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Abstract

In this paper, we demonstrate that the multimodal categorial grammars are in
fact Turing-complete in their weak generative capacity. The result follows from a
straightforward reduction of generalized rewriting systems to a mixed associative and
modal categorial calculus. We conclude with a discussion of a restriction to the so-caled
weak Sahlqvist lexical rules, for which we can ensure decidability.
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1 Introduction

In this paper, we demonstrate that the multimodal categorial grammars are
in fact Turing-complete in their weak generative capacity. The result follows
from a straightforward reduction of generalized rewriting systems to a mixed
associative and modal categorial calculus.

It turns out that we should not be surprised that seemingly arbitrary kinds
of operations can be coded in multimodal categorial grammars. In this paper,
we show that any computable grammar can be coded as a multimodal catego-
rial grammar. From the standpoint of formal linguistics, this opening of the
computational floodgates might even appear to be inevitable. Simply compare
the introduction of general transformations in transformational grammars [Pe-
ters and Ritchie 1973], metarules in phrase structure grammars [Uszkoreit and
Peters 1986], and lexical rules in categorial and phrase structure systems [Car-
penter 1991], all of which have been shown to be Turing-complete. Although
steps may be taken to restrict the power of these systems to ensure decidability,
such moves appear rather ad hoc because of their lack of linguistic motivation.
For instance, consider the restrictions against metarule self application [Gazdar
et al. 1985], or the finite bound placed on unary phrase structure rules (and by
association, empty categories) by [Kaplan and Bresnan 1982].

Natural language syntax is a difficult matter, and no formalism has even
come close to providing a universal system in which all and only natural lan-
guage grammars can be expressed. Perhaps even more discouraging is the fact
that no grammars for particular languages have ever been developed that even
come close to covering a naturally occurring range of data in a theoretically
clean fashion. On the other hand, the grammar fragments that are typically
proposed in formalisms such as GB, HPSG, and LFG are much better behaved
computationally than the worst-case analysis would suggest. But when ob-
served phenomena begin to exceed the natural coverage of a formalism, more
powerful mechanisms are typically introduced.

2 Multimodal Categorial Grammar

The general paradigm of multimodal categorial grammars was introduced by
Moortgat [1994], following earlier multimodal developments by Hepple [1990],
Morrill [1991, 1994], and Moortgat and Oehrle [1994]. The fundamental idea
underlying these systems is that languages allow many different modes of combi-
nation for linguistic expressions (which have often been called resources in the
literature, following common usage in linear logic). In addition to Lambek’s
[1958, 1961] original modes of associative and non-associative concatenation,
several additional mechanisms have been proposed. For instance, commuta-
tive operations have been applied to free word-order languages [Hepple 1990;
Moortgat and Oehrle 1994], wrapping and infixing have been used to deal with
scoping and unbounded dependencies [Moortgat 1991; Morrill 1994, 1995] and
to deal with gapping and ellipsis [Solias 1992]. In some systems, unary modes of
combination have been used to deal with permuting for unbounded dependen-
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cies [Morrill 1994], islands and locality constraints [Hepple 1990; Morrill 1990,
1994], for encoding syntactic features [Kraak 1995], and for relaxing control in
order to copy resources for parasitic gaps [Morrill 1994]. More recently, analyses
of clitics [Kraak 1995] and general word-order domains [Versmissen 1996] have
been proposed in even more elaborate multi-modal systems.

We will provide a sequent-based proof theoretic presentation of multimodal
categorial grammar. There are several other presentations possible, including
semantic ones, of the same logic [Morrill 1994; Moortgat 1994]. As usual, we
begin with a finite set AtCat of atomic category symbols. We also assume a finite
set UnMod of unary modes of combination and a finite set BinMod of binary
modes of combination. We then define the set of Cat of categories to be the
least such that:

• AtCat ⊆ Cat

• 2uA,3uA ∈ Cat if A ∈ Cat and u ∈ UnMod

• A/bB,B\bA,A·bB ∈ Cat if A,B ∈ Cat and b ∈ BinMod

The proof theory will be presented in Belnap’s [1981] display logic, a general-
ization of Gentzen-style sequent proofs. The antecedents of sequents are struc-
tured according to their mode of combination. The collection Ant of sequent
antecedents is the least such that:

• Cat ⊆ Ant

• (Γ)u ∈ Ant if Γ ∈ Ant and u ∈ UnMod

• (Γ,∆)b ∈ Ant if Γ,∆ ∈ Ant and b ∈ BinMod

The set Seq of sequents is the least such that:

• Γ ⇒ A ∈ Seq if Γ ∈ Ant and A ∈ Cat

The inference schemes then follow the general scheme of residuation for
unary and binary operations [Moortgat 1994]. In terms of sequent rule schemes,
this amounts to left and right rules for each of our binary and unary connectives.
These are as follows.

• ID
A ⇒ A

• Γ[(A)u] ⇒ B
3uL

Γ[3uA] ⇒ B

Γ ⇒ A
3uR

(Γ)a ⇒ 3uA

• Γ[A] ⇒ B
2uL

Γ[(2uA)u] ⇒ B

(Γ)u ⇒ A
2uR

Γ ⇒ 2uA

• ∆ ⇒ B Γ[A] ⇒ C
/bL

Γ[(A/bB,∆)b] ⇒ C

(Γ, B)b ⇒ A
/bR

Γ ⇒ A/bB

• ∆ ⇒ B Γ[A] ⇒ C\bL
Γ[(∆, B\bA)b] ⇒ C

(B,Γ)b ⇒ A\bR
Γ ⇒ B\bA
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• Γ(A,B)b ⇒ C·bL
Γ[A·bB] ⇒ C

Γ ⇒ A ∆ ⇒ B·bR
(Γ,∆)b ⇒ A·bB

A proof of a sequent Γ ⇒ A consists of a tree rooted at Γ ⇒ A, every
local tree of which matches some inference rule, and every branch of which is
terminated with an application of the identity scheme.

Lambek’s [1961] non-associative calculus, often called NL, is given by simply
taking UnMod = {} and BinMod = {n}. The rules for the product and the left
and right slash then correspond to Lambek’s own presentation. NL is the
weakest possible logic based on residuation, thus making it the one that is most
sensitive to the structure of expressions. Lambek’s [1958] associative calculus,
often called L, on the other hand, can be defined by taking UnMod = {}
and BinMod = {a}, along with the following pair of structural postulates for
associativity.

• Γ[((A,B)a, C)a] ⇒ D
A1(a)

Γ[(A, (B,C)a)a] ⇒ D

Γ[(A, (B,C)a)a] ⇒ D
A2(a)

Γ[((A,B)a, C)a] ⇒ D

These postulates encode the associativity of the mode of combination a. Simi-
larly, the Lambek-van Benthem calculus [van Benthem 1983], often called LP,
is derived with a single binary mode of combination p, along with the postulates
of associativity and permutation.

• Γ[((A,B)p, C)p] ⇒ D
A1(p)

Γ[(A, (B,C)p)p] ⇒ D

Γ[(A, (B,C)p)p] ⇒ D
A2(p)

Γ[((A,B)p, C)p] ⇒ D

• Γ[(B,A)p] ⇒ C
P (p)

Γ[(A,B)p] ⇒ C

Morrill defined a wrapping mode w, and allowed it to interact with the non-
associative mode n and the associative mode a. The logic is determined by the
binary modes BinMod = {a, n,w} and no unary modes. The non-associative
mode is not subject to structural rules (on its own) the associative mode a is
subject to the associative rules above, and the wrapping mode interacts with
the other two modes according to the following schemes.

• Γ[((∆1,∆2)n,∆3)w] ⇒ A

Γ[((∆1,∆3)a,∆2)a] ⇒ A

• Γ[((∆1,∆3)a,∆2)a] ⇒ A

Γ[((∆1,∆2)n,∆3)w] ⇒ A

Next, consider the following examples of structural postulates for unary
modes of combination given by Moortgat [1994].

• Γ[(∆)u] ⇒ A
4(u)

Γ[((∆)u)u] ⇒ A

• Γ[(∆)u] ⇒ A
T (u)

Γ[∆] ⇒ A
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In addition to postulates governing the behavior of a single mode of combi-
nation, Moortgat allows for mixed postulates, which allow the binary associative
mode a to interact or communicate with a unary mode u (in order to encode
the Hepple/Morrill approach to bounding domains).

• Γ[((∆1)u,∆2)a] ⇒ A
K1(u, a)

Γ[((∆1,∆2)a)u] ⇒ A

• Γ[(∆1, (∆2)u)a] ⇒ A
K2(u, a)

Γ[((∆1,∆2)a)u] ⇒ A

• Γ[((∆1)u, (∆2)u)a] ⇒ A
K(u, a)

Γ[((∆1,∆2)a)u] ⇒ A

It is also possible to use a unary operator p in conjunction with a binary operator
a in order to condition permutation [Morrill 1994].

• Γ[((Γ)p,∆)a] ⇒ A
P (a, p)

Γ[(∆, (Γ)p)a] ⇒ A

In linear logic, unary modes have been used to import more liberal control
over resources into a more restrictive logic. For instance, there is a mode,
typically written !, which allows both weakening and contraction, as below. It
is typically subject to the K structural rule and mixed with the commutative
and associative binary mode p.

• Γ[(∆, (∆)!)p] ⇒ A

Γ[(∆)!] ⇒ A

• Γ[Φ] ⇒ A

Γ[((∆)!,Φ)p] ⇒ A

The first rule allows the ∆ resource to be duplicated, and the second allows
it to be eliminated. Often, the second rule above is used in the context of a
nullary mode corresponding to the empty set of assumptions, but we will not
need recourse to nullary modes in our development.

Assuming an alphabet AtExp of atomic expressions, a lexicon is a finite set
Lex whose elements are of the form e ⇒ A, where A ∈ Cat and e ∈ Exp. In
general, the set Exp of expressions is the least such that:

• AtExp ⊆ Exp

• (e)u ∈ Exp if e ∈ Exp

• (e1, e2)b ∈ Exp if e1, e2 ∈ Exp

Assuming a non-associative binary mode of combination, expressions behave
rather like bracketed strings, and with associative combination, behave like
strings. We can then extend our sequents to include arbitrary expressions as
follows.

• Γ[A1 7→ e1, . . . , An 7→ en] ⇒ C iff Γ ⇒ C and ei ⇒ Ai ∈ Lex for 1 ≤ i ≤ n
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Here we take Γ[A1 7→ e1, . . . , An 7→ en] to be the result of replacing all occur-
rences of Ai with ei.

3 Turing Completeness

For the purposes of this paper, we note a few relevant points about the form of
these rules. First, they may either add or delete structure, as evidenced by the
schemes 4 and T above. Second, they may work in only one direction, as evi-
denced by the 4, K, and T schemes. No one has suggested any metatheoretical
constraints on structural postulates other than that they are not conditioned by
particular categories (though they can obviously be conditioned on the modes
themselves). If arbitrary structural schemes are allowed, we have the following
immediate result.

Theorem 1 (Turing Completeness) A set S ⊆ AtExp∗ of expressions is
enumerable by a Turing machine if and only if there is a categorial grammar,
containing a category A, such that e ∈ S if and only if e ⇒ A is provable.

Proof:
(⇐) This is obvious because a Turing machine can effectively enumerate all
possible proofs by breadth-first search in the usual way.
(⇒) Suppose S can be enumerated by a Turing machine. Then there is a
general rewriting (Type 0) grammar G with a distinguished non-terminal C0

(usually called the start symbol) such that e ∈ S if and only if C
∗→ e (where

∗→ is the usual transitive reflexive closure of the one-step substring rewriting
relation). Suppose the finite set of non-terminals of G is V1, . . . , Vn. Then we
define a categorial grammar as follows. We take the set of unary modes to be
u1, . . . , un (one for each non-terminal), and combine this with a single binary
mode a. We take exactly one category symbol, C. We assume the structural
postulates of associativity for a, and will thus omit the binary bracketings;
that is, we use the notation A1 · · ·An for ((A1, A2)a, · · ·An)a. Now for every
production Vi1 · · ·Vik ⇒ Vj1 · · ·Vjm in the rewriting system, we assume the
following structural postulate:

Γ[(∆)j1 · · · (∆)jm ] ⇒ A

Γ[(∆)i1 · · · (∆)ik ] ⇒ A

Note that this scheme will entail, via the left rules for the various 3, the
following:

Γ[3j1C · · ·3jmC] ⇒ A

Γ[3i1C · · ·3ikC] ⇒ A

For every lexical relation Vi → e in the rewriting system, we assume a lexical en-
try e ⇒ 3iC in the categorial grammar. Assuming C0 = Vk is the distinguished
(start) symbol of the rewriting system, we must show that e1 · · · ep ⇒ 3kC if
and only if Vk

∗→ e1 · · · ep. But this result is trivial, because there is a one-
to-one correspondence between allowable one-step rewritings in the rewriting
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system and applications of structural rules in the categorial grammar. Simply
recall that we have a one-step rewriting στρ → στ ′ρ′ in a rewriting grammar
if τ → τ ′ is a rewriting rule in the grammar, and σ, τ, τ ′ and ρ are sequences
of terminals and non-terminals. Finally, we note that it will not be possible to
apply a right rule of any sort, because no connectives will ever be generated
on the right-hand side of a sequent. Further, no left rule can be used because
there will never be a pattern that maches the left unary or binary modal rules.

Usually a proof of Turing-completeness for a grammar formalism leads its
proponents to think more carefully about the metatheory in terms of exactly
what is to count as a grammar. One rather unnatural aspect of the reduction
in the proof is that it allows arbitrary amounts of structure to be inserted and
retracted. In the original Lambek system, decidability was ensured by requiring
subproofs to only involve subcategories of the categories in the sequent being
proved. Unfortunately, such restrictions have been violated in more recent
proposals.

4 Sahlqvist Axioms and Decidability

An interesting restriction on structural rules was suggested by Kurtonina [1996]
in her thesis as a means of guaranteeing completeness in a particular logical for-
mulation of multi-modal categorial grammars. Kurtonina provides the following
definition:

A structural rule of the form α ` β is said to be a weak Sahlqvist
axiom if and only if α is a pure product formula, associated in any
order, without repetitions of proposition letters, and β is also a pure
product formula containing at least one product, all of whose atoms
occur in α.

Kurtonina’s motivation was to enable the proof of a powerful completeness
theorem concerning the non-associative Lambek Calculus (NL) combined with
a weak Sahlqvist axiom, the combination of which leads to a complete proof
theory for the models satisfying the corresponding frame conditions derived
from the axiom.

¿From the point of view of representational power, it is easy to see that
the restriction to Sahlqvist axioms defeats our coding of Turing machines us-
ing modal operators. Because all applications of structural rules will never
increase the size of the proof space beyond a finite limit, decidability for the
non-associative calculus combined with any weak Sahlqvist axiom is guaran-
teed.

For now, we have to leave aside the important issue of whether the restriction
to weak Sahlqvist axioms will be too restrictive or whether such axioms will be
sufficiently rich to allow us to adequately model natural language syntax and
semantics.
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5 Conclusion

We have shown that mutlimodal categorial grammars can simulate arbitrary
generalized rewriting systems by modeling their productions using structural
interaction postulates. Without some restriction, such as to the weak Sahlqvist
axioms, the universal decision problem for the grammaticality of a string with
respect to a grammar is undecidable. This places multimodal categorial gram-
mar squarely in the camp of unconstrained grammatical theories such as trans-
formational grammars, phrase-structure grammars with metarules, and simple
applicative categorial grammars with lexical rules.
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torate Thesis. Departamento de Lingǘısticia, Lógica, Lenguas Modernas y Filosof́ıa
de la Ciencia, Universidad Autónoma de Madrid.

Uszkoreit, H. and P. S. Peters, 1986 On some formal properties of metarules. Linguistics
and Philosophy 9(4):477–494.

Versmissen, K. 1996. Grammatical Composition: Modes, Models, Modalities. Doctoral
Dissertation, Research Institute for Language and Speech, University of Utrecht.

9


	Introduction
	Multimodal Categorial Grammar
	Turing Completeness
	Sahlqvist Axioms and Decidability
	Conclusion

