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Abstract

Going back to Frank Veltman’s dissertation, this note contrasts that approach to con-
ditionals with one that starts with causality and separates epistemology from the interpre-
tation of conditionals.
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1 Introduction

I wish that Frank Veltman’s dissertation, [Vel85] had been more widely read and appreciated.
It provides a thoughtful, comprehensive and systematic treatment of logical and philosophical
issues in the interpretation of conditionals. Subsequent work would have been improved if
authors had studied this work and referred to it; but this happened, I think, far less than
it should have. The dissertation remains one of the best sources to be found, for both the
philosophy and the mathematical logic of conditionals.

Over the years I have learned many things from Veltman’s work, but in this note I will
return to the early work on conditionals.

The logic of conditionals, even after many years, enjoys (or perhaps suffers from) fairly wide
differences in the theoretical approaches that are endorsed. The approach I’ve always favored
differs from Veltman’s. I will discuss the differences with respect to a fundamental issue that
is raised in the 1985 dissertation: how to construct a “revision function” for conditionals. This
means that Part II of the dissertation, “Possible Worlds Semantics,” is especially relevant to
my topic. Part I deals mainly with methodological issues. The treatment of conditionals in
Part III, “Data Semantics,” belongs to an entirely different family of theories of the conditional
and I will not discuss it here, although I think that the main points I wish to make could be
extended to this case as well.
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2 Conditional semantics

I coined the term “revision function” merely to have a temporary term that would include both
the selection functions used by Stalnaker and Lewis and the “premise” semantics introduced
by Veltman and (later) by Kratzer.

Revision functions are the essential component in models for languages containing condition-
als. A conditional involves two syntactic components, which logicians call the antecedent and
the consequent. Both the antecedent and the consequent are sentential clauses, and so express
propositions. The conditional itself expresses a proposition. Therefore a model must include a
conditional interpretation function—a two-place function from propositions to propositions—
in order to deliver an interpretation of conditional constructions. In models based on possible
worlds (and these are the only models we will consider) such a function must be associated with
each possible world.

In selection function semantics1 a model contains a function s taking a possible world and
a proposition into a set of possible worlds (which may well be a unit set, or even empty). The
following semantic rule provides a revision function:2

(1) w ∈ [[φ > ψ]] iff u ∈ [[ψ]] for all u ∈ s(w, [[φ]]).

A conditional formula φ > ψ is true in w if and only if ψ is true in every world in s(w,φ).
In premise semantics, a model contains a premise function p from worlds to sets of proposi-

tions; the sets that this function returns can be thought of as the set of beliefs of some idealized
agent in w. But more needs to be said to obtain an interpretation of conditional constructions
fron such a premise function.

Veltman discusses how this might be done. A simple version (which assumes the limit
assumption) goes like this:

(i) P ⊆ P(W) admits φ iff
⋂
P ∩ [[φ]] $= ∅.

(ii) w∈ [[φ>ψ]] iff for for all maximal subsets P of p(w) that admit φ,⋂
P ∩ [[φ]] ⊆ [[ψ]].

Premise semantics takes an epistemological approach to the interpretation of conditionals,
inspired by the Ramsey rule: to see if you believe a conditional, add the premise to your stock
of beliefs, make necessary adjustments, and see if a belief in the consequent is supported by
the result of this process. Thus, this approach takes belief revision to form a basis for the
interpretation of conditionals.

Although the very large literature subsequent to [AGM85] has told us a great deal about
belief revision, as far as I know this has provided no way of showing us how to revise beliefs
in well-specified reasoning domains. Suppose, for instance, we are working with a domain for
reasoning about mechanical devices of the sort discussed in the AI literature.3 Such a domain
will contain a great deal of information about a mechanical device, such as an automobile.
The challenge is, given this information, to be able to correctly answer conditionals about the
domain, such as this one: If I step on the brake pedal and turn the ignition key, the engine will
start.

The difficulty with using revision theory to solve such problems is that, in versions of the
theory like Veltman’s, too many conditionals that you’d want to be true come out false, whereas
in more complicated versions you would need to use a causal theory of the domain to restrict

1To simplify a bit, and ignore complications having to do with the limit assumption.
2This rule covers both Stalnaker’s and a slightly simplified version of Lewis’ semantics.
3See, for instance, [Gel95].
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the maximal belief sets used to interpret conditionals. In our automotive example, we can’t
expect the domain theory to include a material conditional like (2), which tells us that stepping
on the brake and turning the ignition key will start the engine.

(2) [Do(Press-brake-pedal)∧ Do(Turn-ignition-key)] →
Next(Engine-On)

This (material) conditional cannot be a domain axiom, because many factors can prevent the
engine from starting. Therefore the negation of (2) can figure in maximal belief sets, which will
then be causally anomalous. Perhaps that is all right if we’re dealing with a causally ignorant
agent, but in most useful cases we will be interested in agents who are relatively well-informed
about the causal basics of the domain.

Perhaps this problem could be solved by elaborating domain formalizations: including not
only a theory of the device, but a theory of the beliefs of the device user. This brings me to my
next point: although maybe this could be done, it seems to be redundant, because we should
already expect a robust sample of conditionals to be supported by a bare causal theory of the
device, without any epistemological additions.

If we have a such a bare causal theory and wish to add to it a theory of what an agent believes,
we need first to enlarge the domain states allowed by the bare theory by systematically adding
possibilities that violate the constraints of the domain. This larger set of states represents the
epistemic possibilities for an agent who is partially ignorant of the domain theory. Subsets of
this enlarged set of states will represent an agent’s beliefs about the domain, including general
beliefs about automotives and particular beliefs about the situation at hand. According to this
approach, then, the theory of belief tracks possible states of the domain (where “possible” is
liberally construed).

But we can have more than a bare causal theory; we might wish to add conditionals to it.
We might wish to say, for instance, that the conditional

(3) [Do(Press-brake-pedal)∧ Do(Turn-ignition-key)] >
Next(Engine-On)

is false in a state in which the battery is dead, even if, say, Do(Turn-ignition-key)] is false.
Where we have an enhanced causal theory of this sort, we can proceed to add to it a theory

of an agent’s beliefs just as we did in the case of the bare domain, by treating beliefs as sets of
suitably enlarged set of domain states. If one wants to have both epistemology and conditionals,
this is how I think we should do it.

3 Interpreting conditionals in specific commonsense do-

mains

If we follow the modal account of knowledge and belief, as first proposed in [Hin62] (or, for that
matter, the account of belief as subjective probability), epistemology recapitulates ontology.
We first determine the truth conditions of sentences that do not contain epistemic operators:
whether an agent believes such a sentence is then determined by a relation over worlds. For
instance, we do not have a “factual” negation and an “epistemic” negation. A negative sentence,
such as ¬p, even if it’s vague or obscure, is true or false in a world w without reference to how
agents come to believe ¬p. A belief sentence, such as Ba¬p, is true in w iff ¬p is true in all
worlds related by Ra to w, where Ra is the belief relation for agent a.
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I want to propose that we should treat conditional sentences in much the same way we treat
negative ones. If this means we have to discard the Ramsey condition as a guide to conditional
semantics, that is a small price to pay for the methodological advanges of this procedure.

Consider how this might work out in a specific formalization project.
In formalizing a device theory it is natural, and I would say inevitable, to include causal

information as part of the domain.4 Ordinarily, except perhaps in tutoring applications, repre-
sentations of beliefs would be omitted.

Causal information about a domain can provide a method of constructing a selection func-
tion, which then provides a semantics for the interpretation of conditionals in the domain.
[Tho07] describes how this works in the case of planning domains—domains for reasoning about
the consequences of performing actions. These domains require (in the deterministic case) a
specification of what momentary state will ensue when an action is performed in an initial state,
or (in the nondeterministic case) of what alternative states might result. This involves a causal
theory, which might be an axiomatization of the effects of actions in some familiar logic, or
which might involve a nonmonotonic logic. [Tho07] shows how to use such a theory to interpret
conditionals of the form Do(a) > φ, where a is an action term and φ is a boolean combination
of fluent literals. (A fluent is a formula describing aspects of the world that may change.)

In this example, information about actions and their effects automatically induces a spe-
cific selection function appropriate to the domain, and so provides a suitable interpretation of
conditionals—or at least of certain conditionals, restricted in their syntactic form. I have not
attempted to do this for other causal domains that have been formalized by the AI community,
but I think the chances are good that it can be done for them as well.5

On the other hand, it is not at all clear how to produce an interpretation for conditionals
in one of these domains, or in any formalization of a suitable domain, taking the epistemic
approach. No matter how much you know about the domain and its causal structure, you
would need to begin all over again in taking an epistemic approach to this topic. Our intuitions
about beliefs in themselves don’t seem to deliver what is needed to make a start. But if we
have a domain that already is equipped with conditionals, we have at least one case in which
beliefs involving conditionals are clear—the one where the agent understands the causal laws
of the domain and is ignorant only of facts about the current situation.

4 An example

I’ll illustrate this with the marbles-and-boxes example introduced in Chapter 1 of Veltman’s
dissertation. In this domain there are two boxes, and three marbles of different colors: red,
blue, and yellow. Each marble is assigned to only one box, and each box must contain at least
one marble. We can represent these worlds with diagrams like the following one, where the red
marble is in Box 1 and the others are in Box 2.

1 2

R

B

Y

There are six pussible worlds in the domain:

4See, for instance, [Pea87].
5In work belonging to a slightly different tradition, Judea Pearl shows how to produce a theory of the

probability of (subjunctive) conditionals out of causal graph models. See, for instance, [PG96].
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w1:

1 2

R

B Y
w2:

1 2

R

B

Y
w3:

1 2

B

R

Y

w4:

1 2

R

Y B
w5:

1 2

B

Y R
w6:

1 2

Y

R

B

For a conditional language, we need selection functions as well as worlds. I’ll assume that
selection functions take only unit or empty sets as values. This simplifies things. (It also is the
logic I favor for conditionals, but the validity of conditional excluded middle is not really an
issue here.) In this case, a selection function fw for a base world w can be defined by a linear
ordering over worlds with least element w: where P is a set of worlds, f(P ) = {u} if u is the
least world in the ordering belonging to P , and is ∅ if there is no such world.

Therefore a selection function for w1 in the marbles domain is defined by ordering w2, w3,
w4, w5, and w6, and there are 120 such functions. If we use the number of marbles in different
positions to calculate the distance between w1 and one of these five worlds, w3 and w4 are tied
in the closest position to w1; w4 and w5 are tied in the next position, and w6 is furthest. There
are four selection functions that satisfy these constraints, each defined by a linear ordering of
{w2, w3, w4, w5, w6}, as follows.

f1
1 : w2 ≺1 w3 ≺1 w4 ≺1 w5 ≺1 w6

f1
2 : w3 ≺2 w2 ≺2 w4 ≺2 w5 ≺2 w6

f1
3 : w3 ≺3 w3 ≺3 w5 ≺3 w4 ≺3 w6

f1
4 : w4 ≺4 w4 ≺4 w5 ≺4 w4 ≺4 w6

These selection functions differ only in arbitrary pairwise orderings that are imposed in order
to achieve linearity. Arbitrary differences of this sort are best handled using supervaluations,
as suggested in [Sta80]. That is, we would say that f1

1 ∼ f1
3 ∼ f1

3 ∼ f1
4 , and use this similarity

relation to introduce truth-value gaps, so that a conditional like

(¬Red(1) ∨ ¬Blue(1)) > Red(1)

is truthvalueless, because f1
1 satisfies it and f1

2 does not.
I will not bother with supervaluations here, but I will use the relation ∼ in constraining

belief.
Similarly, we have four selection functions associated with each of the five other worlds: for

instance, f2
1 , f

2
2 , f

2
3 ,and f2

4 are the four selection functions associated with the base world w2.
Now we come to belief. We might wish to deal with believing agents who were ignorant

about the domain constraint (at least one marble per box) or about the color and number of
marbles, or the number and color of boxes. But to keep things simple, we’ll assume that our
agent has appropriate beliefs about these things. (This is the simple case that I mentioned at
the end of Section 3, above.)

In a domain without conditionals, an agent’s uncertainty has simply to do with which world
is actual. With conditionals, the uncertainty has also to do with selection functions. An agent
may believe that the actual configuration of marbles corresponds to w1, but be uncertain about
which of the functions {f1

1 , f
1
2 , f

1
3 , f

1
4} is actual. In that case, the agent would believe Yellow(2),

for instance, but would believe neither Yellow(1) > Red(2) nor Yellow(1) > ¬Red(2). On the
other hand, the agent would believe ¬Red(1) > Blue(1), since this conditional is true for all
four of the selection functions associated with w1.
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The simplest approach to interpreting belief in a possible worlds framework uses a framework
R from worlds to sets of worlds. With models of languages containing conditionals and using
selection functions, we must generalize this and use functions from worlds and selection functions
to worlds and selection function pairs. This, however, can be simplified, if we assume—naturally
enough—that an epistemic state depends only on the world. Then, where R is a function from
worlds to world/selection-function pairs, belief is interpreted as follows.

(4) w ∈ [[B(φ)]] iff 〈u, f〉 ∈ [[φ]] for all 〈u, f〉 ∈ R(w).

It’s natural, too, to assume that arbitrary differences between selection functions—
differences which have no grounding in anything factual and would have to be resolved using
supervaluations—are opaque to attitudes like belief. This leads to the following constraint.

(5) If f ∼ g, where f and g are selection functions associated with u,
then 〈u, f〉 ∈ R(w) iff 〈u, g〉 ∈ R(w).

We now can evaluate the agent’s beliefs in conditionals: formulas having the form B(φ > ψ).
If, for instance, we work with an agent who is totally ignorant of the facts, then in world w1

Red(1) > Blue(2) will be true (because both Red(1) and Blue(2) are true), but B(Red(1) >
Blue(2)) will not, because 〈w2, f

2
1 〉 is compatible with the agent’s beliefs in w1.

I am not sure that anything more is required to account for the interaction of conditionals
with propositional attitudes like belief. Of course, belief in a conditional is not the same as
conditional belief, but the distinction between the two is subtle enough so that it is hard to
produce convincing intuitive evidence that anything vital is missing if we have a theory of the
former.

I realize that many people believe that subjunctive conditionals are causal and indicative
conditionals are epistemic, but in this note I have intentionally steered clear of the distinction
between subjunctive and indicative conditionals. Fortunately the main points I want to make
here can be made while steering clear of the complications that would entail. With Stalnaker,
I believe we should avoid having to make ‘if’ ambiguous; this means that a pragmatic account
of the subjunctive/indicative distinction is to be preferred if it can be made to work.

5 Conclusion

I feel that conditionals are at bottom matters of fact (although they may be vague and context
dependent), and that epistemic operators need to be added to conditionals, rather than somehow
built into them. Others favor an approach to conditionals that is epistemic from the start. The
issue between these views can now be put in the form of a challenge to the epistemologists. I
have indicated here how we can produce a logic of belief and conditionals that does justice to
the logic of conditionals, uses standard theories of the logic of belief, and, in simple cases, at
least, allows us to formalize domains that combine conditionals and an agent’s beliefs.

The challenge is for those who believe in an epistemic theory of conditionals to show how
their approach could produce something similar.
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