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1 Introduction

In his rich research Johan van Benthem has given some important contributions
to temporal and dynamic logics. In this paper, we will present the main ideas of
a semantic framework, where quantum logic permits us to model some typical
temporal and dynamic situations. One is dealing with new quantum logical
structures that have been suggested by the consistent histories approach to
quantum theory (investigated by Gell-Mann, Hartle ([4]), Isham, Linden ([7],
[8]) and many others).

Roughly, the basic idea of this approach is that the fundamental objects
of quantum theory are represented by consistent sets of histories, where each
history corresponds to a possible temporal evolution of a micro-physical system.
Interestingly enough, one can find deep connections between quantum histories
and quantum computations.

We propose a general semantics that, in principle, admits a number of pos-
sible applications. The basic concept in this semantics is the notion of historical
structure.

2 Historical structures

Definition 2.1 A historical structure is structure

M = 〈T, S, Ev, Histev ,Op ,D〉 ,

where

1) T is a linearly ordered set of times. In the following a time-sequence
〈t1, . . . , tn〉 will be always written according to the order ≤.

2) S is a function that assigns to each t ∈ T a set St of possible states at
time t. For simplicity all St are supposed to be (ontologically distinct)
copies of a fixed (timeless) S∗.

¿From an intuitive point of view, states can be regarded as possible worlds
of a Kripke-style semantics: pieces of information about possible states of
affairs (or fragments of reality).

In the physical applications: S∗ will (naturally) contain the possible states
of the physical system under investigation. A state is called pure when it
represents a maximal information that is consistent with respect to the
theory. Non maximal pieces of information correspond to mixed states.
In classical mechanics pure states are always logically complete. In other
words any pure state can semantically decide any relevant physical prop-
erty of the system (localization, velocity, energy,...). On the contrary, a
characteristic aspect of quantum theory is a divergence between maxi-
mality and logical completeness. Owing to the uncertainty relations, any
information about a quantum system is necessarily logically incomplete,
in the sense that it cannot semantically decide all the physical proper-
ties concerning our system. In classical mechanics (CM), pure states are
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mathematically represented by points of an appropriate phase space Ω.
In quantum theory (QT), instead, the pure states of a quantum object
are represented by unitary vectors in an appropriate Hilbert space H.

3) Ev is a function that assigns to each t ∈ T a set Evt of events at time t.
For simplicity, all Evt are supposed to be (ontologically distinct) copies of
a fixed (timeless) Ev∗.
In the case of our physical applications: Ev∗ will contain the possible
physical properties of the physical system. In CM: measurable subsets of
the phase space Ω. In QT: closed subspaces (or equivalently, projection
operators) in the appropriate Hilbert space H.

Any timeless state s will assign to any timeless event α a value in the
interval [0, 1]:

s(α) ∈ [0, 1].

A state s is said to verify an event α (s |= α) iff s(α) = 1. Similarly for
all states in St and all events in Evt.

The set Ev∗ of the timeless events has a structure (for simplicity all Evt

are assumed to be isomorphic to Ev∗). We will consider only examples of
structures that are partially ordered by a relation v.

In the case of CM, Ev∗ gives rise to a Boolean algebra (a convenient
subalgebra of the power-set of Ω). Similarly, in QT, the structure of Ev∗
can be identified with the algebra of all closed subspaces ofH (a particular
example of a non distributive orthomodular lattice). As a consequence
one obtains that, differently from the classical mechanical case, quantum
events do not have a classical logical behaviour.

We will call historical sequence a sequence of events 〈αt1 , . . . , αtn〉, where
each αti is in Evti . Of course, the algebraic structure of each Evtk can be
naturally transferred to the set of all historical sequences (

∏n
i=1 Evti). We

will call temporal support ([7]) of the historical sequence 〈αt1 , . . . , αtn〉,
the time-sequence 〈t1, . . . , tn〉. Composition between temporal supports
and historical sequences with disjoint temporal supports is defined in the
expected way.

4) Histev is a function that assigns to each time-sequence 〈t1, . . . , tn〉 the
set of the historical events Histev〈t1,... ,tn〉 at time 〈t1, . . . , tn〉. This set is
equipped with a structure.

Physical examples:

In CM: Histev〈t1,... ,tn〉 is a σ-field of subsets of the cartesian product
of

St1 × . . .× Stn .

In other words, a historical event (at time 〈t1, . . . , tn〉) is a set of
sequences 〈st1 , . . . , stn〉, where any sti is a pure state of the system
at time ti.
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In QT: Histev〈t1,... ,tn〉 can be identified with the set of the closed
subspaces of the tensor product

Ht1 ⊗ . . .⊗Htn ,

where each Hti represents the Hilbert space of the system at time ti.

Any historical sequence of events must be represented by a historical
event. However, not all historical events will represent historical se-
quences. For instance, in QT the sequence 〈αt1 , . . . , αtn〉 (where each
αti is a closed subspace) will be represented by the tensor product αt1 ⊗
. . .⊗ αtn of the closed subspaces αt1 , . . . , αtn . Such a product is a closed
subspace in the tensor-product space Ht1 ⊗ . . . ⊗ Htn . Of course, not
all the closed subspaces in the tensor-product space will have this factor-
ized form. For instance, the orthocomplement of a factorized historical
event αt1 ⊗ . . .⊗αtn (which represents the logical negation of the original
event) will not generally correspond to any historical sequence of events.
Our physical examples naturally suggest to require the following general
conditions:

(4.1) For any time tk and any time-sequence 〈t1, . . . , tk, . . . , tn〉, there
exists a function f that maps Evtk into Histev〈t1,... ,tn〉:

f : Evtk → Histev〈t1,... ,tn〉.

Further, such f is an embedding that preserves the algebraic struc-
ture of Evtk .

This guarantees that any event at time tk is represented by a historical
event in any longer time-interval. For instance, in the case of closed
subspaces, f(αtk) will be 1t1 ⊗ . . .⊗αtk ⊗ . . .⊗ 1tn , where 1ti represents
the certain event at time ti.

(4.2) For any time sequence 〈t1, . . . , tn〉, there is a function g that trans-
forms any historical sequence 〈αt1 , . . . , αtn〉 of events into a historical
event η〈t1,... ,tn〉 of Histev〈t1,... ,tn〉:

g : 〈αt1 , . . . , αtn〉 7→ η〈t1,... ,tn〉.

Further, such g is a homomorphism of
∏n

i=1 Evti into Histev〈t1,... ,tn〉.

Definition 2.2 Two historical sequences 〈αt1 , . . . , αtn〉 and 〈βt1 , . . . , βtn〉
are called equivalent (〈αt1 , . . . , αtn〉 ≈ 〈βt1 , . . . , βtn〉) iff g(〈αt1 , . . . , αtn〉) =
g(〈βt1 , . . . , βtn〉).

Since g is a homomorphism, the equivalence relation ≈ turns out to be a
congruence on the algebraic structure induced on

∏n
i=1 Evti . Further, the

relation ≈ is required to satisfy the following condition:
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let 〈tm, . . . , tn〉 and 〈ti, . . . , tj〉 be two disjoint temporal supports: if

〈αtm , . . . , αtn〉 ≈
〈
α′

tm , . . . , α
′
tn

〉
and

〈
βti , . . . , βtj

〉 ≈ 〈
β′ti , . . . , β

′
tj

〉
, then

〈αtm , . . . , αtn〉 ◦
〈
βti , . . . , βtj

〉 ≈ 〈
α′

tm , . . . , α
′
tn

〉 ◦ 〈
β′ti , . . . , β

′
tj

〉
.

In other words, the relation ≈ is preserved under composition (◦) of his-
torical sequences.

Any historical event η〈t1,... ,tn〉 that represents (via g) a historical sequence
will be called a history 1. We will indicate by Hist〈t1,... ,tn〉 the subset of
Histev〈t1,... ,tn〉 that contains all the histories. Instead of g(〈αt1 , . . . , αtn〉)
we will simply write: η〈αt1 ,... ,αtn〉.
On this basis one can naturally define a notion of historical truth. This
is a semantic notion that may hold between a sequence of states and
a historical event. Let us first consider the case where both the state-
sequence and the historical event refer to the same temporal support
〈t1, . . . , tn〉.

Definition 2.3 Restricted definition of historical truth

(〈st1 , . . . , stn〉 verifies η: 〈st1, . . . , stn〉 |= η)

We will distinguish the case of histories from that of historical events that
do not represent histories.

a) Let η be the history η〈αt1 ,... ,αtn〉. Then:
〈st1, . . . , stn〉 |= η iff for any sequence 〈αt1 , . . . , αtn〉 s.t.
g(〈αt1 , . . . , αtn〉) = η: sti |= αti , for any sti and αti (1 ≤ i ≤ n).

b) Let η be a historical event (belonging to Histev〈t1,... ,tn〉) that is not
a history. Then:

〈st1, . . . , stn〉 |= η iff for at least one history δ〈αt1 ,... ,αtn〉:
i) δ〈αt1 ,... ,αtn〉 v η, where v is the partial order of the event struc-

ture;

ii) 〈st1, . . . , stn〉 |= δ〈αt1 ,... ,αtn〉.

Our truth definition can be naturally extended also to the case where a
state-sequence and a historical event refer to different time-sequences. Let
us first introduce a procedure that permits us to normalize any history to
a given time-sequence.

Definition 2.4 Normalization of a historical-sequence to a given time
sequence

Let 〈αtm , . . . , αtn〉 be a historical sequence and let 〈ti, . . . , tj〉 be any
time-sequence. The normalization of 〈αtm , . . . , αtn〉 to 〈ti, . . . , tj〉 is the
following historical sequence:

d〈αtm , . . . , αtn〉e〈ti,... ,tj〉 :=
〈
βti , . . . , βtj

〉
,

1In [7], historical sequences are called history-filters, while historical events are called
history -propositions.
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where

βtk =

{
αtk , if tk is in 〈tm, . . . , tn〉;
1tk otherwise.

(1tk is the certain event at time tk).

Accordingly, the normalization of a history will be automatically deter-
mined (via g):

Definition 2.5 Normalization of a history to a given time-sequence

Let η〈αtm ,... ,αtn〉 be a history and 〈ti, . . . , tj〉 be a time-sequence. The
normalization of η〈αtm ,... ,αtn〉 to 〈ti, . . . , tj〉 is the history

dη〈αtm ,... ,αtn〉e〈ti,... ,tj〉

that is univocally determined by the historical sequence

d〈αtm , . . . , αtn〉e〈ti,... ,tj〉.

One can easily prove that Definition 2.5 is a good definition since it is
independent of the choice of the representative.

On this basis we can define a general notion of historical truth:

Definition 2.6 General definition of historical truth

(〈st1 , . . . , stn〉 verifies η〈ti,... ,tj〉: 〈st1, . . . , stn〉 |= η〈tti ,... ,ttj〉)
Let η〈ti,... ,tj〉 be a historical event.

〈st1 , . . . , stn〉 |= η〈ti,... ,tj〉 iff there is a history δ〈ti,... ,tj〉 s.t.:

i) δ〈ti,... ,tj〉 v η〈ti,... ,tj〉;

ii) 〈st1, . . . , stn〉 |= dδ〈ti,... ,tj〉e〈t1,... ,tn〉.

A historical sequence will be called normal when all historical events can
be normalized to any time sequence.

It turns out that any historical structure where all Histev〈t1,... ,tn〉 are
structured as complete lattices is trivially normal.

5) Op, the operation function, is a function that associates to any pair of
time ti, tj a set of operations Otj

ti

Op : 〈ti, tj〉 7→ Otj
ti
,

where Otj
ti

is a subset of a set of admissible operations O ⊆ {
f | S∗ → S∗}

(S∗ ⊆ S∗). In other words, admissible operations transform states into
states.
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Some operations in Otj
ti

may represent spontaneous evolutions whereas
other operations may represent state transformations induced by an ac-
tion. A typical action is a test performed in order to check whether a
certain property α holds2. Of course, physical measurements are paradig-
matic examples of action of this kind. We will indicate by fα(s) the
transformation of a state s induced by an action that has been performed
in order to check whether the object in state s satisfies the property α.

On this basis a class of accessibility relations can be naturally defined in
terms of our operations (differently from Kripke semantics, where acces-
sibility relations are usually dealt with as primitive). Let s, u represent
timeless states.

States s and u are called accessible in the time interval [ti, tj ] (we will
write Acctjti (s, u)) iff there exists an operation f ∈ Otj

ti
s.t.

u = f(s).

States s and u are absolutely accessible (Acc(s, u)) iff for at least two times
ti, tj :

Acc
tj
ti

(s, u).

Let α be an event. The states s, u are α-accessible (Accα(s, u)) iff there
exists an operation fα s.t.

u = fα(s).

Since all St are copies of S∗ our accessibility relations are automatically
transferred to pairs of states that may belong to different St.

6) D is a (possibly empty) set of decoherence functionals d ([7]). From the
intuitive point of view, d(η, δ) measures the degree of interference between
the historical events η and δ.

3 Dynamic and temporal operators

Different logical operators that have a temporal or a dynamic meaning can be
naturally defined in our semantics.

Definition 3.1 The temporal conjunction and then u↗
Let η〈tm,... ,tn〉, δ〈ti,... ,tj〉 be two historical events. Generally u↗ is a partial

operation that turns out to be always defined in the particular case of a normal
historical structure where any Histev〈t1,... ,tn〉 gives rise to a lattice (where u
and t represent the infimum and the supremum, respectively).

η〈tm,... ,tn〉u↗ δ〈ti,... ,tj〉 :=




0〈tm,... ,tn〉◦〈ti,... ,tj〉, if 〈tm, . . . , tn〉 does not preceed
〈ti, . . . , tj〉 w.r.t the order ≤;

dηe〈tm,... ,tn〉◦〈ti,... ,tj〉 u dδe〈tm,... ,tn〉◦〈ti,... ,tj〉, if this inf
exists in Histev〈tm,... ,tn〉◦〈ti,... ,tj〉;

undefined, otherwise.

2See von Wright [14].
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As an example, suppose two histories η〈αt1 ,αt2〉, δ〈βt3 ,βt4〉 (t1 < t2 < t3 < t4).
According to our definition we will have:

η〈αt1 ,αt2〉u↗δ〈βt3 ,βt4〉 = η〈αt1 ,αt2 ,1t3 ,1t4〉 u δ〈1t1 ,1t2 ,βt3 ,βt4〉

= γ〈αt1u1t1 ,αt2u1t2 ,1t3uβt3 ,1t4uβt4〉

= γ〈αt1 ,αt2 ,βt3 ,βt4〉.

We obtain in this way the expected meaning of a temporal conjunction: η〈αt1 ,αt2〉
and then δ〈βt3 ,βt4〉 is the history determined by the historical sequence
〈αt1 , αt2 , βt3 , βt4〉. A dynamic implication

Let us refer to set Ev∗ of all timeless events and to the set S∗ of all timeless
states. Let α ∈ Ev∗. We define first a function α that assign to each β ∈ Ev∗
a set of timeless states:

α : Ev∗ → P(S∗) (where P(S∗) is the power-set of S∗)

satisfying the condition:

s ∈ α β iff ∀u [Accα(s, u) ⇒ u |= β ] .

¿From the intuitive point of view, s ∈ α β has the following meaning: suppose
we test α on a state s and we obtain a positive result; then, any state into
which s is transformed after such a test verifies β. Of course, α β does not
necessarily determine an event. In the case where Ev∗ has the structure of a
complete lattice, one can easily define the following total operation:

α : Ev∗ → Ev∗,

where
α β :=u{

δ | ∀u ∈ α β : u |= δ
}

Otherwise, α will represent a partial operation.
In the particular case of the lattice of all closed subspaces in a Hilbert

space H the dynamic implication is always defined and corresponds to the usual
quantum logical (material) implication (which is also called Sasaki implication).

As is well known, differently from classical logic, α′ t β (where ′ is the
orthocomplement) does not represent a good conditional operation in quantum
logic. Actually, it may happen that in a given orthomodular lattice, α′ t β is
equal to 1, even if α does not preceed β according to the lattice-order. From
the logical point of view, this means that a sentence like “not A or B” might
be true in a given (algebraic) model, even if A does not imply B in the same
model.

However, a particular variant of α′ t β (which is equivalent to α′ t β in all
Boolean lattices) permits us to define a good quantum logical conditional . It is
sufficient to put:

α→ β := α′ t (α u β).
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One can easily show that for closed subspaces α, β:

α β = α→ β.

Of course, such a relation holds, only if we interpret the accessibility relation
Accα in the “natural” quantum theoretical way. In other words:

Accα(s, u) iff u is the result of the projection of s over the closed subspace α.

This shows that the standard logical implication admits a natural dynamic
interpretation. In other words, even the orthodox version of quantum logic
(which is usually described as a “static logic”) seems to have some ”hidden”
dynamic features.

4 Quantum histories and quantum Turing machines

Let us first introduce a definition of quantum Turing machine, following a quite
elegant abstract approach, that has been recently proposed by Gudder ([5]).

Definition 4.1 A quantum Turing machine, whose tape is identified with the
set of the integers Z, is a structure

M = 〈I, S, δ,H〉
where:

1) I is a finite alphabet , containing a blank symbol ].

2) S is a set of memory states, containing an initial state s0 and a final state
sf . Similarly to classical Turing machines, consider the cartesian product

S × I × I × {L,R} × S.

The interpretation of any element 〈s, x, y, d, r〉 (where d ∈ {R,L}) of our
product will be the following: the machine M is in state s, sees the
symbol x, prints the symbol y, goes to d and finally transits to state r.
Any 〈s, x, y, d, r〉 represents a computational event .

3) δ is the amplitude function that assigns to any computational event
〈s, x, y, d, r〉 a complex number. The number | δ(〈s, x, y, d, r〉) |2 will rep-
resent the probability of the computational event 〈s, x, y, d, r〉.
M evolves in time assuming different states. A configuration (or basic
state) of M is a triplet:

ϕ = 〈n, s,w〉
where n is a location of M on the tape, s is a memory state and w is a
word , describing the condition of the tape. Similarly to the classical case,
a word w can be described as function

w : Z → I
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with the usual restriction: for almost all n ∈ Z: w(n) = ]. Hence, a word
corresponds to a finite sequence of symbols labelled by the cells of the
tape. Instead of w(n) we will also write wn.

Let B be the set of all possible basic states ϕ (which describe definite
configurations of M).

4) H is a Hilbert space with orthonormal basis B.

The amplitude function δ determines a linear operator

U : H → H.

It is sufficient to define U on B:

for any ϕ ∈ B, U(ϕ) will generally be a superposition state:∑
i

ciϕi.

Let ϕ = 〈n, s,w〉 and let wn represent the symbol printed in the cell n.

Let us consider the set of all computational events starting with the pair
〈s,wn〉 (which is determined by ϕ):

〈s,wn, y, d, r〉
for all possible y, d, r.

For any y, d, r, we define the complex number cy,d,r and the vector ϕy,d,r

as follows:
cy,d,r = δ(〈s,wn, y, d, r〉)
ϕy,d,r = 〈n(d), r, w(y, n)〉 .

Where:

n(d) =

{
n+ 1, if d = R;
n− 1, if d = L,

and:

w(y, n)m =

{
y, if m = n;
wm, otherwise.

Now, let us define:

U(ϕ) =
∑
y,d,r

cy,d,rϕy,d,r.

We assume the following restriction: U must be a unitary operator. Obvi-
ously, such a restriction represents a constraint on the amplitude function
δ.
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How can the action of our unitary operator U be interpreted? Let ψ0 =
〈0, s0, w〉 represent the element of B that is the initial state, where the word w
corresponds to the input for M . The state U(ψ0) will represent the evolution of
the initial state ψ0 after one step. Generally U t(ψ0) will represent the evolution
of ψ0 after t steps (we might also say: at time t).

What does it mean that our machine M halts at time t with a certain
probability value? In order to answer this question, let us first introduce the
notion of final basic state.

Definition 4.2 A final basic state is a vector ϕ ∈ B s.t.:

ϕ = 〈n, sf , w〉 ,

where sf is the final memory state.

We will denote by BF set of all final basic states.

Definition 4.3 The probability that M halts at time t (ProbH(t)) is defined as
follows:

ProbH(t) =
∑

ϕ∈BF

| (U t(ψ0), ϕ) |2

(where (U t(ψ0), ϕ) represents the inner product of U t(ψ0) and ϕ).

¿From an intuitive point of view, any sequence〈
ψ0, ...., U

t(ψ0)
〉

can be regarded as a knowledge path (or an epistemic history) of M . Such a
sequence naturally gives rise to a graph, where each branch has the form:

〈ψ0, ϕ1, ..., ϕt〉

with ϕi ∈ B.
These basic sequences 〈ψ0, ϕ1, ..., ϕt〉 are determined as follows. For any k

(0 ≤ k ≤ t), consider

Uk(ψ0) =
∑

i

ciϕi (with ci 6= 0).

We require:

ϕk = ϕi, for a given ϕi occurring in
∑

i

ciϕi.

Since states correspond to unidimensional closed subspaces of H, any knowl-
edge path of M represents a historical sequence (in the sense of Definition 2.1).

On this basis, one can distinguish at least two different notions of compu-
tation.
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Definition 4.4 A strong computation of M is a knowledge path〈
ψ0, ...., U

t(ψ0)
〉

where M halts at time t with probability 1.

Definition 4.5 A weak computation is a knowledge path〈
ψ0, ...., U

t(ψ0)
〉

where M halts at t with probability different from 0.

In this framework, one can naturally introduce some semantic notions (fol-
lowing a standard quantum logical style).

Definition 4.6 A basic state ϕ knows (or accepts) a word w (ϕ |= w) iff there
is a location n and a memory state s such that

ϕ = 〈n, s,w〉

Definition 4.7 A state ψ possibly knows (or possibly accepts) a word w
(ψ � w) iff ψ =

∑
ciϕi with ci 6= 0 and for at least one ϕi,

ϕi |= w.

Definition 4.8 M possibly knows a word w at time t (M �t w) iff

U t(ψ0) � w.

Definition 4.9 M knows a word w at time t (M |=t w) iff

1) M �t w;

2) M halts at time t with probability 1.

Definition 4.10 The proposition C(w) of a word w is the smallest closed sub-
space that includes

{ϕ ∈ B | ϕ |= w} .

Suppose we equip our language with the logical connectives ¬ and ∧ (where
the atomic formulas can be identified with particular words). Then we can give
the usual (quantum logical) semantic definitions:

Definition 4.11

ψ � ¬α iff ψ ∈ C(α)′;

ψ � α ∧ β iff ψ ∈ C(α) ∩ C(β).
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Suppose M �t α and M |=t α are defined as above.
It may happen:

∃t : M |=t ¬α
And

∃t : M |=t α

In other words, the negation ¬ shows in this framework a weak paraconsis-
tent behaviour (similarly to a negation by failure).
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