
Logical analysis of special relativity theory
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Abstract

Here we outline an approach to a logical analysis of relativity theory conducted
purely in first order logic (for methodological reasons). Here we concentrate on special
relativity, but in a more extensive work referred to here as [2], some steps are made in
the direction of generalizing the present approach towards general relativity. In [2] we
build up variants of relativity theory as “competing” axiom systems formalized in first
order logic. The reason for having several versions for the theory, i.e. several axiom
systems, is that this way we can study the consequences of the various axioms, enabling
us to find out which axiom is responsible for some interesting or “exotic” prediction
of relativity theory. Among others, this enables us to refine the conceptual analysis in
Friedman’s and Rindler’s books, or compare the Reichenbach-Grünbaum approach to
relativity with the standard one.
After having formalized relativity in first order logic, we use the well developed ma-
chinery of first order logic for studying properties of the theory (e.g. the number of
non-elementarily equivalent models, or its relationships with Gödel’s incompleteness
theorems, independence issues etc).
In the present paper, first we recall one of our axiom systems “Specrel” for relativ-
ity from [2]. Then we present some of the typically logical investigations of Specrel,
e.g. independence of the axioms, consistency properties of models. We also discuss
the intuitive contents (and consequences) of some of the axioms. We also present a
little bit of the conceptual analysis part of [2] using the example of Specrel and “FTL
observers”. Finally, we study how much Gödel’s incompleteness theorems apply to
Specrel: Specrel is undecidable, and it admits natural extensions some of which are
decidable, while to others the full strength of both of Gödel’s incompleteness theorems
applies. E.g. there is an extension Specrel+ in which its own consistency is formaliz-
able (and is neither provable nor refutable). Specrel+ is hereditarily undecidable.
We deliberately try to keep the number of axioms in Specrel small, and their intuitive
contents simple, transparent, and tangible from the logical point of view.

Contents

1 Introduction 2

2 The frame language 3
∗Supported by Hungarian National Foundation for Scientific Research grants T30314,

T23234.

1



3 Basic axioms of special relativity 6

4 Traveling with light, traveling faster than light 8

5 A principle of relativity 13

6 Axioms making Specrel categorical 14

7 Decidability and Gödel incompleteness 15
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We dedicate this paper to Johan on his 50’th birthday.

1 Introduction

In this paper we try to give a small sample illustrating the approach of Andréka
et al. [2] to a logical analysis of relativity theory conducted purely in first order
logic (for methodological reasons). Here we concentrate on special relativity,
but in [2] steps are made in the direction of generalizing the approach towards
general relativity. In [2] we build up variants of relativity theory as “competing”
axiom systems formalized in first order logic. The reason for having several
versions for the theory, i.e. several axiom systems, is that this way we can study
the consequences of the various axioms, enabling us to find out which axiom
is responsible for some interesting or “exotic” prediction of relativity theory.
Among others, this enables us to refine the conceptual analysis in Friedman [6]
and Rindler [10], or compare the Reichenbach-Grünbaum approach to relativity
(cf. L. E. Szabó [12] or [6]) with the standard one.

As explained in [2], the present approach is (in some sense) more ambitious
(as a relativity theory) than e.g. a formalization of, say, Minkowskian geometry
in first order logic would be, in various respects: (i) One respect is that if we
identified Minkowskian geometry with special relativity, then this would yield
an uninterpreted (in the physical sense) version of relativity, while the first or-
der theory which we develop in [2] contains “its own interpretation”, too. (ii)
It is not clear to us how the conceptual analysis1 suggested e.g. in [6] (or the
Reichenbach-Grünbaum issues) could be squeezed into Minkowskian geometry.
(iii) Our formalized relativity theory is undecidable, while the first order ver-
sion of Minkowskian geometry in [7] is decidable, pointing in the direction that
perhaps in our theory one can talk about things which do not appear in the
pure Minkowskian geometry. Someone may argue that Minkowskian geome-
try is the heart of special relativity theory, but it is only the heart; and we
would like to formalize the full theory and not only its heart. (iv) The obser-
vational/theoretical duality outlined in [6] motivates us to keep our vocabulary
and axioms on the observational side (while Minkowskian geometry remains
more on the “theoretical” side).

After having formalized relativity in first order logic, one can use the well
developed machinery of first order logic for studying properties of the theory
(e.g. the number of non-elementarily equivalent models, or its relationships
with Gödel’s incompleteness theorems, independence issues, etc). The ideas in
Johan’s [5] (combined with the ones in the version of Sain [11] updated during
the A’dam-Budapest cooperation) explain why we have to insist on keeping our
axiomatic relativity theory within (possibly modal and many-sorted) first order
logic. For a more comprehensive introduction and for more connections with
Johan’s (or Tarski’s, Suppes’, Goldblatt’s etc) work we refer to [2].

1Which axiom is responsible for what, which axiom is intuitively more natural than the
other, etc.
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2 The frame language

We introduce the first order language, which we will use for formalizing (special)
relativity.

We want to talk about motion of bodies.2 What is motion? It is changing
location in time. Therefore we will talk about bodies, time, space, and about a
location-function which tells us which body is where at a given time. We want
to talk about relativity theories; therefore these location functions will depend
on observers; different observers may see the same motion differently. (The
location function determined by an observer m will be called the world-view
function wm of observer m.) We will treat observers as special bodies whose
motion will (of course) be represented exactly the same way as that of the rest of
the bodies. These observers are often called, in the literature, reference frames.3

It will be convenient for us to be flexible about the dimension of space: we
will not only treat 3-dimensional space, but 1 or 2, or higher-dimensional spaces
also. We will treat time as a special dimension of space-time. n will denote the
dimension of our space-time. Thus, usually n = 4 (3 space-dimensions and 1
time-dimension), but we will consider also n = 2, 3 or n > 4. Our bodies will
be idealized, pointlike.4

The vocabulary of our language is the following: unary relations

B (bodies)

Obs (observers)

Ph (photons)

Q (quantities used for giving location and “measuring time”);

an n + 2-ary relation, the location- or world-view relation

W (world-view relation, W (m, b, t, s1, . . . , sn−1) intends to mean that ac-
cording to observer (or reference-frame) m, the body b is present at time
t and location (s1, . . . , sn−1));

for dealing with quantities, we will have two binary functions, and a binary
relation:

+, ·, ≤.

In our theories, we will always assume the following:

• observers and photons are bodies
2In this paper we concentrate only on kinematics; the same kind of investigations can be

carried out concerning mass, forces, energy etc. But if a theorem can be proved without
referring to these extra notions, we consider that a virtue.

3The difference is only a matter of terminology and we do not find it important from the
point of view of the present work.

4From the point of view of the questions studied here this does not restrict generality.
If some reader would prefer “fat observers” to “thin observers”, we can always identify an
observer m with the “reference frame” induced by m, and then this will yield a “fat notion of
observer”.
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• W (m, b, t, s1, . . . , sn−1) implies that m is an observer, b is a body, and
t, s1, . . . , sn−1 are quantities

• (Q,+, ·,≤) is a Euclidean5 linearly ordered field.

We found that the simplest way of treating these assumptions is to use a
2-sorted first-order language, where

B,Q are sorts

Obs, Ph are unary relations of sort B

W is an n + 2-ary relation of sort B ×B ×Q×Q× . . .×Q

+, · and ≤ are operations and relation of sort Q.

Let
M = 〈BM, ObsM, PhM;QM,+M, ·M,≤M;WM〉

be a model of our two-sorted language. This means that BM and QM are sets,
they are called the universes of sort B and Q respectively, ObsM, PhM ⊆ BM
etc. We will omit the superscripts M. We call M a frame-model if (Q,+, ·,≤)
is a Euclidean linearly ordered field and W ⊆ Obs × B × Q × . . . × Q. |=
denotes the usual semantical consequence relation induced by frame-models,
i.e. Th |= ϕ means that for every frame-model M, if M |= Th, then M |= ϕ.

In [2] we use an expansion of this language to prepare the road for formal-
izing general relativity theory as well. There we introduce explicit tools for
treating geometry: there is a new sort G for “geodesics”, and we also have a
certain “metric” on space-time. Here we do not need these (as basic symbols)
because they will be first-order definable in our formalized theory of special
relativity.

Next we introduce some terminology in connection with arbitrary frame-
models M = 〈B,Obs, Ph;Q,+, ·,≤;W 〉.

The essence, the “heart” of a frame-model is the world-view relation W .
Since W ⊆ Obs × B × nQ, for every observer m ∈ Obs it induces a function
wm : nQ → {X : X ⊆ B} as follows: for every p ∈ nQ

wm(p) := {b ∈ B : W (m, b, p)}.

Thus wm(p) is the set of bodies present at space-time location p for m.
We call a set of bodies an event, and wm is called the world-view function of

m, which to each space-time location p tells us what event observer m observes
or “sees happening” at location p. 6

The trace or life-line of a body b according to an observer m is the set of
space-time locations where m sees b, i.e.

trm(b) := {p ∈ nQ : W (m, b, p)}.
5An ordered field is called Euclidean if every positive element has a square root in it, i.e.

if (∀x > 0)(∃y)x = y2 is valid in it.
6“Seeing” has nothing to do with photons here, it really means “coordinatizing” only.
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nQ
p

W (m,−,−)

wm

wm(p)

B

Figure 1: The world-view function wm.

The world-view function wm can be recovered from the family of traces of
all bodies (from 〈trm(b) : b ∈ B〉), and the world-view-relation W can be
recovered from all the world-view functions (from 〈wm : m ∈ Obs〉). Thus
we can “represent” the function wm by the world-view of m, which is just the
indexed family 〈trm(b) : b ∈ B〉, and which, in turn, we represent by drawing
the traces of bodies that we are interested in. See Figure 2.

trm(b3)

trm(b2)

trm(b1)

Figure 2: World-view of m.

We now give some terminology which we will use in our models for special
relativity.

Since (Q,+, ·) is a field, we can define n-dimensional straight lines as follows
(these will be the life-lines of “inertial bodies”). 0 denotes the origin, i.e. 0 =
(0, . . . , 0), where 0 is the zero-element of the field. Let ` ⊆ nQ. We say that `
is a straight line iff there are p = (p0, . . . , pn−1), α = (α0, . . . , αn−1) ∈ nQ such
that α 6= 0 and

` = {p + r · α : r ∈ Q} = {(p0 + r · α0, . . . , pn−1 + r · αn−1) : r ∈ Q}

Lines denotes the set of all straight lines (of dimension n). t denotes the
time axis,

t
def= {(r, 0, . . . , 0) : r ∈ Q}.

t is a straight line. If ` ∈ Lines, then ang(`), defined below, represents the
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angle7 between ` and t:

ang(`) :=
α2

1+...+α2
n−1

α2
0

if α0 6= 0, and

ang(`) = ∞ if α0 = 0.

ang(`) = 1 means intuitively that the angle between ` and t is 45o. (See Figure
3.)

Assume that trm(k) = ` is a straight line. Then ang(`) represents the
velocity8 of k as seen by m:

vm(k) := ang(trm(k)), if trm(k) ∈ Lines.

E.g. vm(k) = 0 means that trm(k) is parallel with t, i.e. k’s location does not
change with time, i.e. k is at rest w.r.t. m. The bigger vm(k) is, the bigger
distance k travels in a unit time (as seen by m).

vm(h) < 1

t̄ h b

trm(b), vm(b) = 1

vm(h′) > 1

h′
45o

Figure 3: Velocities.

3 Basic axioms of special relativity

As already indicated, a plurality of “competing” axiom systems (or “relativity
theories”) is an essential feature of a logical analysis of relativity as developed
e.g. in [2]. For lack of space here we recall only one of these axiom systems
and will call it Specrel. It consists of five axioms. In the following axioms,
m,k stand for arbitrary observers, h for an arbitrary body, ` for an arbitrary
straight line (i.e. element of Lines), and ph for an arbitrary photon. We use
the standard custom that free variables should be understood as universally
quantified, e.g. the axiom trm(m) = t means (∀m ∈ Obs)trm(m) = t.

Our first axiom says that the traces of observers and photons, as seen by
any observer, are straight lines:

7Actually, ang(`) is the square of the tangent of the angle between ` and t.
8Instead of “velocity”, the precise expression would be “speed”, since vm(k) is a scalar and

not a vector.
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Ax1 trm(h) ∈ Lines for h ∈ Obs ∪ Ph.

Since translating our intuitive statements to first order formulas will be
mechanical, we will not give these translations, we will only give the intuitive
forms.

The second axiom says that any observer sees himself at rest in the origin:

Ax2 trm(m) = t.

The third axiom says that we have the tools for thought-experiments: on
any apropriate straight line we can assume there is an observer (or reference
frame); and the same for photons:9

Ax3 ang(`) < 1 ⇒ (∃k)` = trm(k), and
ang(`) = 1 ⇒ (∃ph ∈ Ph)` = trm(ph).

The fourth axiom says that each observer “sees” the same events (possibly
at different space-time locations):10

Ax4 Rng(wm) = Rng(wk).

The last axiom says that the velocity of a photon is 1, for each observer:

AxE vm(ph) = 1 (and trm(ph) ∈ Lines).

Our choice for a “first possible” axiom system for special relativity is:

Specrel
def= {Ax1, Ax2, Ax3, Ax4, AxE}.

When we want to indicate explicitly the number of dimensions, we will write
Specrel(n) in place of Specrel.

Let n > 2. In this paper we show that Specrel(n) is consistent, it is not inde-
pendent, and it forbids faster than light observers but permits faster than light
bodies.11 We show that Specrel generates an undecidable first-order theory but
we can strengthen it so that it becomes decidable (moreover categorical); and
also we can strengthen it so that it becomes hereditarily undecidable, further
both of Gödel’s incompleteness properties hold for this strengthened version.
We will see that both kinds of extension of Specrel are natural.

9This axiom can be “tamed” by using modal logic, such that space-time does not get
crowded with k’s and ph’s, cf. [2].

10This will have to be considerably weakened, when preparing for a generalization of the
axiom system towards general relativity, cf. [2].

11The point in proving things like Specrel |= no FTL observer is in the small number of
axioms and concepts needed. Actually in [2] we show that a much weaker version of Specrel
is enough for proving this conclusion. A more refined version of the theorem says that FTL
observers “lose most of their meter rods”, cf. [2].
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4 Traveling with light, traveling faster than light

As a warm-up, we begin with a simple statement about our axiom system
Specrel. When Einstein was a child, he once dreamed that he traveled together
with a photon, and then he tried to imagine how the world could look like
when one sees it while traveling with a photon. Our first proposition says that
in models of Specrel, you can’t see the world while traveling with a photon.

Proposition 1 Specrel |= trm(k) 6= trm(ph) for any m,k ∈ Obs, ph ∈ Ph.

Proof. Assume that trm(k) = trm(ph) for some m,k ∈ Obs, ph ∈ Ph in a
model of Specrel. Then trk(k) = t and vk(ph) = 1 by Ax2, AxE. Thus
trk(k) 6= trk(ph). Then k sees an event in which k is present but ph is not
present (namely such is wk(p) for any p ∈ trk(k) \ trk(ph)). However, m does
not see such an event by trm(k) = trm(ph). This contradicts Ax4, proving the
proposition. See Figure 4. QED

m kk
ph ph

trm(k) = trm(ph) trk(k) 6= trk(ph)

Figure 4: An observer cannot travel together with a photon.

Theorem 2 Let n > 2.

(i) Specrel(n) is not independent, namely

{A2, Ax3, Ax4, AxE} |= Ax1.

(ii) Specrel(2) is independent, i.e. for any Ax ∈ Specrel(2) we have

Specrel(2) \ {Ax} 6|= Ax.

Proof. It is not difficult to check that Specrel \ {Ax} 6|= Ax for any
Ax ∈ Specrel, if Ax 6= Ax1. So we have to show that

Specrel(n) \Ax1 |= Ax1 and

Specrel(2) \Ax1 6|= Ax1.

Assume that M is a model of Specrel(n) \ Ax1. Let m,k ∈ ObsM and
define

fmk := {(p, q) ∈ nQ× nQ : wm(p) = wk(q)}.
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Thus fmk is a binary relation on space-time; two points of space-time are related
when m and k see the same “events” at those points. We now show that

(*) fmk is a bijection in any model of {Ax3, Ax4}.
Let p, q ∈ nQ be distinct. Then there is a straight line ` with ang(`) < 1

separating them, i.e. p ∈ ` and q /∈ `. By Ax3, ` is the trace of some observer
h. Then h ∈ wm(p), h /∈ wm(q), showing that wm is injective for any observer
m. By Ax4 we have that both the domain and the range of fmk is nQ. These
facts imply (*).

fmk is called the world-view transformation between m and k: its intuitive
meaning is that m thinks that k is crazy to the extent that his seeing is distorted
by this function fmk (whatever event m sees at space-time location p, k sees it
at location fmk(p)).

Now, AxE, Ax3 require that fmk preserve light-lines (i.e. lines with angle
1). By a slight generalization of the celebrated Alexandrov-Zeeman theorem
(that we will recall in a moment) then fmk has to preserve all straight lines, i.e.
it is a collineation. Then trk(m) = fmk(trm(m)) = fmk(t) is a straight line by
Ax2. Thus Ax1 holds.

To show Specrel(2) \Ax1 6|= Ax1 we construct a bijection f : 2R → 2R,
where R is the set of reals, which preserves light-lines, but which takes t onto
a curve which is not a straight line. Here is the idea of the construction (see
Figure 5):

a

b

p p′

f(a)

f(b)

f

a

t̄ t′

Figure 5: f preserves all light-lines but not all straight lines. t cannot be
defined from light-lines in 2R.

Let t′ be a “slightly bent” version of t, and let f be any bijection between
t and t′. We extend f to any point p not on t as follows: Let a and b be the
two points where the two light-lines through p intersect t, and let f(p) be the
intersection point of the two corresponding light-lines going through f(a) and
f(b). With some care this extension of f will be a bijection, and it preserves
all light lines by its construction. Now it is not difficult to construct a model
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of Specrel(2) \Ax1 where this f is one of the world-view transformations; and
so in this model Ax1 does not hold.

We now briefly recall the Alexandrov-Zeeman theorem. This theorem states
that a permutation of 4R which preserves light-lines is a collineation of a special
form (namely a Lorentz-transformation up to a dilation, a translation, and a
field-automorphism12). An illuminating logical proof can be found in Appendix
B of Goldblatt [7]. That proof can be generalized to any Euclidean field Q and
n > 2 in place of R and 4. About the Alexandrov-Zeeman theorem see also
Rakić [9]. We sketch the proof for n = 3. Let ` be any light-line. Let P be
the set of those points through which no light-line intersecting ` goes through.
Then it is not difficult to see that P is just the plane tangent to any light-cone13

containing `, see Figure 6.

`

Plane(`, p) = P Plane(`, p) 6= P

`

pp

Figure 6: Definition of tangent planes: P is the set of points p through which
no light-line intersecting ` goes. All straight lines can be defined from light-lines
in 3R.

Now we can obtain all straight lines ` with ang(`) < 1 by intersecting such
tangent planes; then we can define all planes using these newly obtained lines,
and then we can obtain all the straight lines by intersecting again these new
planes. Hence, any light-line preserving permutation is a collineation. We omit
the proof of the rest. QED

Let M be a frame-model, and k be an observer in it. We say that k is a
faster than light (FTL) observer, if vm(k) > 1 for some observer m. Below,
no FTL observer abbreviates the sentence (∀m,k ∈ Obs)vm(k) < 1, i.e. that
there is no FTL observer in the model.14

12This will matter when R will be replaced with Q
13A light-cone is the union of all light-lines going through a given point.
14There are well known common sense arguments, going back to Einstein, against FTL

(cf. e.g. [9], p.11). These involve “causality” among other undefined concepts. As e.g. Gödel
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Theorem 3 Let n > 2.

(i) Specrel(2) 6|= no FTL observer.

(ii) Specrel(n) |= no FTL observer.

Proof. Since we want to stay visual, we give a proof for n = 3. We give a proof
that is centered around the notion of Minkowski-orthogonality. Let `, k be two
lines. We say that ` is Minkowski-orthogonal (or shortly, M-orthogonal) to k
if ` is orthogonal in the usual Euclidean sense to the reflection k′ of k to the
xy-plane, see Figure 7.

`

k

k′

xy-plane

Figure 7: ` is Minkowski-orthogonal to k.

We say that ` is Minkowski-orthogonal to the plane P if it is Minkowski-
orthogonal to at least two distinct lines lying in P , see Figure 8.

` ` `

P

P P

Figure 8: ` is Minkowski-orthogonal to P .

Minkowski-orthogonality is exhaustively investigated, e.g. fully axiomatized,
in Goldblatt [7]. We will use here the following corollary of the generalized
Alexandrov-Zeeman theorem:

pointed out, these arguments are not proofs in the logical sense. Our present Theorem 3 is of
an essentially different character from this point of view (contrast e.g. (i) with (ii)).
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(1) If a bijection of nQ preserves light-lines, then it preserves Minkowski-
orthogonality.

We call a plane space-like if it contains no light-lines, and we call a line
time-like if it is Minkowski-orthogonal to a space-like plane. It is not difficult
to check (see Figure 9) that

(2) ` is time-like iff ang(`) < 1.

time-like lines are
within the cone

space-like planes are
outside the cone

Figure 9: Time-like lines and space-like planes.

Clearly t is time-like, since it is M-orthogonal to the xy-plane which contains
no light-line. Now we have seen in the proof of Theorem 2 that f := fkm is a
bijective collineation that preserves light-lines. Thus f takes the xy-plane to a
space-like plane to which f [t] is M-orthogonal by (1), thus f [t] is time-like. By
(2) then ang(f [t]) < 1. But f [t] = fkm[trk(k)] = trm(k), thus vm(k) < 1 in M.

To show Specrel(2) 6|= no FTL observer, we have to give a model of Specrel(2)
in which there are FTL-observers. Such models are given in [2], in section 2.4.
QED

On pushing the limits of Theorem 3: We note that the generalized Alexandrov-
Zeeman theorem is true only in geometries where positive square roots exist
in the field. As a contrast, in [2], “no FTL obs” is proved without assuming
the existence of positive square roots; and moreover it is proved in axiom-
systems where AxE too is substantially weakened; hence a proof different from
the above was needed. Also, in the process of finding the “limits” of the “no
FTL theorems”, we gave some intuitively appealing axiom systems (such is
e.g. Relphax in section 3 of [2]) which do have models with faster-than-light
observers.

Now we are going to introduce seven extra natural axioms that will make
Specrel categorical over any field. The theory Specrel extended with these
seven axioms (and with any decidable theory of fields) is decidable. We will see
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that if we leave out any one of six of these axioms, then the theory will become
undecidable, and such that it can be extended to a hereditarily undecidable
theory where both Gödel’s incompleteness theorems hold.

5 A principle of relativity

Our first axiom is a typically relativity theoretic assumption. It says that, up
to congruence-transformations15 of space we have that the world-view transfor-
mations fmk and fkm agree, for any two observers m,k. Intuitively this says
that “As I see you, so will you see me. If I see that your clocks slow down, then
you also will see that my clocks slow down, and they will slow down with the
same rate”. AxR below is a possible formalization of Einstein’s Principle or
Relativity, which says that the laws of nature are the same for every observer.
See also Friedman [6], p.153.

To formalize AxR, first we single out special transformations, that we
will call Galilean transformations. A mapping f : nQ → nQ is called a
Galilean transformation if it preserves Euclidean distance and f(1t)−f(0) = 1t

where 1t = 〈1, 0, 0, . . .〉 and 1 denotes the unit element of the field Q. In other
words, a Galilean transformation is a congruence transformation which is the
identity map on t, composed with a translation. See Figure 10.

ȳ

x̄

t̄

g

1y 1x

1t
g(1x) g(1y)

g(1t)

Figure 10: A Galilean transformation takes the unit vectors into pairwise
orthogonal vectors of length 1, and does not change the direction of the time-
unit vector.

Our axiom expressing the principle of relativity is the following.

AxR fmk = G ◦ fkm ◦G for some Galilean transformation G.

In more detail, AxR says that (∀m,k)(∃ Galilean transformation G)fmk =
G ◦ fkm ◦G.

We note that in models of Specrel, AxR is equivalent to the potential axiom
requiring that, in space, in the direction orthogonal (in the Euclidean sense) to
the direction of the movement there is no relativistic distortion, i.e. there is no

15A transformation is called congruence transformation if it preserves Euclidean distance.
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length-contraction. Other equivalent formalizations of AxR can be found in
section 3.7 of [2].

6 Axioms making Specrel categorical

Here we introduce six more axioms that will make Specrel categorical (over
any given field). As in section 3, in the following m,k stand for observers, `
for a straight line, phi for photons; and free variables in the axioms should be
understood as universally quantified.

The first two axioms deal with the direction of flow of time. We define for
any two observers m,k

m ↑ k iff (fkm(1t)− fkm(0))t > 0.

Intuitively this means that time flows in the same direction for m and k, see
Figure 11.

m ↑ k m ↓ k

m mk k

fkm0̄ fkm1t

fkm1t fkm0̄

Figure 11: m ↑ k means that time flows in the same direction for m and k.

Our first axiom is a stronger version of part of Ax3, it says that every
appropriate line is the life-line of an observer whose time flows “forward”.

Ax5 ang(`) < 1 ⇒ (∃k ∈ Obs)[` = trm(k) and m ↑ k].

The next axiom says that time flows in the same direction for any observers
at rest in the origin.

Ax↑ trm(k) = t ⇒ m ↑ k.

The next axiom says that every observer can “re-coordinatize” his world-
view with a Galilean transformation.

Ax6 G(0) ∈ t ⇒ (∃k ∈ Obs)fmk = G, for every Galilean transformation G.

The next two axioms say, intuitively, that of each kind of observers and
photons we have only one copy (or in other words, according to Leibniz’s prin-
ciple, if we cannot distinguish two observers or photons with some observable
properties, then we treat them as equal). Id denotes the identity mapping.
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Ax7 fmk = Id ⇒ m = k.

Ax8 trm(ph1) = trm(ph2) ⇒ ph1 = ph2.

The last axiom says that every body is an observer or photon.

Ax9 B = Obs ∪ Ph.

Compl
def= {AxR, Ax5, Ax6, Ax7, Ax8, Ax9}.

We did not include Ax↑ into Compl because, as we will see, its effects are
different from those of the the elements of Compl.16

Theorem 4 Let17 n > 2 and let (Q,+, ·,≤) be any Euclidean field.

(i) There are exactly two models of Specrel ∪ Compl with field-reduct
(Q,+, ·,≤), up to isomorphisms.

(ii) There is a unique model of Specrel ∪ Compl ∪ {Ax↑} with field-reduct
(Q,+, ·,≤), up to isomorphisms.

We omit the proof, but in the Appendix we illustrate that in any model of
Specrel ∪ {AxR}, all the world-view transformations are so called Poincare-
transformations, and this is the most important part of the proof of Theorem
4.

7 Decidability and Gödel incompleteness

We now turn to decidability questions. We start this by recalling the definition
of real-closed fields and by recalling some facts from the literature.

An ordered field F is real-closed if it is Euclidean (i.e. every positive element
has a square root), and if every polynomial of odd degree has zero as a value.
This last requirement can be expressed with the infinite set {φ2n+1 : n ∈ ω} of
first-order formulas, where for every n ∈ ω, φn denotes the following sentence

∀x0 . . . ∀xn∃y[xn 6= 0 → (x0 + x1 · y + . . . + xn · yn = 0)].

By a theory we will understand an arbitrary set of first-order formulas (i.e.
we will not assume that it is closed under semantical consequence). We call
a theory Th decidable (or undecidable respectively) if the set of all first-order
semantical consequences of Th is decidable (or undecidable respectively). We
call Th complete if it implies either φ or ¬φ for each first order formula φ (of
its language).

Fact 5 The theory of real-closed fields is decidable and complete.
16Intuitively, Ax↑ excludes only one model of two choices, while the rest exclude a larger

number of possibilities.
17We exclude the case n = 2 for simplicity only.
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Fact 6 The theories of ordered fields and Euclidean fields are undecidable. 18

Conjecture 7 Any finitely axiomatizable consistent theory of ordered fields is
undecidable.

Corollary 8 Specrel and Specrel ∪ Compl are undecidable.

Proof. This is a corollary of Fact 6, and the theorem that for any Euclidean
field F there is a model of Specrel∪Compl with F as the field reduct (Theorem
4).: Let φ be any field-theoretic first order formula written by using variables
of our quantity sort. Then φ is valid in a frame model M with field reduct F iff
φ is valid in F . Thus φ is valid in the class of Euclidean fields iff φ is true in all
models of Specrel ∪Compl. Since the first-order theory of the Euclidean fields
is undecidable by Fact 6, the first-order consequences of Specrel∪Compl is un-
decidable, too. Since this is a finite theory, then any subset of it is undecidable,
too. QED

The above suggests that if we want to obtain interesting decision-theoretic
results, then we have to concentrate on real-closed fields; or at least include a
decidable theory of field-axioms into our theories. Let Φ denote the theory of
real-closed fields.

Theorem 9 Let n > 2.

(i) Specrel ∪ Compl ∪ Φ is decidable.

(ii) Specrel ∪ Compl ∪ {Ax↑} ∪ Φ is decidable and complete.

(iii) Specrel ∪ (Compl \ {Ax}) ∪ {Ax↑} ∪ Φ is undecidable, for any axiom
Ax ∈ Compl.

Proof. (i) and (ii) are corollaries of Theorem 4, we sketch the proof of (ii).
Let M and M′ be models of Specrel ∪Compl ∪ {Ax↑} ∪Φ. We cannot apply
Theorem 4 yet, because the field-reducts F and F ′ of M and M′ respectively
may not be the same. But they are elementarily equivalent, because Φ is
complete, so by the Keisler-Shelah isomorphic ultrapowers theorem they have
isomorphic ultrapowers, say F1 and F ′

1. Let M1 and M′
1 be the ultrapowers of

M and M′ respectively, taken by the same ultrafilter. Then the field-reducts of
these are F1 and F ′

1 respectively. Now we can apply Theorem 4 to M1 and M′
1

because F1 and F ′
1 are isomorphic, getting that M1 and M′

1 are isomorphic,
so elementarily equivalent. But then M and M′ are elementarily equivalent,
too, since the former two models are ultrapowers of these. This finishes the
proof of (ii). (iii) is a corollary of the next theorem; we included it here because
it nicely contrasts (i) and (ii). QED

We now turn to the analogon of Gödel’s first incompleteness theorem.
18Note that if a finitely (or more generally, recursively) axiomatizable theory is undecidable,

then it is not complete.
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Theorem 10 Let n > 0 and let Ax be any member of Compl. There is a
formula ν (in our frame-language) such that

(i) ν is consistent with Specrel ∪ (Compl \ {Ax}) ∪ {Ax↑} ∪ Φ

and for any theory Th consistent with ν

(ii) Th is hereditarily undecidable in the sense that no consistent extension of
Th is decidable.

(iii) The conclusion of Gödel’s first incompleteness theorem applies to the the-
ory Th, i.e. no consistent recursively enumerable extension of Th is com-
plete; moreover there is an algorythm that to each consistent, recursively
enumerable extension Th′ of Th gives us a formula φ such that Th′ 6|= φ
and Th′ 6|= ¬φ.

Proof. The idea of the proof is to show that absence of any member of Compl
allows us to interpret Robinson’s Arithmetic into our theory. We sketch this
for the case Ax = Ax9. We will see that in this case ν will be quite natural:
it will state the existence of a periodically moving body.

Consider the following formulas (with free variables m, b and t):

I(t) = I(m, b, t) = W (m, b, t, 0), and

ν = I(0) ∧ (∀t, s)
[t < 1 ∧ t 6= 0] → ¬I(t) ∧
t ≥ 0 → [I(t) ↔ I(t + 1)] ∧
[I(t) ∧ I(s)] → [I(t + s) ∧ I(t · s)]).

Add, for a moment, m and b as constants to our language. Then t remains
the only free variable of I which then specifies a subset of the field-reduct in
any frame-model: the set of time-points where the observer m sees the body b
at the origin. Now the formula ν requires that this subset behaves like the set
of integers: it is a discrete periodic subset containing 0, 1 and closed under +, ·.
Since the field-reduct of a frame-model is a field, then Robinson’s arithmetic
will be true in the field-reduct restricted to the subset defined by I. In other
words, I is an interpretation of Robinson’s Arithmetic in Th ∪ {ν}, whenever ν
is consistent with Th. For definition of Robinson’s Arithmetic and (semantical)
interpretation see e.g. Monk [8], Def. 14.17, Def. 11.43. Thus, Robinson’s Arith-
metic can be interpreted in Th∪{ν}. Then Th∪{ν} is inseparable (which is a
strong version of undecidability) by Thm. 16.1 and Prop. 15.6 in [8]; and thus
(ii) and (iii) of our Theorem hold by Monk [8] Thm.s 15.9 and 15.8. Finally,
if we omit the constants m, b, then semantical consequence does not change, so
(i) and (ii) will hold for the original language (set of formulas not containing
the constants m or b), too.

To show (i), we have to construct a model of Specrel ∪ (Compl \ {Ax9})∪
{Ax↑} ∪ Φ ∪ {ν}. This is not difficult as ν basically states the existence of a
periodically moving body; see Figure 12.
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m

b

Figure 12: b is a periodically moving body in m’s world-view.

Take a “standard” model with minimum set of observers and photons; and
add one periodically moving body. We omit the details of the definition of this
model.

The proofs for the other cases are analogous; we only give different interpre-
tations of Robinson’s arithmetic. This means that we give a different formula
I, but ν will be the same (speaking about I), and then we only have to show
that Th ∪ {ν} is consistent, where Th is the theory in (i). To give a flavor, we
give this new interpration I for the case when Ax = Ax5.

I(m, t) def= (∀`)[ang(`) = 1
t ⇒ (∃k)(trm(k) = ` ∧m ↑ k)] or t = 0, 1].

This finishes the proofidea of Theorem 10. QED

A theorem analogous to Theorem 10 but concerning Gödel’s second incom-
pleteness theorem can also be stated and proved with analogous methods. For
details see [1].

8 Appendix

Here we show that in any model of Specrel∪{AxR}, all the world-view trans-
formations are so called Poincare transformations (we will introduce Poincare
transformations while doing this).

First we explain the role of the Galilean transformation G in AxR, we
explain why we did not just require fmk = fkm. We illustrate this for n = 2.
Assume that m,k are observers and m “sees” k as on Figure 13. Then fkm takes
t to trm(k), by Ax2, see Figure 14. We have seen in section 4 that in models of
Specrel, fkm preserves Minkowski-orthogonality, thus fkm takes x to the line
M-orthogonal to trm(k). Thus fkm is either as on Figure 14, or as on Figure
15. We do not want to exclude the possibility on Figure 14, so let us assume
that fkm is as on Figure 14. Then fmk is also as on Figure 14, since fmk = f−1

km,
and fmk 6= fkm because the two maps take the time axis t to different places
(see Figure 14). Let σ : 2Q → 2Q be the reflection w.r.t. the time axis t (i.e.
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σ(t, s) = (t,−s) for any t, s ∈ Q). Then σ is a Galilean transformation. If we
take G to be this reflection, then f

def= fmk and g
def= σ ◦ fkm ◦ σ take the time

axis to the same set, and similarly they take the other axis x to the same set;
this is illustrated on Figure 16.

world-view of m world-view of k

t̄

m k

x̄

t̄

x̄

km

Figure 13: The world-views of m and k.

fmk fkm = f−1
mk

t̄

x̄

fmk[x̄]

t̄

x̄

Figure 14: The world-view transformations between m and k can be this.

We note that if fkm is as on Figure 15, then we do not need σ, already fkm

and fmk take t, x to the same sets respectively (i.e. f [t] = g[t] and f [x] = g[x]).19

Intuitively, this case corresponds to m and k “looking toward each other”, while
the other case corresponds to the more commonly assumed situation that m
and k “look in the same direction”.

But in addition to this, we need that f and g (as above) agree on t and
x, not just that they take these lines to the same sets. We will see that to
achieve this, fkm has to take 1t(= 〈1, 0, 0, . . .〉) to a unique point on trm(k), see
Figures 17, 18. So, let us look at fkm and let us see where e

def= fkm(1t) is on
trm(k). Let a, b and a′ be as on Figure 18; i.e. they are the points on trm(k)
and on t such that the straight line connecting 1t and a is parallel with x, and
the straight lines connecting 1t and b and connecting a and a′ are parallel with
fkm[x]. See Figure 18. If e = a, then m sees that k’s clock shows 1 just when
his clock shows 1, because 1t and a are simultaneous for m. But k will see that

19Here f [t] = {f(p) : p ∈ t}.
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fmk fkm = f−1
mk

t̄

x̄

fmk[x̄]

t̄

x̄

Figure 15: The other possibility for world-view transformations between m and
k.

t̄ = σt̄

fkmt̄σfkmt̄

x̄σx̄

fkmσx̄ σfkmσx̄

Figure 16: fmk and σ ◦ fkm ◦ σ, where σ is reflection w.r.t. t̄, take t and x to
the same sets.
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m’s clock shows a′ < 1 when his clock shows 1, because for k, e = a and a′ are
simultaneous. So k will think that m’s clocks are slow, but m will think that
k’s clocks are right. See Figure 17. Analogously, m thinks that k’s clocks are
right (slow or fast, respectively) iff e = b (> b or < b respectively). And, k
thinks that m’s clocks are right (slow or fast, respectively) iff e = a (< a or > a
respectively). Thus both think that the other’s clocks are slow iff b < e < a.
The rate of “slowness” is the same for them at a unique point in between a and
b, because the change of rate is a continuous and strictly monotonic function
(of the “number” |e − 0|). Now, Minkowski-distance is defined so that the
Minkowski-distance is 1 between 0 and this unique point (where the rates of
slowing down are the same for m and k). Figure 19 shows the points whose
Minkowski-distance from 0 is 1, i.e. it shows Minkowski-circle with radius 1 and
center 0.

m k

1t e

direction of simultaneities for k

direction of simultaneities for m

this point is simultaneous for k with e

this point is simultaneous for m with e

Figure 17: m thinks that k’s clocks are right, and k thinks that m clocks are
slow. (e = fkm1t)

Summing up: In models of Specrel+AxR, the world-view transformations
take the unit vectors into pairwise Minkowski-orthogonal vectors of Minkowski-
length 1. These are called in the literature Poincare-transformations; these
are Lorentz-transformations composed with translations. Or, equivalently, the
world-view transformations are Minkowski-distance-preserving and light-line
preserving.

References

[1] Andréka, H. Madarász, J. X. and Németi, I. Decidability, undecidability,
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1t
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a

b
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in between a and b. The rates of slowing down will be equal at a unique point.

Figure 19: Minkowski-distance 1.
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