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On the occasion of the 65th birthday of Dick de Jongh

1 INTRODUCTION

My first encounter with the theory of computation was the basic course on this
subject by Dick de Jongh in the spring of 1991. For years to follow, Dick would
be one of my teachers in mathematical logic. Close colleagues of Dick will know
that this did not actually involve a lot of teaching, but rather the presence of
a steering force, sometimes working in mysterious ways. For example, I cannot
boast to actually having proved a theorem together with Dick, but indirectly
he has been responsible for me proving a number of theorems, for example in
learning theory.

Although recursion theory never was the focus of Dick’s own research, he has
always had a serious interest in it, and encouraged me to study this field from
the beginning. Intuitionistic logic and constructivism being his major scientific
interests he had good reasons to be interested in it too, since there are of course
many relations between these topics.

In this paper we illustrate one way in which constructive logic and com-
putability theory are related, namely through the structure of the Medvedev
degrees. This is a very rich structure from computability theory (e.g. it contains
the Turing degrees, as an upper semilattice) that can be used as a semantics for
propositional logic. Thus, the study of the Medvedev degrees, involving the full
range of techniques from computability theory, connects various constructions
and results from this area to other parts of mathematical logic, in this case proof
theory. In section 2, we review the basic definitions of the Medvedev lattice.
In section 3 we then discuss the connection with logic and recall a beautiful
theorem about the intuitionistic propositional calculus. In section 4 we take
some steps in exploring the algebraic structure of the Medvedev degrees. In
particular we discuss join-irreducible elements, that are related to the weak law
of the excluded middle. In section 5 we make some remarks on the Medvedev
degrees of II{ classes and their connection to constructive logic. In particular,
we discuss the TIY class of complete extensions of Peano Arithmetic. Finally, in
section 6 we discuss autoreducible degrees.
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2 THE MEDVEDEV LATTICE

First we briefly recall the definition of the Medvedev lattice 9, originally in-
troduced in Medvedev [9]. Let w denote the naturals and let w* be the set of
all functions from w to w (Baire space). A mass problem is a subset of w*. We
think of such subsets as a “problem”, namely the problem of producing an ele-
ment of it, and so we can think of the elements of the mass problem as its set of
solutions. We say that a mass problem A Medvedev reduces to mass problem B
if there is an effective procedure of transforming solutions to B into solutions to
A. Formally: A < B if there is a recursive functional ¥ : w* — w® such that for
all f € B, U(f) € A. This can be seen as an implementation of Kolmogorov’s
idea of a calculus of problems. The relation < induces an equivalence relation
on the mass problems: A= B if A < B and B < .A. The equivalence class of A
is denoted by [A] and is called the Medvedev degree, or the degree of difficulty
of A. We usually denote Medvedev degrees by boldface symbols. Note that
there is a smallest Medvedev degree, denoted by 0, namely the degree of any
mass problem containing a recursive function. There is also a largest degree 1,
the degree of the empty mass problem, of which it is impossible to produce an
element by whatever means. Finally, it is possible to define a meet operator
x and a join operator + on mass problems: For functions f and g, as usual
define the function f @& g by f @ ¢g(2z) = f(z) and f ® g(2z + 1) = g(x). Let
n A= {n"f:fe A}, where " denotes concatenation. Define

A+B={f®dg: fec Arge B}
and
AxB=0"AU1B.
It is not hard to show that x and + indeed define a greatest lower bound and

a least upper bound operator on the Medvedev degrees:!

Theorem 2.1 (Medvedev [9]) The structure M of all Medvedev degrees, ordered
by < and together with X and + is a distributive lattice.

Let F = { ff nonrecursive}. We note the following important fact, namely
that for all mass problems A, if [A] £ 0 (i.e. A does not contain any recursive
function) then F < A via the identity. That is, the Medvedev degree of F,
which is denoted by 0’, is the unique nonzero minimal degree of 9.

IThere is an annoying notational conflict between the various papers in this area. Sorbi
[20] maintains the usual lattice theoretic notation with A for meet and V for join, but e.g.
Rogers [13] and Skvortsova [16] use A and V exactly the other way round! The advantage of
the latter choice will become clear below, namely that A and V then nicely correspond with
“and” and “or” in the propositional logic corresponding to the lattice (see section 3). To avoid
headaches we have introduced separate notation for the lattices (+ for join and X for meet)
and the logic (the usual A for “and” and V for “or”) here. This is in line with notation that
is used in some textbooks on lattice theory, cf. [1]. It has as an additional advantage that the
join operator + in 9J1 corresponds to the usual notation @ for the join operator in the Turing
degrees.



A distributive lattice £ with 0, 1 is called a Brouwer algebra if for any
elements a and b one can show that the element a — b defined by

a—»b:zleast{c€£1b§a+c}
always exists. We even have:
Theorem 2.2 (Medvedev [9]) M is a Brouwer algebra.

Proof. Define A — B = {n"f: (Vg € A)[®,(g9& f) € B]}, where ®,, is the n-th
partial recursive functional. O

£ is called a Heyting algebra if its dual is a Brouwer algebra. Sorbi [17] has
shown that 90t is not a Heyting algebra. Some more discussion and facts about
M can be found in Rogers [13]. A good survey of what is known about 91 is
Sorbi [20], where also a more complete list of references can be found.

We conclude this section with one more definition that we will use later.
Note that A < B means that there is a uniform way to transform solutions
for the one problem into solutions to the other. There is also an interesting
nonuniform variant of this definition [11]: We say that A Muchnik reduces to
B, denoted A <,, B, if (Vf € B)(3g € A)[f <r g], where <p denotes Turing
reducibility. The corresponding degrees are called Muchnik degrees. They form
a distributive lattice in the same way as the Medvedev degrees.

Define C(A) = {f : (3e)[®c(f) € A}, where @, is the e-th partial recursive
functional. The Muchnik degrees can be seen as a sublattice of the Medvedev de-
grees by the embedding [A] — [C(A)]. The Muchnik degrees are then precisely
the Medvedev degrees that contain a mass problem A such that C(A) = A.
This is equivalent to saying that A is upward closed under Turing reducibility.

3 LOGIC AND COMPUTATION

Ever since Heyting wrote down the axioms of intuitionistic logic (in 1930), people
have tried to give a semantics for this logic that explains their constructive
content. Many people felt that such an explanation should have something to
do with the theory of computation, but most approaches based on this idea
(such as Kleene’s realizability) failed to capture intuitionistic provability. As
we have seen, the Medvedev lattice implemented an idea of Kolmogorov that
was also supposed to give a computational meaning to the logical connectives.
Below we make precise what is meant by this, and point out that unfortunately
also this approach does not succeed to capture intuitionistic logic, at least not
directly. However, a slight extension of the idea does work, and gives us, in
an algebraically very natural way, a computational semantics for intuitionistic
propositional logic ITPC.

In section 2 we have already defined the operations x, +, and — on 9.
We can also define a negation operator — by defining —A = A — 1 for any
Medvedev degree A.



Given any Brouwer algebra £ (such as 9t) with join denoted by + and
meet by X, we can evaluate formula’s as follows. An £-valuation is a function
v : Form — £ from formulas to £ such that for all formula’s « and 3, v(ax §) =
v(a) Vo(B), v(a+B) = v(a) Av(B), v(ia — B) = v(a) — v(B), v(-a) = v(a) —
1.2 Write £ |= « if v(a) = 0 for any £-valuation v. Finally, define

Th(g) = {a: £ = a}.

On page 289 of Rogers [13] it is stated that Medvedev has shown that the iden-
tities of Mt (i.e. Th(9M)) are the theorems of IPC, the intuitionistic propositional
calculus. This however seems to be a misquotation. It is certainly not true that
Th(?M) = IPC. (That would have been a great result!) Indeed, it is easy to
see that for every A € 9 we have that either —A = 0 or =A = 1, hence that
always 2A x =—A = 0. That is, 9 satisfies the weak law of the excluded middle
—a V ——a. In fact, we have the following result:

Theorem 3.1 (Medvedev [10]3, Sorbi [18]) Th(9M) is the deductive closure of
IPC and the weak law of the excluded middle (Jankov logic).

This is already very interesting, but in the light of our quest for a computational
semantics for IPC it may be a disappointment. Since 9T does not do the trick, we
need to look at other Brouwer algebras. A very natural idea, from an algebraic
point of view, is to look at factors of M, i.e. to study 9 modulo a filter or an
ideal. Given a Brouwer algebra £ and an ideal I in £, £/I is still a Brouwer
algebra. If G is a filter in £ then £/G is not necessarily a Brouwer algebra,
but if G is principal then £/G is again a Brouwer algebra. In such a factorized
lattice G plays the role of 1. E.g. if G is the principal filter in 9t generated by
the degree D then negation in 9/G can be defined by -A = A — D.

Now it is quite easy to find a factor /G of M such that Th(M/G) is
classical propositional logic. (Take G the principal filter generated by 0’, the
degree containing the set of all nonrecursive functions, see page 2. Note that
0’ =1 in M/G, so that M/G has exactly the elements 0 and 1, corresponding
to the classical truth values 1 and 0, respectively.) Of course, what we really
would like is a factor of 9t that captures IPC. That such a factor indeed exists
is the content of the following beautiful theorem.

Theorem 3.2 (Skvortsova [16]) There exists a principal filter G such that the
theory Th(M/G) equals TPC.

The proof of Theorem 3.2 consists of a number of clever algebraic coding tech-
niques, combined with some computability theory. Through a series of lattice
embedding results (including one by Lachlan for the Turing degrees) it is shown
that the magic interval can be found. The main problem is the control of the
infima, which is taken care of by making use of so-called canonical subsets on

2Note the upside-down reading of A and V when compared to the usual lattice theoretic
interpretation, see also footnote 1.
3Medvedev [10] actually proved that the positive fragments of Th(9) and IPC coincide.



which the infima are well-behaved. As a canonical subset of 9 those degrees
are used that contain a mass problem that is upward closed under Turing re-
ducibility. Note that these are precisely the Muchnik degrees defined at the end
of section 2. So, interestingly, both the Turing degrees and the Muchnik degrees
play a role in the proof of Theorem 3.2.

4 TRREDUCIBLE ELEMENTS

In the previous section we saw how the algebraic structure of 9t and its factors
9M/G relates to the theories Th(9M/G). In this section we discuss one special
aspect of the algebraic structure of 91, namely its join-irreducible elements.
Recall that an element a of a lattice £ is join-reducible if there are b, ¢ € £ such
that a = b+ cand a £ b, a £ ¢. In this case we say that a splits into b and c.
In this section we discuss the join-irreducible elements of 9. For a discussion
of the dual notion of meet-reducibility see e.g. [20]. Join- and meet-irreducible
elements also play a crucial role in various results about embeddings of degree
structures that are needed in the proof of Theorem 3.2.

In Theorem 3.1 we saw that 91 satisfies the weak law of the excluded middle
=« V =~ This is due to the fact that 1 is join-irreducible, as the following
proposition shows.

Proposition 4.1 Let G be the principle filter generated by Medvedev degree D.
Then the weak law of the excluded middle holds in M/G if and only if D is
join-irreducible.

Proof. Suppose that D is join-reducible, say A and B are incomparable such
that A + B = D. First note that -A # 1 in 9M/G (where 1 is now the top
element D of M/G) because ~A < B ¢ G. Hence =—A # 0, for otherwise it
would hold that D < —A. Also, —A # 0 since A ? D. Now from —A # 0 and
——A # 0 it follows that =A x ==A # 0, since 9 does not have any minimal
pairs (because there is exactly one nonzero minimal degree 0’ in 9, see page
2). So the weak law of the excluded middle does not hold in 9/G.

Conversely, if D is join-irreducible it is easy to see that for A # 1 we have
that =A = 1. Since -1 = 0 we then have that -A x =—=A = 0 for every A. O

In fact, Sorbi proved the following theorem about the connection between irre-
ducible elements and the theories Th(9/G):

Theorem 4.2 (Sorbi [19, Theorem 4.3]) For every principal filter G generated
by a join-irreducible element greater than 0’ it holds that Th(9M/G) = IPC +
oV .

The Medvedev degrees 0 and 1 are trivial examples of join-irreducible ele-
ments. More interesting examples of irreducible elements are the degrees [By],
for any nonrecursive f, where By is defined as By = {g : g £7 f}, cf. Sorbi
[18]. (To see that [By] is join-irreducible suppose that By = A + C and that
By £ A. Then it cannot be that A C By (for otherwise the identity would be



a reduction) so there is h € A with h <7 f. Now By < {hEBg 1g € C}, via
¥ say. But then ¥(h @ g) <p h® g £r f, hence all g € C satisfy g L1 f. So
By < C via the identity.) Notice that [B] together with [{f}] forms a maximal
antichain of size two in 9.

Splittings in the Turing degrees give many examples of join-reducible ele-
ments of M, as the next lemma shows.

Lemma 4.3 (Sorbi [20]) Suppose A is a mass problem such that the following
condition holds:

There exist functions g, h & C(A) such that g|rh and g ® h € C(A). (1)
Then the Medvedev degree [A] is join-reducible.
Proof. If condition (1) holds then it is easy to see that
[A] = [Ax {g}] + [A x {n}].

On the other hand, by incomparability of g and h and the fact that they cannot
compute anything in A, it follows that the degrees [A x {g}] and [A x {h}] are
incomparable. ([

Problem 5.4 in Sorbi [20] asks for a characterization of the join-irreducible el-
ements of M. Below we show that condition (1) of Lemma 4.3 characterizes
the join-reducible Muchnik degrees, and that it does not characterize the join-
reducible elements of 9. We then point out how an easy generalization of the
condition characterizes the join-irreducible elements of 9.

Recall from section 2 that the Muchnik degrees are precisely the Medvedev
degrees containing a mass problem A such that A = C(A).

Proposition 4.4 Condition (1) characterizes the join-reducible Muchnik de-
grees.

Proof. Suppose that [A] is a Muchnik degree. Lemma 4.3 holds for the Muchnik
degrees just as well as for the Medvedev degrees, so we only have to show that if
condition (1) does not hold for A then A is join-irreducible. So suppose (1) does
not hold, and suppose that 4 =B+ C and A £ B. We show that A < C. Since
A= C(A), A £ B implies that there is g € B\ C(A). Now A< {gBh:h€C},
via ¥ say. But then, since ¥(g@h) <7 g®h, all h € C must be in C(A). Hence
A = C(A) < C via the identity. O

In Dyment* [4] it was shown that every Muchnik degree is meet-reducible.
Proposition 4.4 points out a way in which a Medvedev degree [A] can be

join-reducible without satisfying condition (1): It may happen that B C C(.A)

but that nevertheless A £ BB because there is no uniform procedure that reduces

A to B.

4It may be informative to note that E. Z. Dyment and E. Z. Skvortsova are in fact the
same person.




Theorem 4.5 Condition (1) does not characterize the join-reducible elements
of M: There is a join-reducible Medvedev degree [A] such that (1) does not hold.

Proof. We prove this by constructing such an A4 by brute force. Let B, C.,
e € w, be subsets of w such that their Turing degrees form a strongly independent
set. That is, for any e, B. does not Turing reduce to any finite join of B;’s,
j # e, and Cj’s. Moreover, we need that B. does not bound a minimal Turing
degree, and that there are sets B, <p B, such that B/ is not below any finite
join of B;-’s, Jj # e, and Cj’s. That all this is possible follows from standard
results about lattice embeddings into the Turing degrees.’
Now define ¢’ = {C. : e € w},

B' = {B.:®.(B.) # B} U{B.: ®.(B.) = B.},
(where ®. is the e-th partial recursive functional) and

A = {f:f£&r X for any X that is the join of
finitely many elements from C’} \
({®e(Be) : ®e(Be) total} U {®c(B)) : ®c(B,) total}).

Finally, define B=Ax B, C=AxC'. Then B,C < Aso B+C < A We
further prove that A < B+C, A £C’, A £ B’, and that A satisfies the negation
of condition (1).

A < B+ C: It is enough to show that A < B’ + C’. For this it is in turn
enough to see that for all g € B’ and h € C’, g® h € A. That g ® h is not
below a finite join of elements from C’ follows from the strong independence
assumptions on the Bj, B, and Cj;’s. That g ® h is not equal to any ®.(B.) or
. (B.) also follows from these independence properties, since ®.(B.) <1 B..

A £ C’: This is clear since C’ is contained in the complement of C'(A).

A £ B': This is by construction of A; When ®.(B,) # B, then B, € B’ and
®.(B.) € A (either because ®.(B.) is not total or by definition of .4). When
®.(B.) = B, then B, € B’ and ®.(B.) ¢ A. So ®. cannot be a reduction from
A to B’ for any e.

A satisfies —(1): Let J be the set of all functions whose Turing degree is
bounded by a finite join of elements from C’. Note that the elements of 7 satisfy
—(1) (i-e. no two functions from J together compute an element from .A) by
definition of A. Now suppose that g ¢ C(A). Then g ¢ A, so either g € J
or g = ®.(Be) or g = ®.(B)). In the latter two cases ¢ <t Be, and hence g
is not minimal since by assumption B, bounds no minimal degrees. Hence in
both cases g € C(A) because we can always find an element below g unequal to
. (B.) and ®.(B). So the only g ¢ C(A) are the ones in 7, and these satisfy
=(1). O

50ne can use here the result of Lachlan and Lebeuf [7] that every countable upper semi-
lattice with a least element is isomorphic to an initial segment of the Turing degrees. See e.g.
Lerman [8].



Lemma 4.3 gives a special example of a situation where [A] is join-reducible,
namely when an f € A can be split into g and & both not in C(A). We conclude
with the observation that if we generalize g and h to sets of functions we more or
less get the definition back: [A] is join-reducible if and only if there is a set of g’s
that do not uniformly compute elements in A (generalizing that g ¢ C(A)) and
a set of h’s that also does not uniformly compute elements in A (generalizing
that h ¢ C(A)), such that the pairs g @ h uniformly compute elements of .4
(generalizing that g ® h € C(A)).

5 IIY CLASSES AND PA-COMPLETE SETS

Simpson (see e.g. [15, 14]) introduced the structure B of Medvedev degrees of
nonempty 119 subsets of 2¢. This is a lattice under Medvedev reducibility in
the same way as 91, with meet x and join + defined as before. 3 has smallest
element 0, the degree of 2, and largest degree 1, the degree of the class of
all PA-complete sets. (A set is PA-complete if it computes a complete and
consistent extension of Peano Arithmetic.)

The following is a sample of results showing what is possible for I1{ classes
under Medvedev reducibility. The list is far from exhaustive.

e (Jockusch and Soare [6]) There is a minimal pair of ITY classes.
e (Cenzer and Hinman [3]) P is dense.

e (Binns [2]) Every degree in 8 splits in two lesser ones.

Part of Simpsons motivation to study P are the interesting connections with
the area of reverse mathematics. There are many other interesting connections,
e.g. with the theory of randomness, see Simpson [15] and Terwijn [21].

Now what about the logic of 87 First note that the definitions of x and +
are unproblematic, since they are computable operators, so when restricted to
119 classes they yield again I1{ classes. But this is not the case for the implication
operator —. On the face of it the definition of A — B in M is I} in A and
B. Although it is currently open whether B is indeed not a Brouwer algebra it
seems unlikely that this is the case. We do however have:

Theorem 5.1 (Terwijn [21]) B is not a Heyting algebra.

If B does not admit an — operator, it does not make sense to ask what its
propositional theory is. But we can go to a larger structure, like 91, where —
does exist. Note however that in 9 we work with subsets of w* and in B with
2“. First we note that as far as the logics of these structures is concerned this
does not make a difference. Denote by 9y 1 the lattice of Medvedev degrees of
subsets of 2¢.

Fact 5.2 e Th(Mp 1) =IPC + -V —a.
o There exists a principal filter G C Mo 1 such that Th(My,1/G) = IPC.



Proof. The first item follows by inspection of Sorbi’s proofs in [18, 19]. The
second item follows by inspection of Skvortsova’s proof [16]. Both authors, like
Medvedev, work in w*. The big difference with 2 is of course that the latter
is compact, but for these proofs this difference is immaterial. O

Let PA be the class of PA-complete sets. For brevity let us write Th(9t/PA)
for Th(M/G), where G is the principal filter generated by PA. Now we can ask
the following

Question 5.3 What is Th(Mo,1/PA) ¢ In particular, is it equal to IPC ¢
We close by making a number of remarks regarding this question.

1. If indeed Th(My 1 /PA) = IPC this would give a natural example of a filter
satisfying Theorem 3.2. It would be very interesting to find such natural
examples.

2. Note that Th(9,1/PA) contains IPC and that it is strictly less than
IPC + —a V =—a since the top element of 91 1 /PA splits by Binns result
[2], so that the weak law of the excluded middle does not hold in it, cf.
Proposition 4.1.

3. Skvortsova [16] proved that for every Muchnik degree A € 9t the theory
Th(9Mt/A) satisfies the Kreisel-Putnam formula

(p—qVr)—=(p—qV(p—r), (2)

which shows that these theories are strictly larger than IPC. Now it is
not immediately clear whether [PA] is a Muchnik degree: Although it is
known by a result of Solovay (cf. [12, p511]) that the Turing degrees of PA
sets are upwards closed , PA is itself not upwards closed. But of course
[PA] might contain some other upwards closed set. Proposition 5.4 below
shows that this is not the case.

4. By Proposition 5.5 below PA is effectively homogeneous. It follows from
this and the analysis in Skvortsova [16] that the degree of PA itself satisfies

(p—=qVr)—=m@—qV({p—r), (3)

where p is interpreted by the degree of PA and ¢ and r by arbitrary
Medvedev degrees.

Proposition 5.4 [PA] is not a Muchnik degree.

Proof. N.B. this result holds both for 9t and for My ;. We have to show
that [PA] does not contain a set that is upwards closed. So let A be upwards
closed under Turing reducibility. We show that A £ PA. Fix any computable
functional ®, and suppose that A < PA via ®. Since A is upwards closed it is



in particular dense in the usual topology on 2“. From this it follows that for
every X € 2%,
®(X) total = ®(X) € PA.

Because A is dense and a subset of the domain of ®, we can construct a com-
putable X such that ®(X) is total by looking for larger and larger segments on
which @ is defined. But then ®(X) is a computable element of PA, contradic-
tion. O

For any finite string o and any mass problem A let A, denote {f € A: f J0o}.
A is called effectively homogeneous [16] if A, < A in a uniform way, i.e. if there
is a partial recursive function ¢ that is defined for all o such that A, # () and
such that in this case ¢(0) is a code of a computable functional mapping A into

A,
Proposition 5.5 The class of PA-complete sets is effectively homogeneous.

Proof. We think of theories such as PA as coded by binary strings. Let X <Y
denote that theory Y faithfully interprets X. First we note that for any finite
string (theory) o that is consistent with PA it holds that PA + ¢ < PA. This
holds in fact effectively and uniformly in o: There is a computable function f
such that for every PA-consistent string o and every first-order formula ¢,

PA+ot <= PAF f(o,p).

Given an initial segment o of a set in PA, and given A € PA, define A’ 1 ¢ by
putting ¢ into A’ if and only if f(o,¢) € A. Then A’ € PA and A’ 3 0. This
works uniformly for all A € PA, so PA, < PA. O

6 VARIATION ON A THEME: AUTOREDUCIBILITY

In computability theory, a set A is called autoreducible if A can compute the
answers to membership questions of the form “x € A 7”7 without using the bit
A(z), that is, if there is a code e such that for all z, {e}4~{*}(z) = A(z). E.g. for
every set A one can easily see that A @ A is autoreducible, since all information
of the form x € A is doubly stored. This shows that every m-degree contains
an autoreducible set (Trakhtenbrot). A noncomputable degree is completely
autoreducible if it contains only autoreducible sets. That there is a completely
autoreducible Turing degree was shown by Jockusch and Paterson [5], using the
same method with which one can build a minimal Turing degree. Now let us
define in an analogous way autoreducibility for Medvedev degrees:

Definition 6.1 A mass problem A is autoreducible if for every f € A, A—{f} <
A. A Medvedev degree is autoreducible if it contains an autoreducible mass
problem, and completely autoreducible if it contains only autoreducible mass
problems.

10



First we note that every Medvedev degree is autoreducible: Given any mass
problem A4, A+ A = A and A + A is autoreducible. (Note the similarity to
Trakhtenbrots argument for sets quoted above.) Next we turn to completely
autoreducible degrees.

Proposition 6.2 There exists a completely autoreducible Medvedev degree.

Proof. Let A = {X,, : n € w} be a uniform sequence of sets of descending Turing
degree: X, 11 <p X, for every n and there exists a computable functional ¢
such that ®(X,) = X,,+1 for every n. Such a sequence can be constructed by
standard methods (even in the c.e. degrees), cf. [12]. Now suppose that B = A.
Then B is also autoreducible: Suppose that A < B via ¥y and B < A via ¥;.
Suppose Y € B. Suppose that ¥o(Y) = X,,. Let ®™ denote the n-th iterate
of ®. Then for every X € B, ¥} 0 ™ o U((X) € B, and moreover

U0 owg(X) <p @Yo ¥y(X)
<r (I)(nJrl) (XO)

<T Xn
<r Y
for every X € B. In particular B — {Y'} < B via ¥; 0 ("1 o @, O

We could also have defined a mass problem A to be autoreducible if {f} <
A—{f} for every f € A. (The reader may be of the opinion that this definition
more closely resembles the one from computability theory.) Under this alterna-
tive definition the autoreducible Medvedev degrees are precisely the degrees of
solvability, i.e. the ones containing a mass problem of the form {f}:

Proposition 6.3 Under the new definition, A is autoreducible if and only if
A={f} for some f.

Proof. Every degree of solvability is autoreducible because {f} + {f} is au-
toreducible. Conversely, if A is autoreducible then we claim that {f} = A for
some f € A: If A contains an isolated branch f (in the usual tree topology on
w*) then this is easy to see: Suppose o € w<¥ is a finite string such that f is
the only element of A extending o. Then {f} < A by using the functional for
{f} < A—{f} for elements that do not extend o, and by using the identity
otherwise.

Now suppose that A has no isolated branches. Then in particular A is
uncountable. By autoreducibility for every f € A there is a computable func-
tional ® such that {f} < A — {f} via ®;. Since A is uncountable, and since
there are only countably many computable functionals, there must be f, g € A,
[ # g, such that ®; = ®,. We then have that {f} < A — {f} via &, and
{9} < A—{g} via ®,. Let ¥ be such that {f} < {f,g} via U. (¥ exists since
by autoreducibility f =1 ¢g.) Then for all h € A, Vo ®,(h) = f, hence {f} < A
via U o ®,. O

Since for noncomputable f clearly {f} is not autoreducible, we see that under
this definition noncomputable completely autoreducible degrees do not exist.
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