ah) ∨ C.

As an example we will show that V13 is admissible for any logic for which
V1 is admissible. For simplicity of notation we take C empty. Assume that
`L (A1 → B) → A2∨A3∨A4. Then by V1, reading A2∨A3∨A4 as A2∨(A3∨A4),

`L

(
(A1 → B) → A1

) ∨ (
(A1 → B) → A2

) ∨ (
(A1 → B) → A3 ∨A4

)
.

A second application of V1, with C =
(
(A1 → B) → A1

) ∨ (
(A1 → B) → A2

)
,

gives

`L

2∨

i=1

(
(A1 → B) → Ai

) ∨
∨

i=1,3,4

(
(A1 → B) → Ai

)
.

Therefore, `L

∨4
i=1

(
(A1 → B) → Ai

)
.

When Visser’s rules are admissible

Somewhat surprisingly, at least to the author, it turns out that Visser’s rules
play an important role for other intermediate logics too.

Theorem 1 [10] If V is admissible for L then V is a basis for the admissible
rules of L.

Thus, once Visser’s rules are admissible we have a characterization of all ad-
missible rules of the logic. Besides IPC, do there exist such logics? As it turns
out, there indeed are. Even some well-known and natural ones (Section 4), e.g.
the Gabbay-de Jongh logics Bdn, De Morgan logic KC, the Gödel logics Gn, and
Gödel-Dummett logic LC. For all these logics Visser’s rules are admissible, and
whence form a basis for their admissible rules.
Note that Theorem 1 in particular provides a condition for having no non-
derivable admissible rules.
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Corollary 2 If V is derivable for L then L has no non-derivable admissible
rules.

The Gödel logics and Gödel-Dummett logic are in fact examples of this, as for
these logics Visser’s rules are not only admissible but also derivable. For the
Gabbay-de Jongh logics and De Morgan logic one can show that this is not the
case.

When are Visser’s rules admissible?

Because of the theorem above, it would be useful to know when Visser’s rules
are admissible or not. At least for logics for which we have some knowledge
about their models, a necessary condition for having Visser’s rules admissible
exist (for the definition of extension properties, see Section 3.3).

Theorem 3 [10] For any intermediate logic L, Visser’s rules are admissible for
L if and only if L has the offspring property.

Theorem 4 [10] For any intermediate logic L with the disjunction property,
Visser’s rules are admissible for L if and only if L has the weak extension prop-
erty.

In fact, all the results on specific intermediate logics mentioned above, use these
conditions for admissibility.

Disjunction property

A logic L has the disjunction property if

`L A ∨B ⇒ `L A or `L B.

The disjunction property plays an interesting role in the context of admissible
rules. First of all, in combination with the admissibility of Visser’s rules it
characterizes IPC.

Theorem 5 [8] The only intermediate logic with the disjunction property for
which all of Visser’s rules are admissible is IPC.

This implies that if a logic has the disjunction property, not all of Visser’s
rules can be admissible. However, there is an instance of V1 that will always be
admissible in this case, namely IPR, see the section on Independence of Premise
below.
For logics L that do have the disjunction property, A |∼ LC and B |∼ LC implies
A ∨ B |∼ LC. Thus in the context of Visser’s rules this e.g. implies that when
the the following special instances of Visser’s rules, the restricted Visser rules

V −
n (

n∧

i=1

(Ai → Bi) → An+1 ∨An+2) /

n+2∨

j=1

(
n∧

i=1

(Ai → Bi) → Aj),
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are admissible for L, then so are Visser’s rules. Therefore, when considering
only logics with the disjunction property, like e.g. IPC, the difference between
the Visser and the restricted Visser rules does not play a role. However, when
considering intermediate logics in all generality, as we do in this paper, we
cannot restrict ourselves to this sub-collection of Visser’s rules.

When Visser’s rule are not admissible

In the case that not all of Visser’s rules are admissible we do not know of any
general results concerning admissibility. We only have some partial results on
specific intermediate logics, stating that some Visser rule is not admissible or
that the logic in question has non-derivable admissible rules (Section 4). These
results at least imply that

Fact 6 For every n, there are intermediate logics for which Vn is admissible
while Vn+1 is not, i.e. V1, . . . , Vn are admissible and Vn+1, Vn+2 . . . are not.

Fact 7 There are intermediate logics for which none of Visser’s rules are ad-
missible, but that do have non-derivable admissible rules.

The logics of (uniform) effective realizability UR and ER are examples of logics
that have non-derivable admissible rules but for which V1 is not admissible
respectively derivable. Interestingly, for both these logics, the same special
instance of V1, namely the Independence of Premise rule IPR is a non-derivable
admissible rule. That the rule is admissible in both logics is no coincedence, as
the next section shows.

Independence of Premise

Although we have seen that there are not logics for which V1 is not admissible,
there is an instance of this rule that is admissible in any intermediate logic,
namely IPR

¬A → B ∨ C / (¬A → B) ∨ (¬A → C).

Theorem 8 (Minari and Wronski [13]) For any intermediate logic L, we have
(H is the class of Harrop formulas, see preliminaries):

∀A ∈ H : L ` (A → B ∨ C) ⇒ L ` (A → B) ∨ (A → C).

Since any negation is a Harrop formula we have the following corollary.

Corollary 9 In any intermediate logic IPR is admissible.

Note that on the other hand we cannot conclude that for every Harrop formula
A we have (A → B∨C) |∼ L(A → B)∨ (A → C), as the class of Harrop formulas
is not closed under substitution.
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General remarks

For completeness sake we include the following known facts about admissibility
that states which rules might come up as admissible rules for a logic.

Fact 10 If A |∼ LB, then CPC ` A → B.

Proof Suppose A |∼ LB. This means that for all σ, `L σA implies `L σB.
Suppose the variables that occur in A and B are among p1 . . . pn. Consider
σ ∈ {>,⊥}n. Note that for such σ, `CPC σA iff `IPC σA iff `L σA. Whence for
all σ ∈ {>,⊥}n, if `CPC σA then `CPC σB. Thus `CPC A → B. 2

Corollary 11 If A |∼ LB, then the logic that consists of L extended with the
axiom scheme (A → B) is consistent.

Questions

There are too many questions to list them all, but among the most interesting
general ones are the following three.

• If n is the largest n for which Vn is admissible for a logic with the dis-
junction property, do the rules {V1, . . . , Vn}, i.e. {Vn}, form a basis for
its admissible rules? And a similar question for the Vmn in case the logic
does not have the disjunction property.

• Do there exist intermediate logics that have non-derivable admissible rules
that are not instances of Visser’s rules?

• Do there exist intermediate logics for which Visser’s rules are admissible
and the restricted Visser rules are not?

3 Preliminaries

Before we proceed with the proofs (in Section 4) of the new observations men-
tioned in the previous section, we have to settle some terminology and notation.
As mentioned above, we will only be concerned with intermediate logics L, i.e.
logics between (possibly equal to) IPC and CPC. We write `L for derivability
in L. The letters A,B, C,D, E, F, H range over formulas, the letters p, q, r, s, t,
range over propositional variables. We assume > and ⊥ to be present in the
language. ¬A is defined as (A → ⊥). We omit parentheses when possible;
∧ binds stronger than ∨, which in turn binds stronger than →. The class of
Harrop formulas H is the class of formulas in which every disjunction occurs in
the negative scope of an implication.
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3.1 Admissible rules

A substitution σ in this paper will always be a map from propositional formulas
to propositional formulas that commutes with the connectives. A (propositional)
admissible rule of a logic L is a rule A/B such that adding the rule to the logic
does not change the theorems of L, i.e.

∀σ : `L σA implies `L σB.

We write A |∼ LB if A/B is an admissible rule of L. The rule is called derivable if
A `L B and non-derivable if A 6`L B. When R is the rule A/B, we write R→ for
the implication A → B. We say that a collection R of rules, e.g. V , is admissible
for L if all rules in R are admissible for L. R is derivable for L if all rules in R are
derivable for L. We write A `R

L B if B is derivable from A in the logic consisting
of L extended with the rules R, i.e. there are A = A1, . . . , An = B such that for
all i < n, Ai `L Ai+1 or there exists a σ such that σBi/σBi+1 = Ai/Ai+1 and
Bi/Bi+1 ∈ R. If X and R are sets of admissible rules of L, then R is a basis for
X if for every rule admissible rule A / B in X we have A `R

L B. If X consists
of all the admissible rules of L, then R is called a basis for the admissible rules
of L.

3.2 Kripke models

A Kripke models K is a triple (W,4, °), where W is a set (the set of nodes)
with a unique least element that is called the root, 4 is a partial order on W
and °, the forcing relation, a binary relation on W and sets of propositional
variables. The pair (W,4) is called the frame of K. The notion of truth in a
Kripke model is defined as usual. We write K |= A if A is forced in all nodes of
K and say that A holds in K. We write Kk for the model which domain consists
of all nodes k 4 k′ and which partial order and valuation are the restrictions of
the corresponding relations of K to this domain.

3.3 Extension properties

For Kripke models K1, . . . ,Kn, (
∑

i Ki)′ denotes the Kripke model which is
the result of attaching one new node at which no propositional variables are
forced, below all nodes in K1, . . . , Kn. (

∑ ·)′ is called the Smorynski operator.
Two models K,K ′ are variants of each other, written KvK ′, when they have
the same set of nodes and partial order, and their forcing relations agree on all
nodes except possibly the root. A class of models U has the extension property if
for every finite family of models K1, . . . ,Kn ∈ U , there is a variant of (

∑
i Ki)′

which belongs to U . U has the weak extension property if for every model
K ∈ U , and every finite collection of nodes k1, . . . , kn ∈ K distinct from the
root, there exists a model M ∈ U such that

∃M1

(
(
∑

i

Kki)
′vM1 ∧ (M1 ³ M)

)
.
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U has the offspring property if for every model K ∈ U , and for every finite
collection of nodes k1, . . . , kn ∈ K distinct from the root, there exists a model
M ∈ U such that

∃M1∃M0

(
(
∑

i

Kki
)′vM1 ∧ (M1 + K)′vM0 ∧ (M0 ³ M)

)
.

A logic L has the extension (weak extension, offspring) property if it is sound
and complete with respect to some class of models that has the extension (weak
extension, offspring) property. Note that for all three properties the class of
models involved does not have to be the class of all models of L. However, we
might as well require that, because in [10] it has been shown that if a logic has
the offspring property, then so does the class of all its models. Since the class
of all models of a logic is closed under submodels and bounded morphic images,
this also implies that for logics

extension property ⇒ offspring property ⇒ weak extension property.

The reason that we have chosen the definition of offspring property as given
above, not the most elegant one, is that it will turn out particularly useful for
the application to various frame complete logics discussed in the last section.
There are quite natural classes of models that satisfy the offspring property, e.g.
the class of linear models, as the reader may wish to verify for himself.
If we would not restrict our models to rooted ones, the extension property and
the weak extension property would be equivalent, at least for logics. Since we
require our Kripke models to be rooted, there is a subtle difference between the
two:

Fact 12 If a logic L has the extension property, it has the disjunction property.

As there are logics that do not have the disjunction property, but that have the
weak extension property, the latter is indeed stronger. We will see examples of
such logics in Section 4.

4 Results

In this section we collect the results on specific intermediate logics discussed in
the introduction. We present proofs of the observations that are new, and refer
to the literature for the ones that have been obtained before. Below follows the
list of intermediate logics involved. As the reader can see, it consists mainly of
quite well-known and natural logics, whatever the word natural might exactly
mean. This is not accidently so, as we are particularly interested in these kind
of logics. For it might well be that for specific purposes, e.g. for showing that
there exist logics for which IPR is admissible while V1 is not, one can cook up a
logic that serves as an example, but we feel that to come up with a well-known
and natural instance of such a logic is somehow much more satisfying.
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A point of terminology: when we say “axiomatized by ...” we mean ”axiomatized
over IPC by ...”. For a class of frames F , L is called the logic of the frames F
when L is sound and complete with respect to F .
The principle IPR→ is denoted IP and called Independence of Premise:

IP (¬A → B ∨ C) → (¬A → B) ∨ (¬A → C).

Bdn The logic of frames of depth at most n. Bd1 is axiomatized by bd1 =
A1 ∨ ¬A1, and Bdn+1 by bdn+1 = (An+1 ∨ (An+1 → bdn)) [2].

Dn The Gabbay-de Jongh logics [4], axiomatized by the following scheme:∧n+1
i=0 ((Ai →

∨
j 6=i Aj) →

∨
j 6=i Aj) →

∨n+1
i=0 Ai. Dn is complete with

respect to the class of finite trees in which every point has at most (n+1)
immediate successors.

Gk The Gödel logics, first introduced in [7]. They are extensions of LC axiom-
atized by A1 ∨ (A1 → A2) ∨ . . . ∨ (A1 ∧ . . . ∧Ak−1 → Ak). Gk is the logic
of the linearly ordered Kripke frames with at most k − 1 nodes [1].

KC De Morgan logic (also called Jankov logic), axiomatized by ¬A∨¬¬A. The
logic of the frames with one maximal node.

KP The logic axiomatized by IP, i.e. by (¬A → B ∨ C) → (¬A → B) ∨
(¬A → C). The logic is called Kreisel-Putnam logic. It constituted the
first counterexample to ÃLukasiewicz conjecture that IPC is the greatest
intermediate logic with the disjunction property [11].

LC Gödel-Dummett logic [3], the logic of the linear frames. It is axiomatized
by the scheme (A → B) ∨ (B → A).

ML Medvedev logic [12]. The logic of the frames F1, F2, . . ., where the nodes
of Fn are the nonempty subsets of {1, . . . , n} and 4 is ⊇.

Mn The logic of frames with at most n maximal nodes. Note that M1 = KC.

NLn The logics axiomatized by formulas in one propositional variable (so-called
Nishimura formulas nfn). NLn is axiomatized by nfn, where nf0 = ⊥,
nf1 = p, nf2 = ¬p, nf2n+1 = nf2n ∨ nf2n−1, and nf2n+2 = nf2n →
nf2n−1.

ER The logic of effectively realizable formulas: the logic consisting of formulas
A(p1, . . . , pn) for which there exists a recursive function f such that for any
substitution of the pi by arithmetical formulas ϕi with Gödel numbers mi,
f(m1, . . . ,mn) realizes the result, i.e. NI |=“f(m1, . . . , mn)rA(ϕ1, . . . , ϕn)”.
There is no r.e. axiomatization known for this logic, but it is known that
it is a proper extension of IPC [16].

UR The logic of formulas that are effectively realizable by a constant function,
i.e. the logic consisting of formulas A(p1, . . . , pn) such that there exists a
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number e such that for any substitution of the pi by arithmetical formulas
ϕi, e realizes the result, i.e. NI |=“erA(ϕ1, . . . , ϕn)”. There is no r.e.
axiomatization known for this logic, but it was shown in [16] that it is a
proper extension of IPC.

Sm The greatest intermediate logic properly included in classical logic. It is
axiomatized by

(
(A → B) ∨ (B → A)

) ∧ (A ∨ (A → B ∨ ¬B)) and it is
complete with respect to frames of at most 2 nodes [2].

TF The logic of frames with at most three nodes.

V The logic axiomatized by V→
1 , or equivalently, axiomatized by the implica-

tion corresponding to the rule V −
1 :

(
(A1 → B) → A2∨A3

) → ∨3
i=1

(
(A1 →

B) → Ai

)
.

Theorem 13 [10] Visser’s rules are derivable in Bd1, Gk, LC, Sm and V. Hence
these logics do not have non-derivable admissible rules.

Theorem 14 Visser’s rules form a basis for the admissible rules of the logics
KC, Mn and TF. Visser’s rules are not derivable in any of these logics.

Proof For the first two logics the statement has been proved in [10]. For TF
we consider the class of frames of the logic: F1 consists of one node, F2 of two
nodes k0 4 k1 and F3 = ({k0, k1, k2}, {(k0, k1), (k0,2 }. Therefore, pick a model
K based on one of these frames. We treat the case that the frame is F3 and
leave the other cases to the reader. Pick nodes l1, . . . , ln in K distinct from
the root. We have to show that there is a variant M1 of (ΣiKli)

′ such that a
bounded morphic image M of a variant M0 of (M1 + K)′ has at most three
nodes. If n = 1, say l1 = k1, we force at the root mi of the variant Mi the same
atoms as at ki. When we let M be the restriction of K to domain k0, k1,then
M is a bounded morhic image of M0. Namely, define the bounded morhism f
via f(mi) = ki, where f sends K and Kk1 to the corresponding parts of M . If
n = 2, we can force at the roots m1,m0 of the variants M1, M0 the same atoms
as at k0. We leave it to the reader to verify that K is a bounded morphic image
of M0.
To see that Visser’s rules are not derivable in TF, we leave it to the reader to
construct appropriate countermodels to IPR→, i.e.

(¬A → B ∨ C) → (¬A → B) ∨ (¬A → C),

which is an instance of V→
1 . Whence none of Visser’s rules can be derivable,

because V→
n clearly implies V→

1 . 2

Note that all the logics in the previous theorem are examples of logics which
have the weak extension property, but not the 2-extension property, as they
do not have the disjunction property (see Fact 12). That they do not have the
disjunction property follows from the fact that the only logic with the disjunction
property for which all Visser’s rules are admissible is IPC.
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Next we consider intermediate logics for which a full characterization of their
admissible rules is not known. First we give some examples of logics for which
not all of Visser’s rules are admissible but that have non-derivable admissible
rules: the logics Dn (n ≥ 1) and UR. For the logic ML we only know that it has
non-derivable admissible rules and that none of Visser’s rules are derivable. But
whether Visser’s rule are admissible we do not know. Finally, there follow some
examples of logics for which the Visser rules or the restricted Visser rules are
not admissible, but for which we do not know whether they have non-derivable
admissible rules at all: KP and NLn (n ≥ 9).
First an obsevation that we will often use below. Allthough the statement can
also be derived directly from Theorem 5, the proof as given here contains a
funny self-application of V1, which is the reason we have included the proof
here.

Proposition 15 If an intermediate logic L has the disjunction property, V1 is
not derivable in L. Hence none of Visser’s rules are derivable in L.

Proof Suppose L has the disjunction property and that V1 is derivable in L.
Thus for X = (p1 → q), L derives the following instance of V1,

L ` (X → p2 ∨ p3) →
3∨

i=1

(X → pi).

Since V1 is derivable, it is certainly admissible. Thus so is V13 (see the Remarks
on Visser’s rules in the Introduction). Applying the rule (now with A1 = (X →
p2 ∨ p3) and Ai = (X → pi) for i > 1) then gives

L ` (
(X → p2 ∨ p3) → X

) ∨
3∨

i=1

(
(X → p2 ∨ p3) → (X → pi)

)
.

Since L has the disjunction property, this would imply that at least one of(
(X → p2 ∨ p3) → (X → pi)

)
, or

(
(X → p2 ∨ p3) → X

)
is derivable in L.

However, these formulas are not even derivable in classical logic. 2

Theorem 16 [10] The restricted Visser rules are admissible but not derivable
for Bdn for n ≥ 2.

Theorem 17 [8] For the logics Dn (n ≥ 1), Vn+1 is admissible, while Vn+2 is
not. In none of the logics V1 is derivable.

Proposition 18 (with Jaap van Oosten) V1 is not admissible for UR. IPR is
a non-derivable admissible rule of UR and ER (and thus V1 is not derivable in
ER).

Proof It is convenient to assume that our coding of pairs and recursive functions
is such that 〈0, 0〉 = 0 and 0·x = 0 for all x(a·b denotes the result of applying
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the a-th partial recursive function to b). Then 0 realizes every negation of a
sentence that has no realizers.
First, we show that V1 is not admissible for UR. In [16] G.F. Rose showed that
the following formula, not derivable in IPC, belongs to UR: for A = ¬p ∨ ¬q,

UR ` (
(¬¬A → A) → ¬¬A ∨ ¬A

) → ¬¬A ∨ ¬A.

Let B =
(
(¬¬A → A) → ¬¬A ∨ ¬A

)
. If the 1st Visser rule, V1, would be

admissible, this would imply that

UR ` (B → ¬¬A) ∨ (B → ¬A) ∨ (B → (¬¬A → A)).

The fact that UR has the disjunction property, plus some elementary logic, leads
to

UR ` (B → ¬¬A) or UR ` (B → ¬A) or UR ` (¬¬A → A).

As classical logic does not even derive (B → ¬¬A) or (B → ¬A), certainly
UR 6` (B → ¬¬A) and UR 6` (B → ¬A). Also UR 6` (¬¬A → A). For if not,
there is a realizer e of every substitution instance ¬¬(¬ϕ ∨ ¬ψ) → ¬ϕ ∨ ¬ψ of
(¬¬A → A). From this we derive a contradiction as follows. Thus for all x such
that xr¬¬(¬ϕ∨¬ψ), (e ·x)0 = 0 and (e ·x)1r¬ϕ, or (e ·x)0 = 1 and (e ·x)1r¬ψ.
Take ϕ = ⊥ and ψ = >. Let χ = (¬ϕ ∨ ¬ψ) and χ′ = (¬ψ ∨ ¬ϕ). Note that
∀y¬(

yr¬χ) and ∀y¬(
yr¬χ′). Since for all φ

xr¬¬φ ↔ ∀y¬(yr¬φ),

this implies that every number, in particular 0, is a realizer of ¬¬χ and ¬¬χ′.
Whence (e · 0) is a realizer of both χ and χ′. If (e · 0)0 = 0, then (e · 0)1r¬ψ,
and if (e · 0)0 = 1, then (e · 0)1r¬ψ too. As ¬ψ cannot have a realizer, we have
reached the desired contradiction.
To show that ¬A → B0 ∨ B1 |∼UR(¬A → B0) ∨ (¬A → B1), assume that
UR ` ¬A → B0∨B1, for some A,B0, B1, and suppose that the atoms that occur
in A,B0, B1 are p1, . . . , pn. So there is a number e such that for all ψ1, . . . , ψn,
e realizes (¬A → B0 ∨ B1)(ψ1, . . . , ψn). We write A(ψ̄) for A(ψ1, . . . , ψn), and
similarly for B0, B1. We have to construct a realizer that, for all ψ1, . . . , ψn,
realizes

(¬A(ψ̄) → B0(ψ̄)) ∨ (¬A(ψ̄) → B1(ψ̄)). (1)

Since we reason classically, as we consider uniform effective realizability, ei-
ther ∃x(xr¬A(ψ̄)) or ∀x¬(xr¬A(ψ̄)). Thus by the definition of realizability,
∀x¬(xrA(ψ̄)) or ∀x¬(xr¬A(ψ̄)). In the first case, e · 0r(B0(ψ̄) ∨B1(ψ̄)). Thus
for i = 0, 1, if (e · 0)0 = i, (e · 0)1rBi((ψ̄), whence if d is the code of the program
that always outputs (e · 0)1, then < d, i > realizes (1). In the second case,
∀x¬(xr¬A(ψ̄)), < e, 0 > realizes (1), as ¬A(ψ̄) has no realizers.
Jaap van Oosten in [15] showed that IPR is not derivable in ER, which implies
that IPR is a non-derivable admissible rule of both ER and UR by Corollary 9.
Thus, to finish the proof of the theorem, it remains to prove the non-derivability
of IPR in ER. We repeat van Oosten’s proof, as given in [15]:
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Let A(f) be the sentence ∀x∃yT (f, x, y) and let B(f) and C(f) be negative
sentences, expressing “there is an x on which f is undefined, and the least such
x is even” (respectively, odd). Suppose there is a total recursive function F such
that for every f , F (f) realizes

(¬A(f) → B(f) ∨ C(f)) → ((¬A(f) → B(f)) ∨ (¬A(f) → C(f))).

Choose, by the recursion theorem, an index f of a partial recursive function of
two variables, such that:
f ·(g, x) = 0 if there is no w ≤ x witnessing that F (S1

1(f, g))·g is defined, or if
x is the least such witness, and either (F (S1

1(f, g))·g)0 = 0 and x is even, or
(F (S1

1(f, g))·g)0 6= 0 and x is odd;
f ·(g, x) is undefined in all other cases.
Then for every g we have:

• F (S1
1(f, g))·g is defined. For otherwise, f ·(g, x) = 0 for all x, hence

S1
1(f, g) is total, so g realizes

¬A(S1
1(f, g)) → B(S1

1(f, g)) ∨ C(S1
1(f, g)),

which would imply that F (S1
1(f, g))·g is defined, a contradiction;

• If (F (S1
1(f, g))·g)0 = 0 then the first number on which S1

1(f, g) is undefined
is odd, so C(S1

1(f, g)) holds;

• If (F (S1
1(f, g))·g)0 6= 0 then B(S1

1(f, g)) holds.

Now let, again by the recursion theorem, g be chosen such that for all y:

g·y =
{ 〈1, 0〉 if (F (S1

1(f, g))·g)0 = 0
〈0, 0〉 if (F (S1

1(f, g))·g)0 6= 0

Then g is a realizer for ¬A(S1
1(f, g)) → [B(S1

1(f, g))∨C(S1
1(f, g))]. However, it

is easy to see that F (S1
1(f, g))·g makes the wrong choice

This finishes van Oosten’s proof that IPR is not derivable in ER, and thereby
the proposition is proved. 2

Proposition 19 V1 is not derivable in ML. IPR is derivable in ML.

Proof That V1 is not derivable in ML follows from Proposition 15, because the
logic has the disjunction property. To see that IPR is derivable in L, i.e. that
IP is a principle of ML, we use the frame characterization of ML given above.
The proof is left to the reader. 2

As mentioned above, we do not know whether Visser’s rules are admissible in
ML. For the following logics we do not know whether they have non-derivable
admissible rules, although we know that Visser’s rules are not admissible.

Proposition 20 [10] V1 is not admissible for KP.
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Proposition 21 For the logics NLn, V1 is not admissible for n ≥ 9. For the
even n ≥ 9 the restricted rule V −

1 is not admissible too. Visser’s rules are non-
derivable and form a basis for n = 5, 8. Visser’s rules are derivable for n ≤ 4
and n = 6. We do not know what happens for n = 7.

Proof Observe that for n = 0, 1, 2, 4 the logic is inconsistent (nf4 ≡ ¬¬p), for
n = 5, 8 it is equal to KC [14], and for n = 3, 6 it is CPC (nf6 ≡ ¬¬p → p,
substituting A ∨ ¬A for p shows that the corresponding logic is CPC). This
treats the cases n ≤ 6 and n = 8. For n ≥ 9 we show that V1 is not admissible
for NLn. Since for even n ≥ 10 the logics NLn have the disjunction property
[18], this will imply that V −

1 is not admissible for n ≥ 10 (see the section on the
disjunction property), and whence prove the theorem.
To prove that V1 is not admissible, we will use the following fact.

Fact 22 [14] NLn 6` NLm for all 7 ≤ m < n.
For all l, for all k ≥ l + 3: IPC ` (nfl → nfk).
For all l: IPC ` (nf2l+2 ∨ nf2l ≡ nf2l+3).

The main ingredient of the proof is the following claim.
Claim For all n, if V1 is admissible for NLn, then for all even k ≥ 8, for all A,

NLn ` nfk ∨A ⇒ NLn ` nfk−4 ∨ nfk−6 ∨A. (2)

Proof of the Claim Assume V1 is admissible for NLn and NLn ` nfk for some
even k ≥ 8. Note that the assumption that k ≥ 8 guarantees that nfk−8, . . . , nfk

are all well-defined. Since k is even

nfk = nfk−2 → nfk−3 = (nfk−4 → nfk−5) → nfk−4 ∨ nfk−5.

Thus we can apply V1 to nfk ∨A and obtain

NLn ` (nfk−2 → nfk−4) ∨ (nfk−2 → nfk−5) ∨A. (3)

Using that

nfk−2 → nfk−5 = (nfk−4 → nfk−5) → nfk−6 ∨ nfk−7,

we can apply V1 to (3) again. This gives

NLn ` (nfk−2 → nfk−4) ∨ (nfk−2 → nfk−6) ∨ (nfk−2 → nfk−7) ∨A.

Consider the first disjunct (nfk−2 → nfk−4). Since nfk−4 = nfk−6 → nfk−7,
this disjunct is equivalent to nfk−2 ∧ nfk−6 → nfk−7. Using Fact 22, it follows
that this is equivalent to nfk−6 → nfk−7. Again by Fact 22, IPC ` nfk−6 →
nfk−2. Therefore, the third disjunct implies nfk−6 → nfk−7. All this gives

NLn ` (nfk−6 → nfk−7) ∨ (nfk−2 → nfk−6) ∨ (nfk−6 → nfk−7) ∨A.
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Using the definition of the nf ’s this gives

NLn ` nfk−4 ∨ (nfk−2 → nfk−6) ∨A. (4)

Finally, we have to distinguish two cases. If k ≥ 9, similar considerations as
above show that the second disjunct of (4) is equivalent to nfk−8 → nfk−9 =
nfn−6. This leads to

NLn ` nfk−4 ∨ nfk−6 ∨A. (5)

If k = 8, the second disjunct of (4) is nf6 → nf2 = nf6 ∧ p → ⊥, which is
equivalent to ¬p = nfk−6, as (p → nfk−6) by Fact 22. This also leads to (5), as
desired. This proves (2), and thereby the claim. 2

We continue with the proof of the theorem by showing that for all n ≥ 9, the
assumption that V1 is admissible for NLn leads to a contradiction. We treat the
odd and even cases separately.
First, assume V1 is admissible for NLn, for some even n ≥ 10. Since NLn ` nfn,
application of the Claim (take A empty) gives

NLn ` nfn−4 ∨ nfn−6. (6)

We distinguish the cases n = 10 and n ≥ 12. If n = 10, we have

nfn−4 ∨ nfn−6 = nf6 ∨ nf4 ≡ nf7.

The equivalence follows from Fact 22. Together with (6) this implies NL10 ` NL7,
contradicting Fact 22. For the case of the even n ≥ 12, a second application
of the Claim, with A = nfn−6, to (6) leads to NLn ` nfn−8 ∨ nfn−10 ∨ nfn−6.
Note that we can apply the Claim because n ≥ 12 implies that n − 4 ≥ 8. By
Fact 22,

IPC ` (nfn−6 ∨ nfn−8 ∨ nfn−10) → (nfn−3 ∨ nfn−2 ∨ nfn−1).

As (nfn−3 ∨ nfn−2 ∨ nfn−1) ≡ nfn−1, we can conclude NLn ` nfn−1, and thus
NLn ` NLn−1, which contradicts Fact 22.
Second, assume V1 is admissible for NLn, for some odd n ≥ 9. Observe that
NLn ` nfn−1 ∨ nfn−2. Applying the Claim (with A = nfn−2) gives

NLn ` nfn−5 ∨ nfn−7 ∨ nfn−2. (7)

Since nfn−2 = nfn−3 ∨ nfn−4 and nfn−4 = nfn−5 ∨ nfn−6 this gives

NLn ` nfn−3 ∨ nfn−5 ∨ nfn−6 ∨ nfn−7. (8)

If n = 9, this disjunction is equal to nf6 ∨ (nf4 ∨ nf3) ∨ nf2 ≡ nf6 ∨ nf5 ∨ nf2.
Using Fact 22 this is again equivalent to nf6 ∨ nf5 = nf7. Thus (8) gives
NL9 ` NL7, contradicting Fact 22. For the odd n ≥ 11, we apply the Claim
again to (8), with A = nfn−5 ∨ nfn−6 ∨ nfn−7. This can be done as n ≥ 11,
whence n− 3 ≥ 8. This leads to

NLn ` nfn−5 ∨ nfn−6 ∨ nfn−7 ∨ nfn−9.

By Fact 22 this implies NLn ` nfn−1, and thus NLn ` NLn−1, which contradicts
Fact 22. 2
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