
An appendix to DPL

Frank Veltman

For Jeroen Groenendijk & Martin Stokhof

1 Introduction

I am afraid this paper will appeal to only a select group of readers. One has to
be well acquainted with Fitch style natural deduction for static predicate logic,
one has to be well acquainted with dynamic predicate logic, and then, most
importantly, one should be curious to know if and how a Fitch style natural
deduction system for static predicate logic can be made dynamic. 1

Of course, the most important step in going from a static to a dynamic proof
system is to replace the elimination rule for the static existential quantifier
pictured below2 by an elimination rule that fits the dynamic quantifier.

Static elimination rule for ∃

...
...

l ∃xϕ
...

...
m [a/x]ϕ→ ψ
...

...
n ψ E∃, l,m

Dynamic elimination rule for ∃

...
...

m ∃xϕ
...

...
n ϕ E∃,m

1. I would not be surprised if this leaves only Jeroen, Martin, and Roel de Vrijer as interested
readers. The four of us tried to answer these questions around 1990, when DPL was being
developed. But at some point we gave up because (i) things turned out to be more complicated
than we thought, and (ii) we had more urgent things to do. I tried again in 1997, during a
sabbatical spent in Edinburgh. I never published the result.
2. Throughout I will take the system of natural deduction presented in L.T.F. Gamut, Logic,
Language, and Meaning, volume 1, Introduction to Logic as the starting point

1



With an appeal to this rule, one can easily show, for example, that in dynamic
predicate logic

∀x(Sx→ Px) |= ∃ySy → Py.

Here is the derivation:

1 ∀x(Sx→ Px) premise
2 ∃ySy assumption
3 Sy E∃ 2
4 Sy → Py E∀ 1
5 Py E→ 3,4
6 ∃ySy → Py I→

It is important to realize that the sequence of formulas constituting this deriva-
tion is a text in the language of DPL. The variable y occurring in the formula
on line 3 is bound by the quantifier ∃y occurring in the formula on line 4, and
so are all occurrences of y in line 4 and 5.

2 Some obstacles

Unfortunately, changing the elimination rule for the existential quantifier is not
the only thing one has to do to get a system that covers the dynamic notion of
validity. Here are some problems that one has to deal with.

(1) How would you go about proving that

Ac.Bc |= ∃xAx ∧Bx

If you start like this :

1 Ac premise
2 Bc premise
3 Ac ∧Bc I∧ 1, 2
4 . . .

and next, at line 4, apply the classic introduction rule for ∃, you end up with
∃x(Ax∧Bx), which is not what you want. And if you first apply the introduction
rule for ∃, like this:

1 Ac premise
2 Bc premise
3 ∃xAx I∃ 1
4 . . .

then there seems to be no way to get Bx at line 4.
What is needed here is a generalization of of I∃. It will be a rule that can

be applied not only formulas but also to texts, as follows:

1 Ac premise
2 Bc premise
3 ∃xAx
4 Bx I∃ 1-2
5 ∃xAx ∧Bx I∧ 3, 4

2



So, lines 3 and 4 are added in one go, by an application of I∃ to the text
formed by the formulas on line 1 and line 2.

(2) Here is another problem. How would you go about showing that:

∃x(Ax ∧ ∃x¬Ax) |= ¬Ax

We cannot apply the new E∃ as described above here, because that would give:

1 ∃x(Ax ∧ ∃x¬Ax) premise
2 Ax ∧ ∃x¬Ax E∃
3 . . .

This way, the variable x occurring in the first conjunct of the formula on line
2 gets bound by the second existential quantifier on line 1 —- with disastrous
consequences. (We should impose conditions on E∃ that forbid this.)

The way out here is to introduce a new rule, variable switch, which enables
us — under certain conditions — to replace a formula of the form ∃xϕ by a
variant ∃y[y/x]ϕ. This is how things work out for the example at hand:

1 ∃x(Ax ∧ ∃x¬Ax) premise
2 ∃y(Ay ∧ ∃x¬Ax) variable switch, 1
3 Ay ∧ ∃x¬Ax E∃, 2
4 ∃x¬Ax E∧, 3
5 ¬Ax E∃, 4

(3) As an example of a third obstacle, note that:

∃yAy ∧ ∃xBx,Cy |= ∃yAy ∧ Cy

Whereas,
∃yAy ∧ ∃xBx,Cy, ∃yAy 6|= Cy

So, somehow the step 4 in the next derivation is invalid

1 ∃yAy ∧ ∃xBx premise
2 Cy premise
3 ∃yAy premise
4 Cy repetition 2

whereas step 4 in the following derivation is fine.

1 ∃yAy ∧ ∃xBx premise
2 Cy premise
3 ∃yAy E∧ 1
4 Cy repetition 2
5 ∃yAy ∧ Cy I∧, 3, 4

Intuitively, the difference is this. The formula ∃yAy on the third line in the
first of these derivations adds a further premise to the premises already given.
It introduces a new discourse referent, and all that is said about it is that the

3



predicate A applies to it. So, to conclude that the predicate B applies to it, as
is done in line 4 is invalid. The formula ∃yAy on the third line in the second
derivation, on the other hand, is a conclusion drawn from the premises, and
just recapitulates what was already said: There is an object with property A.
And, yes, we already know about this object that it has property B as well.

It is not easy to characterize the difference formally. In the derivation
we will have to keep track for each existential quantifier where it was first
introduced, so that when it is just ‘repeated’ we can safely repeat things said
about the referents introduced by it.

3 The system

Further details will be published on the website for this Festschrift.

4


