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Abstract

Is there a link between Gabbay-style rules, modal languages with nominals, and
labelled deduction? It seems there should be: though they differ in many ways, all
share the idea that state-names are important in modal deduction. I shall show how
to move from a Gabbay-style rule to labelled deduction via the basic hybrid language.
I finish with a discussion of the place of state-names in modal logic.
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1 The basic hybrid language

Fix a set of nominals (typically written i, j, k) and a set of propositional
variables (typically written p, q, r) and define:

WFF := i | p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | 3ϕ | 2ϕ | @iϕ.

For any nominal i, the symbol sequence @i is called a satisfaction operator.
The basic hybrid language is interpreted on models M = (W,R, V ) where V
is a valuation that assigns every nominal a singleton subset of W ; we call the
unique element of V (i) the denotation of i. The language is interpreted in the
expected way (nominals are just atomic formulas), the clause for satisfaction
operators being:

M, w |= @iϕ iff M, i |= ϕ, where i is the denotation of i under V.

Note that each satisfaction operator is a normal modal operator.
The satisfiability problem for the basic hybrid language is no more complex

than that for ordinary modal logic (that is, PSPACE-complete; see Areces,
Blackburn and Marx [1]) so the basic hybrid language seems to be offering
something for nothing. But what exactly? The power to create modal theories
of state equality and state succession: @ij says that the states denoted by i
and j are identical, while @i3j says that the denotation of j is an R-successor
of the denotation of i. This is precisely what is required to turn Gabbay-style
rules into sequent calculus.

2 From Gabbay-style rules to sequent calculus

Nearly twenty years ago, Dov Gabbay [9] augmented the standard Hilbert ax-
iomatization of modal logic with a new kind of proof rule. His idea has proved
influential and a wide range of similar rules have been developed for many
modal languages. Now, such rules trade on the idea of labeling states; what do
they look like when we have nominals at our disposal?

One answer is provided by the COV rule, the workhorse of the Sophia school
(see Passy and Tinchev [13], Gargov and Goranko [10]). Here’s a (somewhat
simpler) answer. Let s and t be metavariables over nominals, and let 3sϕ be
an abbreviation for 3(s ∧ ϕ). Then:

` 3t · · ·3s3aϕ→ σ
` 3t · · ·3s3ϕ→ σ

[Gabbay]

(Here a is a nominal distinct from s, · · · , t that does not occur in ϕ or σ.)
This is a genuinely useful rule. With its help we can build models in which

each state is labelled by a nominal, and thus prove general completeness proofs
very straightforwardly. But it’s still rather complex: its “active” part (the oc-
currence of the new nominal a) is embedded under arbitrarily deep embeddings
of diamonds.

Here’s where the satisfaction operators help. Instead of laboriously chaining
our way through from t to s, we can use @s to enforce the desired behavior at
s directly. Doing so collapses the stack of nested diamonds to depth one:
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` @s3aϕ→ σ
` @s3ϕ→ σ

[Paste]

But this is just a thinly disguised sequent rule: get rid of the ` symbols,
turn the material implication arrow → into the sequent arrow −→, expand the
3a abbreviation, and simplify the conjunction:

@s3a,@aϕ −→ σ
@s3ϕ −→ σ

This works in arbitrary deductive contexts, so add a lefthand context Γ,
and turn σ into a righthand context Σ, thus obtaining a diamond-on-the-left
sequent rule:

@s3a,@aϕ,Γ −→ Σ
@s3ϕ,Γ −→ Σ [3L]

Gabbay-style rules are usually thought of as additions to modal Hilbert
systems. But once we have seen that @ lends itself towards defining sequent
rules, the way lies open to eliminating the Hilbert component altogether. Here’s
a selection of @-driven sequent rules for other connectives (and a diamond-on-
the-right rule). As before, s and t are metavariables over nominals, and a is a
metavariable over new nominals:

Γ −→ Σ,@sϕ
@s¬ϕ,Γ −→ Σ [¬L]

@sϕ,Γ −→ Σ
Γ −→ Σ,@s¬ϕ [¬R]

Γ −→ Σ,@sϕ @sψ,Γ −→ Σ
@s(ϕ→ ψ),Γ −→ Σ [→L]

@sϕ,Γ −→ Σ,@sψ
Γ −→ Σ,@s(ϕ→ ψ) [→R]

@tϕ,Γ −→ Σ
@s@tϕ,Γ −→ Σ [@L]

Γ −→ Σ,@tϕ
Γ −→ Σ,@s@tϕ

[@L]

@s3a,@aϕ,Γ −→ Σ
@s3ϕ,Γ −→ Σ [3L]

Γ −→ Σ,@tϕ
@s3t,Γ −→ Σ,@s3ϕ

[3R]

@tϕ,Γ −→ Σ
@s2ϕ,@s3t,Γ −→ Σ [2L]

@s3a,Γ −→ Σ,@aϕ
Γ −→ Σ,@s2ϕ

[2R]

The basic hybrid language embodies theories, namely modal theories of
state equality and state succession, so we need to cope with these too. The
following rules handle the theory of state equality:

@ss,Γ −→ Σ
Γ −→ Σ [Ref]

@st,Γ −→ Σ
@ts,Γ −→ Σ [Sym]

@sϕ,Γ −→ Σ
@st,@tϕ,Γ −→ Σ [Nom]

(Note that transitivity is covered by Nom; simply instantiate ϕ to any nominal.)
To cope with the theory of state succession we add:

@s3ϕ,Γ −→ Σ
@s3t,@tϕ,Γ −→ Σ [Bridge]
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And (together with weakening and contraction) that’s it. Jerry Seligman [16,
17], in his work on situated deduction, seems to have been the first to use sat-
isfaction operators to drive sequent calculi. The Paste rule is from Blackburn
and Tzakova [4].

3 From sequent calculus to labeled deduction

Sequent calculi are somewhat abstract. Let’s convert this calculus into a more
concrete tableau system. Doing so will lead us to labelled deduction (see Fit-
ting [7], Gabbay [8]). Here are the rules for the connectives:

@s¬ϕ
¬@sϕ

[¬]
¬@s¬ϕ

@sϕ
[¬¬]

@s(ϕ→ ψ)
¬@sϕ | @sψ

[→]
¬@s(ϕ→ ψ)

@sϕ
[¬→]

¬@sψ

@s@tϕ
@tϕ

[@]
¬@s@tϕ
¬@tϕ

[¬@]

@s3ϕ
@s3a

[3]
¬@s3ϕ @s3t

¬@tϕ
[¬3]

@aϕ

@s2ϕ @s3t
@tϕ

[2]
¬@s2ϕ
@s3a

[¬2]

¬@aϕ

These are essentially upside down versions of the sequent rules. Read the
2-rule as follows: whenever a pair of formulas of the form @s2ϕ and @s3t can
be found on some branch of the tableau, we are free to extend that branch by
adding @tϕ. The ¬3-rule works similarly.

Next we must convert our sequent rules for the modal theory of state equal-
ity:

[s occurs on the branch]
@ss

[Ref]
@ts
@st

[Sym]
@st @tϕ

@sϕ
[Nom]

Finally, here’s the tableau rule for the modal theory of state succession:

@s3t @tϕ
@s3ϕ

[Bridge]

As is usual with tableau systems, we prove formulas by systematically trying
to falsify them. So suppose we want to prove ϕ. Choose a nominal (say i) that
does not occur in ϕ (this acts as a name for the putative falsifying state), prefix
ϕ with ¬@i, and start applying rules. Let’s apply this procedure to the modal
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distribution axiom 2(p→ q) → (2p→ 2q):

1 ¬@i(2(p→ q) → (2p→ 2q))
2 @i2(p→ q) 1,¬→
2′ ¬@i(2p→ 2q) Ditto
3 @i2p 2′,¬→
3′ ¬@i2q Ditto
4 @i3j 3′,¬2, j
4′ ¬@jq Ditto
5 @jp 3, 4,2
6 @j(p→ q) 2, 4,2
7 ¬@jp | @jq 6,→

⊗ 5, 7 ⊗ ⊗ 4′, 7 ⊗
I want to make two points about this system. The first is this: the link with

Gabbay-style labelled deduction is transparent. Here’s the labelled deduction
rule for 3:

@s3ϕ
create a, sRa, and @aϕ

In essence, this is simply our 3-rule (and hence, chasing back through the chain
sketched above, the 3L-rule, the Paste rule, and ultimately the Gabbay rule).
In fact, the only real difference is that in Gabbay-style labelled deduction we
manipulate labels metalinguistically (in effect, we make use of a programming
language containing expressions such as ‘create’, ‘and ’, ‘R’, ‘:’, and a supply
of labels, to manipulate object language formulas) whereas the basic hybrid
language is expressive enough to support the required deduction steps at the
object level.

And this leads to my second point. Something interesting happens when we
view labelled deduction through the lens of the basic hybrid language: labelling
discipline becomes logic.

Gabbay has repeatedly emphasized that labelled deduction is as much about
the labelling algebra that drives the proof process as it is about labels them-
selves. For example, he adapts modal labelled deduction to various frame classes
by altering the rules that govern how the labelling algebra manipulates labels.
But our labels are formulas. They play a full fledged role in the logical economy
(they can be negated, conjoined, prefixed by modalities, and so on). There is
no need to impose labelling discipline on nominals via an external algebra; dis-
cipline emerges from the semantics of the basic hybrid language. In fact, when
used an axiom, any pure formula (that is, a formula containing no propositional
variables) is complete with respect to the class of frames it defines. For example
any instance of s → ¬3s defines irreflexivity, and any instance of 33s → 3s
defines transitivity, so if we are able to introduce these into tableau proofs, we
obtain complete tableau system for strict pre-orders. (You may find it inter-
esting to give a tableau proof of i → 2(3i → i), the formula which defines
antisymmetry, with the help of these axioms.)

It has long been known that pure formulas lead to general completeness
theorems: see for example see Bull [5], Passy and Tinchev [13], Gargov and
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Goranko [10], and Blackburn and Tzakova [4]. The link between tableau sys-
tems for the basic hybrid language and Gabbay-style labelled deduction is dis-
cussed in Blackburn [3]. Tableau systems intermediate between Gabbay-style
labelled deduction and the pure object-level system just described are discussed
in Tzakova [19]; similar “mixed level” sequent systems have been explored in
recent unpublished work by Jerry Seligman.

4 Sorting and modality

The links I have sketched may be interesting, but are they genuinely modal?
After all, the ‘glue’ was provided by the basic hybrid language, whose ability
to form theories of state equality and succession is clear departure from modal
orthodoxy.

But the history of modal logic is essentially the story of relatively rigid forms
of semantic analysis, such as the state descriptions in Carnap [6], giving way to
more flexible accounts, notably the relativized semantics of Kripke [11, 12], and,
a decade later, the general frames of Thomason [18]. Most of the semantical
freedom we currently enjoy stems either from the Kripkean parameter (the idea
that by making the transition relation R explicit and varying its properties we
can control logics) or the Thomasonian parameter (defining validity not in terms
of all valuations on a frame, but in terms of some well-behaved subcollection).

Hybrid languages can be seen as exploiting a third semantic parameter,
a parameter which emerged in the later work of Arthur Prior [14, 15]. Like
the Thomasonian parameter, the Priorean parameter is based on the idea of
restricting the available valuations, but it does so differently, and with different
aims in mind: the point is not to liberalize the notion of validity, it is to make
explicit the different sorts of proposition we are manipulating and reveal their
logic. Thus it was that Prior (and Bull [5]) were led to the idea of sorted atomic
symbols, of which the nominal is the simplest example. The glory of their idea
is that the initial departure from standard syntax is minimal (what could be
simpler than sorting the atomic symbols?), fruitful (even nominals lead to richer
logics), and suggestive (it leads to novel ideas such as satisfaction operators
and tools for binding nominals). And viewed from the present day perspective,
when, largely thanks to the influence of Johan van Benthem (see for example
[2]), modal logic is increasingly viewed as an abstract tool for manipulating
information, Prior’s ideas seem strikingly prescient: via the familiar Kripkean
parameter we gain control over how the information is distributed, and via
Prior’s use of sorted propositions we gain additional insight into the way it is
organized.
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