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Abstract

It is perhaps a surprising fact that among all sesquilinear forms
over a field, only the orthogonal, symplectic and unitary forms are of
(essential) interest. A (condensed) survey around this theme will be
shown here. No originality is claimed on our investigations as such.

1 Introduction

In this so-called crash-survey we will deal with sesquilinear forms. It will
be shown that there are only a few such ones being of essential interest. \Ve
start with some definitions and we will state some well-known “special” cases
by means of “Examples-definitions”. The svmbol F stands for an arbitrary
field, ¥ means a field-automorphism of F'. and V is a finite dimensional vector
space over F'.

Definition 1 A map f: V x V — F is a sesquilinear form (relative to o) it
f satisfies

flx+y.2) = flz.z)+ fy, 2).

flz.y+:) = flz.y)+ flz.z).
flax.y) = a- flx.y).
flz.ay) = a’- flz,y),

forall z.y.z eV and u € F.



Examples-definitions Let f be a sesquilinear form.

1. If ¥ is the identity-automorphism of F, then f is a bilinear form.
2. a. fis a symmetric form, if f is bilinear and f(z,y) = f(y,z) for
allz,y e V.
~ b. f is a skew-symmetric form, if f is bilinear and f(z,y) =
—f(y,z) for all z,y € V.

3. If ¥? is the identity-automorphism of F, but ¥ is not, and if also
f(z,y) = (f(y,z))° forallz,y € V, then fisa hermitian-symmetric
form.

Let us consider the radical Rad(V) of V relative to a sesquilinear form i

Definition 2 Define Rad(V) as Rad(V) := {v € V | f(z,v) = 0,Vz € V}.
If Rad(V) = {0}, then f is non-degenerated (in short: n-d).

Observe that Rad(V') is a subspace of V (i.e. whenever z,y € Rad(V)
and a € F, it follows that z +y and azx (and ay) belong to V.

Examples-definitions Let f be a sesquilinear form.

4. a. Suppose that the characteristic Char(F) of F is not equal to 2.
Then f is an orthogonal form if f is n-d and symmetric.

b. Suppose Char(F) = 2. Then f is an orthogonal form if f is n-d
and symmertric and where it also has to hold that f(z.z) = 0 for
allz e V.

5. Suppose Char(F') # 2. Then f is a symplectic form if f is n-d and
skew-symmetric.

6. f is a unitary form. if f is n-d and hermitian-symmetric. Here no
restriction relative to Char(F) is required.

Concrete examples

A. Letr.y € V withdimp(V) = n. Then. if the coordinates of z (“relative
to the standard basis”) are {ay, . ... an},and {fy,....5,} that of y, the
form f defined by

fla.y) =3 aib;

gives rise to an orthogonal form if Char(F) # 2.
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B. Let here dimp(V') = n = 2m. Then, for all z,y € V (as meant in A),
the form f defined by

1

flz,y) = (aiﬁ2m—i+1 — Qom—i+15:)
=1

gives rise to a symplectic form if Char(F) # 2, or to an orthogonal
form if Char(F) = 2.

C. for all z,y € V' (as meant in A), the form f defined by
f(Ia y) = Zaiﬁ?
i=1

gives rise to a unitary form if there exists such a field automorphism
¥ of F, being of order 2.

Now observe that all the examples-definitions satisfy the “commuting-zero-
values’-condition (in short: czv):

Whenever u,t € V satisfy f(u,t) = 0, it follows invariably that Jtd =10

The sesquilinear forms f and f' are equivalent if there exists a constant
a € F\{0} such that f(z,y) = af'(z,y) for all z,y € V (i.e. a does not
depend on the choice of the elements z. y of V).

We close the Introduction with a Lemma on functionals needed furtheron.
Remember that a map ¢ : V — F is a linear functional if

plaz + by) = ap(z) + bp(y) for all z,y € V and all a,b € F: the map
¥ : V — F is the zero-functional if (v) = 0 for each v € V. Further it is
mentioned that F'* stands for the set F\{0}.

Lemma 1 Let p: V — F and v : V — F be linear functionals with equal
zero-sets (i.e., ¢(v) = 0 if and only if w(v) = 0). Then there exists o € F*
such that ¢(w) = av(w) holds independently of the choice of w in V.

Proof We may assume that none of ¢ and v represent the zero-functional.
Therefore, there exists u € V with o(u) % 0 and w(u) # 0. Consider any
v € V with ¢(v) # 0 (whence 1(v) # 0). Thus there exist & € F* with
(u) = aw(u), 8 € F* with z(v) = 3¥(v). and ~ € F* with w(u) = vp(v).
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Now p(u—vv) = p(u) —vp(v) = 0, whence 0 = h(u—vyv) = P(u) —yih(v).
It holds then, that

0= ¢(u) = yp(v) = ap(u) — v8%(v) = arp(u) — Bv(u) = (a — B)Y(u).
As Y(u) #0, a = 3 follows. The lemma has been proved. I

2

On sesquilinear forms satisfying the czv con-
dition

We are going to elucidate the structure of non-trivial sesquilinear forms f
satisfying the czv-condition. The following subdivision is in order.

(a)

Suppose f(z,z) =0forallz € V.

(B) Suppose f(z,z) # 0 for some z € V, and either

(B.1.a) Let ¥ be of order 2 (i.e. 92 = Id # ¥); or
(8.1.b) Let 9 be of order at least 3 (i.e. 92 # Id); or
(8.2) Letd=Id.

Re(a)

Re(3)

Suppose f(xz,z) =0 forallz € V.

Then, for all u,t € V and a € F, it holds that f(u+¢t, u+¢) =0 =
flu,w) + fu,t) + f(t,u) + f(t,t) = fu,t) + F(¢, u), whence also that,
for a € F*,af(u,t) = f(au,t) = —f(t,au) = —a’ f(t,u) = a’f(u, t).
Now f is non-trivial, so ¥ = Id follows, implying that f is skew-
symmetric. Moreover, Rad(V) # V as f is not trivial. Thus there
exists a subspace W of V for which f: W x W — Fis orthogonal
in case Char (F) = 2, or symplectic in case Char F # 2.

The case (3) gives rise to a plethora of possibilities. If we are not in
case (8.1.b), then f is certainly not svymmetric. For there exists a € F
with a # a”; so, as a # 0 and f(z,z) # 0 for some z € V. we find for
these a and r that f(az.z) = af(x.z) # o’ f(z.z) = f(z,az).



Re(8.1.a) Let ¢ be of order 2 and suppose that f(z,z) #0 for somez € V.
Notice that both the maps ¢, : y — f(y,t) and ¥ : y — (f(¢, y))?
are linear functionals. As f satisfies czv, we see that ¢,(v) = 0
if and only if ¥, (v) = 0. Therefore we are allowed to apply the
Lemma. Thus there exists a constant o, € F*, only depending on
t € V, such that

f(y! t) = at(f(t:y))ﬂ (Vy € V)

Analogously, in the same vain, a, € F* exists with

f(ys S) = as(f(sv y))ﬁ (Vy € V):

and o4y € F* exists with

fly:t+5) = ours(f(t+5,9)° (VyeV).

Therefore

0 = f(y,8)+ f(y,8) — fly,t +s) =
= a(f(t,9))” + as(f(5,9))? — aeas(f(t +5,9))° =
= (o f(t,9))° + (@2 f(5,9))° — (@2s f(t +5,9))° =
= (f(eft+als—af,(t+5),7)).

Hence

0=f(aft-i-a;"s—af”(t-}-s),.y), forally e V. (1)

Suppose that Rad(V) = {0} and that dimg(V) > 2.

Then (1) yields aft +als — o, ,(t+s) = 0. If t and s are independent over
F, then (1) yields of = a? = af, ,, whence that oy = a; = .

Next suppose that 0 # t = 3s for some 3 € F* and let us select = € V\(t).
Then, analogously as before. a; = o, and «, = o, follows. Hence oy = oy
holds also here!

Therefore we see that o, does not depend on ¢, i.e. there exists a constant
o € F* with

fly.t) = a(f(t,y))’ forallt.yeV.
So.

fyt) = a(f(t.y)" = ala(f(y,t)") = aa’ f(y, t).
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Now f is non-trivial, and therefore aa” = 1 follows.

If @ = 1, then f is a unitary form. Thus assume o # 1. Then we will
show that there exists € € F* with ae? = &. Namely, put § = 1 +a. If § # 0.
then

1+a)((1+a)?)t = 1+a)(1+a) =
' = 1+a)l+a ) '=a (asaa’=1),
hence indeed ae? = ¢ with € = §. If § = 0, it follows that Char (F) # 2 (by

a # 1). Hence o = —1 # +1 and moreover, since ¥ is of order 2, there exists
B € F* with 8% # $, thus with —3? + 8 # 0. Therefore in this case,

= 1= (=p"+B)(=B+8")" = (=6° + H)(~° + 5)°)""

Now put € = —3% 4 3, so that ae? = ¢ holds here too. Anyhow, when o # 1,
we find that

f(y,1) = e(e”) (£ (t,y))° for all t,y € V,
yielding
' fyt) = (°£(t,v))".
Define the map f : VxV — F by f(y,t) = €’ f(y,t) whenever y,tevV.
Then the constant € € F* has the property that for all ¢,y € V

Fut) =ef(y,t) = (7 (t.1))° = (f(t.y))".

Thus f is equivalent to the unitary form f :

Now suppose that Rad(V) = {0} and that dimg(V) = 1.
Then, for a fixed z € V w1th f(z,z) # 0 (where Fz = V), we see that the
map f V xV — F, defined by

flaz, Bz) := (f(z,z2))? f(az, Bz), with a,B € F,

is a unitary form. equivalent to f.

Next suppose that Rad(V) # {0}.
The vector space V' admits a decomp051t10n as a direct sum of subspaces. by
means of V' = W+Rad(V), where f|w being the restricted function
[+ W xW — F, is non-degenerated, i.e.

{ue W | f(u.w) =0 for all w e 1V} = {0}.
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Therefore, just as it has been argued before, a constant A\ € F* exists, such
that Aflw is a unitary form (on W), equivalent to f|y. Now define the
map f: V x V — F by means of

f(w1-+r1, wy +T3) = Af(wy,ws), forall w; € W, r; € Rad(V).

Then f is hefmitian symmetric, and equivalent to f.
[Namely : Af(wy 471, we + 1) =

and

= Af(wy, wa) + Af(r,we) + Af(wy, T9) + Af(r1,m2) =

= /\f(wla 'UJ2) T 0 e )\f(wl’ T?) + 0 =

= Af(wi,w;) (remember: f(ry,w;) =0 implies f(w,,r,) = 0)
flwy + 71, wy + 19),

f(wz + 72, w1 +71) = Af(wa, wy) = (Af(wr, w?))ﬂ =
= (f(wi+r1, we+19))°

Re(8.1.b) Let us suppose that 9? # Id and assume that f(z,z) # 0 for

some z € V. We spot such an element z. So z ¢ Rad(V).
Therefore there exists a subspace W of V containing z, such that
V = W+Rad(V). Notice, that f|w is n-d and that fl is n-d.
Suppose dimp(W) > 2. Consider T = {v € W | f(v,z) = 0}; it
is a subspace of W. If f(w,z) = 0 for w € W, then w € T. If
fw,z) =a#0, then w — az € T where & = f(z,z)"'a, as
flw—az.z)= fw.z) - flaz.z) = f(w.z) — aflz,x)=

@ —af(z,z) =0. So W = (z) L T. a perpendicular direct sum
decomposition with respect to f|y. Notice also. that now, as flw
is n-d, also f|r is n-d (here the czv-property of f is used!).

Now, let us suppose that there exists y € T satisfying f (v y) # 0.
Observe, there exists 3 € F* with 3 # 3%*. So therefore. as

f(By, By) # 0,
(F(By, 89))°  _ (B8 f(y.9))” _ B8°8™(f(y,v))° _

fBy.By)  — BBfly,y) BB f(y,y)
B (f(y,y))? P (f(yy))?
Bf(y.y) fly,y)

Thus all in all there exists § € T with f(g,§) # 0 satisfying
(f(7.9)" f(z.2) # f(5,9)(f(z.2))".
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Re(s.

[ )

Put f(y,9) = @ # 0 and f(z,z) = —y # 0; note @+~ # 0. Then,
on one hand,

flaz+vg, 2+9) = floz,z) +vf(@ ) + af(z,7) +7f(7,7) =
' = f(#9)f(z,z)+0+0— f(z,z)f(7,9) =
= 0

(here, as 7 € T, f(§,z) = 0, implying f(z,§) = O by the czv-
condition). On the other hand,

f+g, 0z+7g) = of(z,2)+ e’ f(G,z) + 7" f(2,9) +V°F (5, 5) =

= &’f(z.z) +0+0+~°f(7,7)
= (f@9)°f(z,2) = (f(z,2))°f(F,7) # 0.

The function f is supposed to satisfy the czv-condition, and so we
have a contradiction, unless

fly,y)=0forallyeT.

Now, as f|r is n-d and non-trivial, we are allowed to apply (@) in
this case! That is, f|r turns out to be skew-symmetric, yielding
} = Id. A contradiction!

Therefore. the supposition “dimg(W) > 27 is false!

So we have here dimg (W) = 1. Hence the whole drama is essen-
tially played on the line Fz. since V = (z) L Rad(V). Thus we
see that f is equivalent to a so-called topical sesquilinear form f
for which

flaz. Bz) =aB’ (a,8 € F)

holds. and where

flv.w) = f(az. 8z)
fv=azx+r,w=08z+r,witha.3€ F: r,r € Rad(V).
Finally, we treat case (3.2).

Suppose f(zr.z) # 0 for some z € V, and let 1 = Id.
Notice that here both the maps ¢; : y — f(y,t) and
yr: y — f(t.y) are linear functionals. It follows from the czv-
condition that z(v) = 0 if and only if r(v) = 0. Therefore
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again we are allowed to apply the Lemma. As in (8.1.a) it follows
that for dimV > 2 and Rad(V) = {0}, a constant o € F* exists
with f(y,t) = af(t,y) whenever t,y € V. Choose z € V as given
above, i.e. w1th f(z,z) # 0. Therefore, as also f(z,z) = af(z, ),
we see that a = 1. That is, f is orthogonal in case Char (F I
2 (symmetric otherwise). Next suppose that dim V = 1 and
Rad(V) = {0}. Then Fz = V with f(z,z) # 0. Hence it follows
that

flaz, Bz) = off(z,z) = Baf(z,z) = f(Bz,az),
and so [ is also orthogonal in case Char (F) # 2 (symmetric
otherwise).
Next suppose that Rad(V) # {0}.Then V=W+Rad(V), and W is
a n-d f|w-space, i.e.,
{ue E| f(u,w) =0, Yw e W} = {0}.

As f(z,z) # 0, there exists w € W with f(w,w) # 0; namely, put
T =w+r withw € W, r € Rad(V). It follows now from the first
part of this rubric (8.2), when applied on f|w and W, that f|w
is symmetric. Now put v; = w; +7; (w; € W, r; € Rad(V)). Then

flun,ve) = (w1+r1 Wy + ry) =
Flwi, wa) + fwy, ra) + f(ry, wo) )+ flri,me) =
= f(w1,ll)g)+0+0+0 = f(wy,we) = f(wa, wy) =
flwa,wy) +0+0+0=
flwa, wr) + f(ra, wi) + flwa,r1) + flra,m) =
= flwa+rs, wy + 1) = flvg,vy).

Therefore, all in all: f is symmetric.

3 The crash-survey

We collect all results in the following Portemanteau-Result.
Let f be a non-trivial sesquilinear form over the field F. satisfving the czv-
property. Then the following holds.



() Suppose f(z,z) =0 forallz € V.
Then ¥ = Id. The form f is skew-symmetric. Moreover, if f is
n-d, the f is orthogonal for Char (F) = 2, and f is symplectic for
Char (F) # 2.

(B) Suppose f(z,z) # 0 for somez € V.

(B.1) Assume 9 € Aut (F) is of order 2.

If Rad(V) = {0} and dimp(V) = 1, then f is equivalent to a
unitary form.

IfRad(V) = {0} and dimp (V') > 2, then either f itself is unitary
form, or there exists a constant o € F*\{1} satisfying f(y,t) =
a(f(t,y))? for all t,y € V. Observe that a® = o~ Moreover,
there exists a constant € € F*, such that f, defined by f(y,t) =
e’f(y,t) for all y,t € V, is a unitary form (so f and f are
equivalent). Namely, if 1+ a # 0, pute =14a. fl1+a = 0,
then choose 8 € F* with 3% # 3, and put € = 3 — 3.

Next suppose Rad(V) # {0}. There exists a non-trivial subspace
W C V with V = W + Rad(V) such that the restricted form
fw: W x W — F is equivalent to a unitary form fy (this can
be accomplished by the method just shown before.) Given v € V,
put v = vy + v, with v, € W, v, € Rad(V). Then f, defined by
f(0,2) = fw(Dy, @y), is a hermitian symmetric form equivalent

to f.

Now assume v € Aut (F) is of order at least 3. Then there exists
a l-dimensional subspace W C V' with V = W+Rad(V). Fix one
element w of W\{0}. Put v = ayw +r,, for given v € W, with
@y € F, r, € Rad(V). Then f is equivalent to a so-called topical
sesquilinear form f, defined bv f (1,%) = o680

(8.2) Assume ¥ = Id.
If Rad(V) = {0}, then f is symmetric (even orthogonal if
Char (F) # 2).
Now suppose Rad(V) # {0}. Then V = W+Rad(V),
W # {0}, where {u € W | flu.w) = 0. Vw € w} = {o}.
Therefore, it follows from Rad(W) = {0} that f|w is symmetric.
Given v € V, put v = v, + v, with v, € W. v, € Rad(V). Thus
f is symmetric.
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