Sesquilinear forms: A crash-course-survey

Robert W. van der Waall

Abstract

It is perhaps a surprising fact that among all sesquilinear forms over a field, only the orthogonal, symplectic and unitary forms are of (essential) interest. A (condensed) survey around this theme will be shown here. No originality is claimed on our investigations as such.

1 Introduction

In this so-called crash-survey we will deal with sesquilinear forms. It will be shown that there are only a few such ones being of essential interest. We start with some definitions and we will state some well-known "special" cases by means of "Examples-definitions". The symbol F stands for an arbitrary field, ϑ means a field-automorphism of F, and V is a finite dimensional vector space over F.

Definition 1 A map $f: V \times V \to F$ is a sesquilinear form (relative to ϑ) if f satisfies

$$f(x + y, z) = f(x.z) + f(y, z),$$

$$f(x, y + z) = f(x.y) + f(x.z),$$

$$f(ax.y) = a \cdot f(x.y),$$

$$f(x.ay) = a^{\vartheta} \cdot f(x,y),$$

for all $x, y, z \in V$ and $a \in F$.

Examples-definitions Let f be a sesquilinear form.

- 1. If ϑ is the identity-automorphism of F, then f is a bilinear form.
- 2. a. f is a symmetric form, if f is bilinear and f(x,y) = f(y,x) for all $x, y \in V$.
 - b. f is a **skew-symmetric** form, if f is bilinear and f(x,y) = -f(y,x) for all $x,y \in V$.
- 3. If ϑ^2 is the identity-automorphism of F, but ϑ is not, and if also $f(x,y) = (f(y,x))^{\vartheta}$ for all $x,y \in V$, then f is a **hermitian-symmetric** form.

Let us consider the radical Rad(V) of V relative to a sesquilinear form f.

Definition 2 Define Rad(V) as Rad(V) := $\{v \in V \mid f(x, v) = 0, \forall x \in V\}$. If Rad(V) = $\{0\}$, then f is non-degenerated (in short: n-d).

Observe that $\operatorname{Rad}(V)$ is a subspace of V (i.e. whenever $x,y\in\operatorname{Rad}(V)$ and $a\in F$, it follows that $x\pm y$ and ax (and ay) belong to V.

Examples-definitions Let f be a sesquilinear form.

- 4. a. Suppose that the characteristic Char(F) of F is not equal to 2. Then f is an **orthogonal** form if f is n-d and symmetric.
 - b. Suppose $\operatorname{Char}(F)=2$. Then f is an **orthogonal** form if f is n-d and symmetric and where it also has to hold that f(x,x)=0 for all $x\in V$.
- 5. Suppose $\operatorname{Char}(F) \neq 2$. Then f is a **symplectic** form if f is n-d and skew-symmetric.
- 6. f is a **unitary** form, if f is n-d and hermitian-symmetric. Here no restriction relative to Char(F) is required.

Concrete examples

A. Let $x, y \in V$ with $\dim_F(V) = n$. Then, if the coordinates of x ("relative to the standard basis") are $\{\alpha_1, \ldots, \alpha_n\}$, and $\{\beta_1, \ldots, \beta_n\}$ that of y, the form f defined by

$$f(x,y) = \sum_{i=1}^{n} \alpha_i \beta_i$$

gives rise to an **orthogonal** form if $Char(F) \neq 2$.

B. Let here $\dim_F(V) = n = 2m$. Then, for all $x, y \in V$ (as meant in A), the form f defined by

$$f(x,y) = \sum_{i=1}^{m} (\alpha_i \beta_{2m-i+1} - \alpha_{2m-i+1} \beta_i)$$

gives rise to a symplectic form if $\operatorname{Char}(F) \neq 2$, or to an orthogonal form if $\operatorname{Char}(F) = 2$.

C. for all $x, y \in V$ (as meant in A), the form f defined by

$$f(x,y) = \sum_{i=1}^{n} \alpha_i \beta_i^{\vartheta}$$

gives rise to a **unitary** form if there exists such a field automorphism ϑ of F, being of order 2.

Now observe that all the examples-definitions satisfy the "commuting-zero-values"-condition (in short: czv):

Whenever $u, t \in V$ satisfy f(u, t) = 0, it follows invariably that f(t, u) = 0.

The sesquilinear forms f and f' are equivalent if there exists a constant $\alpha \in F \setminus \{0\}$ such that $f(x,y) = \alpha f'(x,y)$ for all $x,y \in V$ (i.e. α does not depend on the choice of the elements x,y of V).

We close the Introduction with a Lemma on functionals needed furtheron. Remember that a map $\varphi: V \to F$ is a linear functional if $\varphi(ax+by) = a\varphi(x) + b\varphi(y)$ for all $x,y \in V$ and all $a,b \in F$; the map $\psi: V \to F$ is the zero-functional if $\psi(v) = 0$ for each $v \in V$. Further it is mentioned that F^* stands for the set $F \setminus \{0\}$.

Lemma 1 Let $\varphi: V \to F$ and $\psi: V \to F$ be linear functionals with equal zero-sets (i.e., $\varphi(v) = 0$ if and only if $\psi(v) = 0$). Then there exists $\alpha \in F^*$ such that $\varphi(w) = \alpha \psi(w)$ holds independently of the choice of w in V.

Proof We may assume that none of φ and ψ represent the zero-functional. Therefore, there exists $u \in V$ with $\varphi(u) \neq 0$ and $\psi(u) \neq 0$. Consider any $v \in V$ with $\varphi(v) \neq 0$ (whence $\psi(v) \neq 0$). Thus there exist $\alpha \in F^*$ with $\varphi(u) = \alpha \psi(u)$, $\beta \in F^*$ with $\varphi(v) = \beta \psi(v)$, and $\gamma \in F^*$ with $\varphi(u) = \gamma \psi(v)$.

Now $\varphi(u-\gamma v)=\varphi(u)-\gamma\varphi(v)=0,$ whence $0=\psi(u-\gamma v)=\psi(u)-\gamma\psi(v).$ It holds then, that

$$0 = \varphi(u) - \gamma \varphi(v) = \alpha \psi(u) - \gamma \beta \psi(v) = \alpha \psi(u) - \beta \psi(u) = (\alpha - \beta) \psi(u).$$

As $\psi(u) \neq 0$, $\alpha = \beta$ follows. The lemma has been proved. \parallel

2 On sesquilinear forms satisfying the czv condition

We are going to elucidate the structure of non-trivial sesquilinear forms f satisfying the czv-condition. The following subdivision is in order.

- (α) Suppose f(x, x) = 0 for all $x \in V$.
- (β) Suppose $f(x, x) \neq 0$ for some $x \in V$, and either
 - $(\beta.1.a)$ Let ϑ be of order 2 (i.e. $\vartheta^2 = \mathrm{Id} \neq \vartheta$); or
- $(\beta.1.b)$ Let ϑ be of order at least 3 (i.e. $\vartheta^2 \neq Id$); or
- $(\beta.2)$ Let $\vartheta = Id$.
- Re(α) Suppose f(x,x)=0 for all $x\in V$. Then, for all $u,t\in V$ and $a\in F$, it holds that f(u+t,u+t)=0=f(u,u)+f(u,t)+f(t,u)+f(t,t)=f(u,t)+f(t,u), whence also that, for $a\in F^*$, $af(u,t)=f(au,t)=-f(t,au)=-a^{\vartheta}f(t,u)=a^{\vartheta}f(u,t)$. Now f is non-trivial, so $\vartheta=\mathrm{Id}$ follows, implying that f is skew-symmetric. Moreover, $\mathrm{Rad}(V)\neq V$ as f is not trivial. Thus there exists a subspace W of V for which $f:W\times W\to F$ is orthogonal in case $\mathrm{Char}\,(F)=2$, or symplectic in case $\mathrm{Char}\,F\neq 2$.
- Re(β) The case (β) gives rise to a plethora of possibilities. If we are not in case (β .1.b), then f is certainly not symmetric. For there exists $a \in F$ with $a \neq a^{\vartheta}$; so, as $a \neq 0$ and $f(x, x) \neq 0$ for some $x \in V$, we find for these a and x that $f(ax, x) = af(x, x) \neq a^{\vartheta}f(x, x) = f(x, ax)$.

Re(β .1.a) Let ϑ be of order 2 and suppose that $f(x,x) \neq 0$ for some $x \in V$. Notice that both the maps $\varphi_t : y \mapsto f(y,t)$ and $\psi_t : y \mapsto (f(t,y))^{\vartheta}$ are linear functionals. As f satisfies czv, we see that $\varphi_t(v) = 0$ if and only if $\psi_t(v) = 0$. Therefore we are allowed to apply the Lemma. Thus there exists a constant $\alpha_t \in F^*$, only depending on $t \in V$, such that

$$f(y,t) = \alpha_t(f(t,y))^{\vartheta} \quad (\forall y \in V).$$

Analogously, in the same vain, $\alpha_s \in F^*$ exists with

$$f(y,s) = \alpha_s(f(s,y))^{\vartheta} \quad (\forall y \in V),$$

and $\alpha_{t+s} \in F^*$ exists with

$$f(y, t + s) = \alpha_{t+s}(f(t + s, y))^{\vartheta} \quad (\forall y \in V).$$

Therefore

$$0 = f(y,t) + f(y,s) - f(y,t+s) =$$

$$= \alpha_t (f(t,y))^{\vartheta} + \alpha_s (f(s,y))^{\vartheta} - \alpha_{t+s} (f(t+s,y))^{\vartheta} =$$

$$= (\alpha_t^{\vartheta} f(t,y))^{\vartheta} + (\alpha_s^{\vartheta} f(s,y))^{\vartheta} - (\alpha_{t+s}^{\vartheta} f(t+s,y))^{\vartheta} =$$

$$= (f(\alpha_t^{\vartheta} t + \alpha_s^{\vartheta} s - \alpha_{t+s}^{\vartheta} (t+s), y))^{\vartheta}.$$

Hence

$$0 = f(\alpha_t^{\vartheta} t + \alpha_s^{\vartheta} s - \alpha_{t+s}^{\vartheta} (t+s), y), \text{ for all } y \in V.$$
 (1)

Suppose that $Rad(V) = \{0\}$ and that $dim_F(V) \geq 2$.

Then (1) yields $\alpha_t^{\vartheta}t + \alpha_s^{\vartheta}s - \alpha_{t+s}^{\vartheta}(t+s) = 0$. If t and s are independent over F, then (1) yields $\alpha_t^{\vartheta} = \alpha_s^{\vartheta} = \alpha_{t+s}^{\vartheta}$, whence that $\alpha_t = \alpha_s = \alpha_{t+s}$.

Next suppose that $0 \neq t = \beta s$ for some $\beta \in F^*$ and let us select $z \in V \setminus \langle t \rangle$. Then, analogously as before, $\alpha_t = \alpha_z$ and $\alpha_s = \alpha_z$ follows. Hence $\alpha_t = \alpha_s$ holds also here!

Therefore we see that α_t does not depend on t, i.e. there exists a constant $\alpha \in F^*$ with

$$f(y,t) = \alpha(f(t,y))^{\vartheta}$$
 for all $t, y \in V$.

So.

$$f(y,t) = \alpha(f(t,y))^{\vartheta} = \alpha(\alpha(f(y,t))^{\vartheta})^{\vartheta} = \alpha\alpha^{\vartheta}f(y,t).$$

Now f is non-trivial, and therefore $\alpha \alpha^{\vartheta} = 1$ follows.

If $\alpha = 1$, then f is a **unitary** form. Thus assume $\alpha \neq 1$. Then we will show that there exists $\varepsilon \in F^*$ with $\alpha \varepsilon^{\vartheta} = \varepsilon$. Namely, put $\delta = 1 + \alpha$. If $\delta \neq 0$, then

$$(1+\alpha)((1+\alpha)^{\vartheta})^{-1} = (1+\alpha)(1+\alpha^{\vartheta})^{-1} = = (1+\alpha)(1+\alpha^{-1})^{-1} = \alpha \text{ (as } \alpha\alpha^{\vartheta} = 1),$$

hence indeed $\alpha \varepsilon^{\vartheta} = \varepsilon$ with $\varepsilon = \delta$. If $\delta = 0$, it follows that Char (F) $\neq 2$ (by $\alpha \neq 1$). Hence $\alpha = -1 \neq +1$ and moreover, since ϑ is of order 2, there exists $\beta \in F^*$ with $\beta^{\vartheta} \neq \beta$, thus with $-\beta^{\vartheta} + \beta \neq 0$. Therefore in this case,

$$\alpha = -1 = (-\beta^{\vartheta} + \beta)(-\beta + \beta^{\vartheta})^{-1} = (-\beta^{\vartheta} + \beta)((-\beta^{\vartheta} + \beta)^{\vartheta})^{-1}.$$

Now put $\varepsilon = -\beta^{\vartheta} + \beta$, so that $\alpha \varepsilon^{\vartheta} = \varepsilon$ holds here too. Anyhow, when $\alpha \neq 1$, we find that

$$f(y,t) = \varepsilon(\varepsilon^{\vartheta})^{-1} (f(t,y))^{\vartheta}$$
 for all $t, y \in V$,

yielding

$$\varepsilon^{\vartheta} f(y,t) = (\varepsilon^{\vartheta} f(t,y))^{\vartheta}.$$

Define the map $\hat{f}: V \times V \to F$ by $\hat{f}(y,t) = \varepsilon^{\vartheta} f(y,t)$ whenever $y,t \in V$. Then the constant $\varepsilon \in F^*$ has the property that for all $t,y \in V$

$$\hat{f}(y,t) = \varepsilon^{\vartheta} f(y,t) = (\varepsilon^{\vartheta} f(t,y))^{\vartheta} = (\hat{f}(t,y))^{\vartheta}.$$

Thus f is equivalent to the unitary form \hat{f} .

Now suppose that $Rad(V) = \{0\}$ and that $\dim_F(V) = 1$. Then, for a fixed $x \in V$ with $f(x, x) \neq 0$ (where Fx = V), we see that the map $\hat{f}: V \times V \to F$, defined by

$$\hat{f}(\alpha x, \beta x) := (f(x, x))^{\vartheta} f(\alpha x, \beta x), \text{ with } \alpha, \beta \in F,$$

is a unitary form, equivalent to f.

Next suppose that $Rad(V) \neq \{0\}$.

The vector space V admits a decomposition as a direct sum of subspaces, by means of V = W + Rad(V), where $f|_W$ being the restricted function $f: W \times W \to F$, is non-degenerated, i.e.

$${u \in W \mid f(u, w) = 0 \text{ for all } w \in W} = {0}.$$

Therefore, just as it has been argued before, a constant $\lambda \in F^*$ exists, such that $\lambda f|_W$ is a **unitary** form (on W), equivalent to $f|_W$. Now define the map $\hat{f}: V \times V \to F$ by means of

$$\hat{f}(w_1 + r_1, w_2 + r_2) = \lambda f(w_1, w_2), \text{ for all } w_i \in W, r_i \in \text{Rad}(V).$$

Then \hat{f} is hermitian symmetric, and equivalent to f.

[Namely:
$$\lambda f(w_1 + r_1, w_2 + r_2) =$$

$$= \lambda f(w_1, w_2) + \lambda f(r_1, w_2) + \lambda f(w_1, r_2) + \lambda f(r_1, r_2) =$$

$$= \lambda f(w_1, w_2) + 0 + \lambda f(w_1, r_2) + 0 =$$

$$= \lambda f(w_1, w_2) \text{ (remember: } f(r_2, w_1) = 0 \text{ implies } f(w_1, r_2) = 0)$$

$$= \hat{f}(w_1 + r_1, w_2 + r_2),$$
and
$$\hat{f}(w_2 + r_2, w_1 + r_1) = \lambda f(w_2, w_1) = (\lambda f(w_1, w_2))^{\vartheta} =$$

$$= (\hat{f}(w_1 + r_1, w_2 + r_2))^{\vartheta}.$$

Re(β .1.b) Let us suppose that $\vartheta^2 \neq \operatorname{Id}$ and assume that $f(x,x) \neq 0$ for some $x \in V$. We spot such an element x. So $x \notin \operatorname{Rad}(V)$. Therefore there exists a subspace W of V containing x, such that $V = W \dotplus \operatorname{Rad}(V)$. Notice, that $f|_W$ is n-d and that $f|_{\langle x \rangle}$ is n-d. Suppose $\dim_F(W) \geq 2$. Consider $T = \{v \in W \mid f(v,x) = 0\}$; it is a subspace of W. If f(w,x) = 0 for $w \in W$, then $w \in T$. If $f(w,x) = \alpha \neq 0$, then $w - \bar{\alpha}x \in T$ where $\bar{\alpha} = f(x,x)^{-1}\alpha$, as $f(w - \bar{\alpha}x,x) = f(w,x) - f(\bar{\alpha}x,x) = f(w,x) - \bar{\alpha}f(x,x) = \alpha - \bar{\alpha}f(x,x) = 0$. So $W = \langle x \rangle \perp T$. a perpendicular direct sum decomposition with respect to $f|_W$. Notice also, that now, as $f|_W$ is n-d, also $f|_T$ is n-d (here the czv-property of f is used!). Now, let us suppose that there exists $g \in T$ satisfying $f(g,y) \neq 0$. Observe, there exists $g \in F^*$ with $g \neq g^{\vartheta^2}$. So therefore, as $f(\beta y, \beta y) \neq 0$,

$$\frac{(f(\beta y, \beta y))^{\vartheta}}{f(\beta y, \beta y)} = \frac{(\beta \beta^{\vartheta} f(y, y))^{\vartheta}}{\beta \beta^{\vartheta} f(y, y)} = \frac{\beta^{\vartheta} \beta^{\vartheta^{2}} (f(y, y))^{\vartheta}}{\beta \beta^{\vartheta} f(y, y)} = \frac{\beta^{\vartheta^{2}} (f(y, y))^{\vartheta}}{\beta f(y, y)} = \frac{(f(y, y))^{\vartheta}}{f(y, y)}.$$

Thus all in all there exists $\bar{y} \in T$ with $f(\bar{y}, \bar{y}) \neq 0$ satisfying

$$(f(\bar{y},\bar{y}))^{\vartheta}f(x,x) \neq f(\bar{y},\bar{y})(f(x,x))^{\vartheta}.$$

Put $f(\bar{y}, \bar{y}) = \alpha \neq 0$ and $f(x, x) = -\gamma \neq 0$; note $\alpha + \gamma \neq 0$. Then, on one hand,

$$\begin{array}{ll} f(\alpha x + \gamma \bar{y}, \, x + \bar{y}) & = & f(\alpha x, x) + \gamma f(\bar{y}, x) + \alpha f(x, \bar{y}) + \gamma f(\bar{y}, \bar{y}) = \\ & = & f(\bar{y}, \bar{y}) f(x, x) + 0 + 0 - f(x, x) f(\bar{y}, \bar{y}) = \\ & = & 0 \end{array}$$

(here, as $\bar{y} \in T$, $f(\bar{y}, x) = 0$, implying $f(x, \bar{y}) = 0$ by the czv-condition). On the other hand,

$$f(x + \bar{y}, \alpha x + \gamma \bar{y}) = \alpha^{\vartheta} f(x, x) + \alpha^{\vartheta} f(\bar{y}, x) + \gamma^{\vartheta} f(x, \bar{y}) + \gamma^{\vartheta} f(\bar{y}, \bar{y}) =$$

$$= \alpha^{\vartheta} f(x, x) + 0 + 0 + \gamma^{\vartheta} f(\bar{y}, \bar{y})$$

$$= (f(\bar{y}, \bar{y}))^{\vartheta} f(x, x) - (f(x, x))^{\vartheta} f(\bar{y}, \bar{y}) \neq 0.$$

The function f is supposed to satisfy the czv-condition, and so we have a contradiction, unless

$$f(y,y) = 0$$
 for all $y \in T$.

Now, as $f|_T$ is n-d and non-trivial, we are allowed to apply (α) in this case! That is, $f|_T$ turns out to be skew-symmetric, yielding $\vartheta = \text{Id. A contradiction!}$

Therefore, the supposition " $\dim_F(W) \geq 2$ " is false!

So we have here $\dim_F(W) = 1$. Hence the whole drama is essentially played on the line Fx, since $V = \langle x \rangle \perp \operatorname{Rad}(V)$. Thus we see that f is equivalent to a so-called **topical** sesquilinear form \tilde{f} for which

$$\tilde{f}(\alpha x, \beta x) = \alpha \beta^{\vartheta} \quad (\alpha, \beta \in F)$$

holds, and where

$$\tilde{f}(v, w) = \tilde{f}(\alpha x, \beta x)$$

if $v = \alpha x + r_1$, $w = \beta x + r_2$ with $\alpha, \beta \in F$; $r_1, r_2 \in \text{Rad}(V)$.

Finally, we treat case $(\beta.2)$.

Re(β .2) Suppose $f(x, x) \neq 0$ for some $x \in V$, and let $\vartheta = \text{Id}$. Notice that here both the maps $\varphi_t : y \mapsto f(y, t)$ and $\psi_t : y \mapsto f(t, y)$ are linear functionals. It follows from the czv-condition that $\varphi_t(v) = 0$ if and only if $\psi_t(v) = 0$. Therefore again we are allowed to apply the Lemma. As in $(\beta.1.a)$ it follows that for dim $V \geq 2$ and Rad $(V) = \{0\}$, a constant $\alpha \in F^*$ exists with $f(y,t) = \alpha f(t,y)$ whenever $t,y \in V$. Choose $x \in V$ as given above, i.e. with $f(x,x) \neq 0$. Therefore, as also $f(x,x) = \alpha f(x,x)$, we see that $\alpha = 1$. That is, f is **orthogonal** in case Char $(F) \neq 2$ (symmetric otherwise). Next suppose that dim V = 1 and Rad $(V) = \{0\}$. Then Fx = V with $f(x,x) \neq 0$. Hence it follows that

$$f(\alpha x, \beta x) = \alpha \beta f(x, x) = \beta \alpha f(x, x) = f(\beta x, \alpha x),$$

and so f is also **orthogonal** in case Char(F) \neq 2 (symmetric otherwise).

Next suppose that $Rad(V) \neq \{0\}$. Then V=W+Rad(V), and W is a n-d $f|_{W}$ -space, i.e.,

$${u \in E \mid f(u, w) = 0, \ \forall w \in W} = {0}.$$

As $f(x, x) \neq 0$, there exists $w \in W$ with $f(w, w) \neq 0$; namely, put x = w + r with $w \in W$, $r \in \text{Rad}(V)$. It follows now from the first part of this rubric $(\beta.2)$, when applied on $f|_W$ and W, that $f|_W$ is symmetric. Now put $v_i = w_i + r_i$ ($w_i \in W$, $r_i \in \text{Rad}(V)$). Then

$$f(v_1, v_2) = f(w_1 + r_1, w_2 + r_2) =$$

$$= f(w_1, w_2) + f(w_1, r_2) + f(r_1, w_2) + f(r_1, r_2) =$$

$$= f(w_1, w_2) + 0 + 0 + 0 = f(w_1, w_2) = f(w_2, w_1) =$$

$$= f(w_2, w_1) + 0 + 0 =$$

$$= f(w_2, w_1) + f(r_2, w_1) + f(w_2, r_1) + f(r_2, r_1) =$$

$$= f(w_2 + r_2, w_1 + r_1) = f(v_2, v_1).$$

Therefore, all in all: f is symmetric.

3 The crash-survey

We collect all results in the following **Portemanteau-Result**. Let f be a non-trivial sesquilinear form over the field F, satisfying the czv-property. Then the following holds.

- (α) Suppose f(x,x) = 0 for all $x \in V$. Then $\vartheta = \mathrm{Id}$. The form f is **skew-symmetric**. Moreover, if f is n-d, the f is **orthogonal** for Char (F) = 2, and f is **symplectic** for Char (F) $\neq 2$.
- (β) Suppose $f(x, x) \neq 0$ for some $x \in V$.
 - (β .1) Assume $\vartheta \in \operatorname{Aut}(F)$ is of order 2. If $\operatorname{Rad}(V) = \{0\}$ and $\dim_F(V) = 1$, then f is equivalent to a unitary form.

If $\operatorname{Rad}(V) = \{0\}$ and $\dim_F(V) \geq 2$, then either f itself is **unitary** form, or there exists a constant $\alpha \in F^* \setminus \{1\}$ satisfying $f(y,t) = \alpha(f(t,y))^{\vartheta}$ for all $t,y \in V$. Observe that $\alpha^{\vartheta} = \alpha^{-1}$. Moreover, there exists a constant $\varepsilon \in F^*$, such that \hat{f} , defined by $\hat{f}(y,t) = \varepsilon^{\vartheta} f(y,t)$ for all $y,t \in V$, is a **unitary** form (so f and \hat{f} are equivalent). Namely, if $1 + \alpha \neq 0$, put $\varepsilon = 1 + \alpha$. If $1 + \alpha = 0$, then choose $\beta \in F^*$ with $\beta^{\vartheta} \neq \beta$, and put $\varepsilon = \beta - \beta^{\vartheta}$.

Next suppose $\operatorname{Rad}(V) \neq \{0\}$. There exists a non-trivial subspace $W \subseteq V$ with $V = W + \operatorname{Rad}(V)$ such that the restricted form $f_W : W \times W \to F$ is equivalent to a unitary form \hat{f}_W (this can be accomplished by the method just shown before.) Given $v \in V$, put $v = v_w + v_r$ with $v_w \in W$, $v_r \in \operatorname{Rad}(V)$. Then \hat{f} , defined by $\hat{f}(\bar{v}, \bar{u}) = \hat{f}_W(\bar{v}_w, \bar{u}_w)$, is a hermitian symmetric form equivalent to f.

Now assume $\vartheta \in \operatorname{Aut}(F)$ is of order at least 3. Then there exists a 1-dimensional subspace $W \subseteq V$ with $V = W \dotplus \operatorname{Rad}(V)$. Fix one element w of $W \setminus \{0\}$. Put $v = \alpha_v w + r_v$, for given $v \in W$, with $\alpha_v \in F$, $r_v \in \operatorname{Rad}(V)$. Then f is equivalent to a so-called **topical** sesquilinear form \tilde{f} , defined by $\tilde{f}(v,u) = \alpha_{v \bullet} \alpha_u^{\vartheta}$.

(β .2) Assume $\vartheta = \text{Id}$. If $\text{Rad}(V) = \{0\}$, then f is symmetric (even orthogonal if $\text{Char}(F) \neq 2$). Now suppose $\text{Rad}(V) \neq \{0\}$. Then V = W + Rad(V),

W \neq {0}, where { $u \in W \mid f(u, w) = 0, \forall w \in W$ } = {0}. Therefore, it follows from Rad(W) = {0} that $f|_W$ is symmetric. Given $v \in V$, put $v = v_w + v_r$ with $v_w \in W$, $v_r \in \text{Rad}(V)$. Thus f is symmetric.

4 References

Among the vast amount of literature concerning the subject of this paper, the following is strongly suggested for further reading.

- 1. M. Aschbacher, Finite Group Theory; Cambridge Un. Pr., Cambridge etc., 1986.
- 2. E. Artin, Geometric Algebra; Wiley Interscience, New York etc., 1957.
- 3. D.G. Higman (with an appendix by D.E. Taylor), Classical Groups; T.U. Eindhoven, Dept. of Math., report 78–WSK–04, August 1978.