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Abstract

We define the class of non well-founded multisets and provide three different de-
scriptions of this class: as collapsed multigraphs, as trees, or as infinitary formulae.
Our major tool in this task is Scott-bisimulation, which was originally conceived to
give an axiomatization of non well-founded multisets. The natural generalization of
Scott-bisimulation from graphs to multigraphs allows us to have a theory of multi-
graph decorations and a notion of collapse in complete analogy with the theory of
graph decorations and collapse given by the non well-founded axiomatization of sets
ZFCA. We also show how our approach to multisets fits in the framework developed
by Barwise and Moss.
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1 Introduction

Multisets are very natural objects: they can model a number of different situa-
tions in different contexts, like the store of a shop or the bag of a housewife. A
multiset (a bag in Computer Science) is like a set, except that an element can
have multiple occurrences in it. For example, a grocery shop with 50 apples,
150 pears, 100 banana, and 0 kiwi in store can be modeled by the multiset

[[apple, apple, · · · , pear, pear, · · · , banana, banana, · · ·]] .

In proof theory sequents are often modeled as pairs of multisets (see e.g. [4]).
In general, a multiset of objects from a given domain D can be represented

in two ways:

(a) as a partial function from D to Card+, where Card+ is the class of all
strictly positive cardinals;

(b) as an equivalence class [f ] of functions from a cardinal k to D, where [f ] is
the set of all function g ∈ Dk such that there exists a bijection h : k → k
with f = g ◦ h.

For example, in the grocery shop above the domain D is given by the set
{a, p, b, k}, and the shop is represented by:

(a) a function f with f : D → Card+, f(a) = 50, f(p) = 150, f(b) = 100,
f(k) =↑, or

(b) the equivalence class of the function f : 300 → D, where

f(x) =




a if x < 50
p if 50 ≤ x < 150
b if 150 ≤ x < 300.

Multiple occurrences of an object d ∈ D in a multiset can be described
by the family of relations LMS = {∈k: k ∈ Card+}, interpreted in (a) by
d ∈k f ⇔ f(d) ≥ k and in (b) by d ∈k [f ] ⇔ |f−1(d)| ≥ k. When possible, we
use a notation like [[d, d, c, e, e]] to represent a multiset.

If the domain D is fixed, there is an obvious equivalence between repre-
sentations (a) and (b): they both describe the multisets based on D, or D-
multisets. In the following, we refer to them as the (a) or (b) representations
of D-multisets.

As in the case of ordinary sets we want to represent iterated multisets,
where multisets contain (various occurrences) of other multisets. In this case
the domain D is made of multisets. By epsilon recursion it is easy to define the
class of well-founded multisets, but here we are interested in circular situations,
like in set theory: we want to have the possibility for a multiset x to be a
member of itself, repeated any number of times, i.e. we want to guarantee the
existence of multisets satisfying equations like x = [[x, x]] .

Circular multisets can be modeled using the theory ZFC−A (Zermelo-
Fraenkel Theory with choice, with foundation replaced by the anti-foundation
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axiom AFA, see [1]). One possibility is to use the representation (a) above,
and define the operator

∆(X) = {f is a function : dom(f) ⊆ X ∧ range(f) ⊆ Card+}.

∆ is a monotone operator; its least fixed point gives us the class of well-founded
multisets. The same class is obtained by considering the operator Γ defined by
using representation (b):

Γ(X) = {[f ] : f ∈ Xk for some cardinal k}.

Γ is a monotone operator; its least fixed point is isomorphic, as an LMS-
structure, to the least fixed point of ∆. We denote it by wfMS. The operators
∆ and Γ also have greatest fixed points, which in ZFC−A contain strictly the
well-founded multisets. However, we prove that the greatest fixed point Γ∗ of Γ
is not isomorphic to the greatest fixed point ∆∗ of ∆ as an LMS-structure: Γ∗

has nice AFA-like properties connected with decorations of multigraphs which
are not shared by ∆∗. Using these properties we find a correspondence between
Γ∗ and a certain class of collapsed multigraphs, similar to the correspondence
between sets and collapsed graphs given by the anti-foundation axiom AFA
([1]). Defining the multiset-class via Γ∗ allows us to propose an alternative
(and easier to visualize) definition of multisets. This alternative is lost when
we consider multisets defined via ∆.

Our major tool in this task is Scott-bisimulation. In his work [3], Scott pro-
posed a theory of non-well-founded sets, which was later reconsidered by Aczel
in [1]. Using the notion of Scott-bisimulation, Aczel compares Scott-theory
ZFC−S with ZFC−A. Both can be obtained from ZFC− (Zermelo-Fraenkel
with choice, without foundation) by using a strengthening of the extensionality
axiom, defined in terms of bisimulation: the maximal bisimulation for ZFC−A,
Scott-bisimulation for ZFC−S. In this confrontation, the Scott axiomatization
ZFC−S seems to be less natural and manageable than ZFC−A: in ZFC−A
any graph has a unique decoration, while in ZFC−S graphs can have more than
one decoration; in ZFC−A any set can be represented by a collapsed graph,
while a similar notion of collapse is not available in ZFC−S.

In this work we claim that the Scott axiomatization looks like ZFC−A more
than it seems, but that this resemblance can be appreciated only by changing
from the set to the multiset-context (defined via the Γ operator above). We show
that Scott-bisimulation (in its generalization to multigraphs) gives us a way to
define multiset-decorations of multigraphs, a criterion for deciding multisets
equality, and a notion of collapsed multigraphs corresponding to multisets. In
this way we show that the multiset-context is more natural than the set-context
for Scott-bisimulation, because in the latter there is no natural notion of collapse
or decoration one can work with.

Using Scott bisimulation we prove that the multiset-class admits three dif-
ferent descriptions, beside the greatest fixed point one. These representations
are obtained by identifying multisets with rooted collapsed multigraphs, with
rooted trees, or with a fragment of the class of infinitary graded modal formulae.
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Summarizing, the interest of the work goes two ways. Starting from mul-
tisets, rooted collapsed multigraphs, rooted trees, and graded formulas are
useful as representations. Conversely, multisets correspond directly to rooted
collapsed multigraphs and rooted trees, providing standard representatives of
multigraphs modulo Scott-bisimulation and of rooted trees modulo isomor-
phism, respectively.

This paper is organized as follows. In Section 2 we compare two possible
definitions of the multiset-class, working out a theory of multigraph decoration.
In Section 3 we give a notion of multi-bisimulation and the corresponding notion
of collapse, and we identify multisets and rooted collapsed multigraphs. In
Section 4 we compare our notion of multi-bisimulation with Scott-bisimulation,
and this gives the second representation of multisets, via rooted trees. Finally,
in Section 5 we deal with the identification of multisets with infinitary graded
modal formulae.

Due to space limits, we only give examples and no proofs; to understand
the paper the reader is supposed to be familiar with the results in [1] and [2].

We would like to thank Marc Bezem, Jelle Gerbrandy, Vincent van Oostrom,
and Alberto Policriti for discussions on multisets.

2 Multisets and multigraph decorations

In this section we compare the greatest fixed points of the operators ∆ and Γ
defined in the introduction. In particular, we study their behavior w.r.t. deco-
rations. We want to develop a theory of decorations which is the multi-analogue
of the theory of graph decorations. In non-well-founded set theory, graphs are
used as pictures of sets. To model multiplicity, we shall use multigraphs.

2.1 Multigraphs

A multigraph is nothing but a graph in which two nodes can be connected by
more than one arrow. A graph can be determined by the set of nodes and a
subset of successors Succ(w) for each node w, giving the nodes that are directly
accessible from w. Analogously, we specify a multigraph giving a set of nodes
OG and an OG-multiset MSucc(w), for each node w.

Definition 2.1 A multigraph G is a pair (OG ,MSucc), where OG is a set of
objects and MSucc is a function from OG to the OG-multisets.

If we use representation (a) of an OG-multiset, MSucc(w) is a partial function
from OG to the strictly positive cardinals, for each node w; if we use represen-
tation (b), MSucc(w) is an equivalence class of functions from a cardinal k to
OG . By abuse of notation we denote the set of objects OG of a multigraph G by
the same symbol G. For each node w, we denote by Succ(w) the set on which
MSucc(w) is based, e.g. by using (a)-representation the set Succ(w) is the do-
main of the partial function MSucc(w). If w, v ∈ G, we denote the multiplicity
of v as an element in MSucc(w) by mG(w, v): e.g. under the (a)-representation
mG(w, v) is equal to MSucc(w)(v), if v is in the domain of the partial function
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MSucc(w), 0 otherwise. Notice that the function mG determines the function
MSucc, and we could as well define a multigraph as a pair (OG ,mG), where
mG is a function from G × G to cardinals. In the following, we represent a
multigraph by a picture in which two nodes w, v of G are linked by mG(w, v)
arrows. A rooted multigraph is a multigraph G with a distinguished object (the
root) w ∈ OG , in which every object is accessible from the root: if v ∈ OG then
there is a sequence v0, . . . , vn of elements in OG such that v0 = w vn = v and
mG(vi, vi+1) ≥ 1, for all i < n.

An isomorphism between two multigraphs G, H is a bijective function φ be-
tween G and H such that for all w, v ∈ G it holds: mG(w, v) = mG′(φ(w), φ(v)).
An isomorphism of rooted multigraphs (G, w), (H, v) is a isomorphism φ be-
tween G and H such that φ(w) = v.

2.2 Multi-decorations

The following multigraph analogue of a decoration should not come as a sur-
prise, for readers familiar with graph decorations: a multigraph decoration
consists of a function from the set of objects of the multigraph to multisets,
in such a way that the decoration of a node w is the multiset consisting of all
decorations (counting multiplicity) of Succ(w). The definition of multigraph
decorations obviously depends on the choice of the class C we use to represent
multisets: we speak about C-multi-decorations of multigraphs. For example, in
fig.1 the multigraph G has a wfMS-multi-decoration defined by decorating v
with ∅ and the root w by [[∅, ∅]] . As another example consider the multigraph H
in fig.1. In this case, the leaves v1, v2 are both wfMS-multi-decorated by ∅ and
the root w′ by [[∅, ∅]] : hence multiple occurrences are not obtained exclusively
because of multiple edges.
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rv1 v2r
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@

�
�

�
I �

Fig.1

More formally, consider a class-structure C for the language LMS = {∈k:
k ∈ Card+}, and denote by ∈C

k the interpretation of ∈k in the structure C.

Definition 2.2 A C-multi-decoration of a multigraph G is a function D from
G to multisets, in such a way that for any object w ∈ G it holds:

z ∈C
k D(w) ⇔

∑

D(v)=z

mG(w, v) ≥ k.

A multi-decoration of a rooted multigraph (G, w) is a multiset D(w), where D
is a multi-decoration of the multigraph G.
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In the previous pictures, each object has been labeled by its wfMS-multi-
decoration. Notice that the two rooted multigraphs have the same multi-
decoration.

Can we find a class-structure C for LMS having the property that any multi-
graph has a unique C-multi-decoration? Let us consider the two candidates ∆∗

and Γ∗ defined in the introduction. First we provide a multigraph which does
not have any ∆∗-multi-decoration.
Counterexample.
Consider the following (multi)graph G = ({w, v},mG ), where the function mG
is defined as follows: mG(w,w) = mG(w, v) = mG(v, v) = 1, and 0 in all other
cases. We first prove that if D is a ∆∗-multi-decoration of G, then D(w) must be
different fromD(v). Indeed, ifD(w) = D(v) then

∑
D(u)=D(v)mG(w, u) = 2 and

D(v) ∈2 D(w); but
∑

D(u)=D(v)mG(v, u) = 1 and D(v) 6∈2 D(v), contradicting
D(w) = D(v). On the other hand, a ∆∗-multi-decoration of G with D(w) 6=
D(v) is a solution for the system of equations xw = {〈xw, 1〉, 〈xv , 1〉}; xv =
{〈xv , 1〉}, where we denoted by 〈x, y〉 the ordered pair {{x}, {x, y}}. But then
D(v) = D(w) = {〈D(v), 1〉} after all, by uniqueness of solutions.

Hence, the class ∆∗ is not well-behaved w.r.t. multigraph decorations. For-
tunately, the class Γ∗ behaves much better. There is a general reason for this:
Γ is monotone and proper (this and the following terminology is from [2]), a
multigraph G can be seen as a flat Γ-coalgebra, and a Γ∗-multi-decoration of G
is nothing but a solution for this Γ-coalgebra, with value in Γ∗. Then Proposi-
tion 16.2 in [2] tells us that any flat Γ-coalgebra has a unique solution in Γ∗, if
Γ is monotone and proper. This gives:

Theorem 2.3 Any multigraph has a unique Γ∗-multi-decoration.

Things go wrong with the operator ∆ because we cannot see a multigraph
as a flat Γ-coalgebra any more, because the operator ∆ does not commute with
the action of substitutions.

A direct proof of Theorem 2.3 can be given by associating to each multigraph
G a system of equations Eq(G) in such a way that a function D with domain G
is a Γ∗-multi-decoration of G iff it is a solution for Eq(G). Then existence and
uniqueness of Γ∗-multi-decorations follows directly from ZFC−A.

Theorem 2.3 gives us a good reason for choosing Γ∗ to represent the class
of non well-founded multisets. We acknowledge this by a formal definition:

Definition 2.4 The multiset-class MS is the class Γ∗ endowed with the family
of binary relations {∈k: k ∈ Card+}, defined by [f ] ∈k [g] ⇔ |g−1([f ])| ≥ k.
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¿From now on, a multiset is an element in Γ∗, and a multi-decoration is a
Γ∗-multi-decoration.

3 Multi-bisimulation

We now give a multiset-free criterion for establishing whether two multigraphs
G,H have the same multi-decoration. In the set-context this was done via
the notion of bisimulation. We generalize this notion in two ways. The first
comes from the general theory of monotone operators of [2], while the second is
more suited for working with graded modal formulae (see Section 5). Although
the first notion is strictly stronger than the second, in the sense that there
are relations satisfying the second but not the first definition, we prove that
the maximal elements in both classes coincide, being both equal to the class
{(w,w′) ∈ G ×H : DG(w) = DH(w′)}.

Let us start with the notion of Γ-bisimulation. By the general theory in
[2] we know that any smooth operator Σ that preserves covers admits a notion
of Σ-bisimulation for which it holds: two points x, y of a Σ-coalgebra are Σ-
bisimilar iff they have the same value under the solution for the coalgebra. It
is possible to prove that the operator Γ defining multisets is smooth and cover
preserving, and, as we already pointed out in the previous section, a multigraph
is nothing but a Γ-coalgebra, with multi-decorations corresponding to solutions.
In our case, the notion of Γ-bisimulation amounts to the following:

Definition 3.1 A Γ-bisimulation between two multigraphs G,H is a relation
Z ⊆ G × H such that if wZw′ then MSucc(w) and MSucc(w′) are projections
of a Z-multiset, i.e. (using representation (b)): there are functions f, g such
that MSucc(w) = [f ],MSucc(w′) = [g], dom(f) = dom(g), and f(ν)Zg(ν) for
all ν ∈ dom(f).

¿From [2] we have:

Proposition 3.2 Two rooted multigraphs have the same decoration iff they are
Γ-bisimilar.

We shall now define a weaker notion of bisimulation between multigraphs,
the multi-bisimulation.

Definition 3.3 A multi-bisimulation between two multigraphs G, H is a rela-
tion Z ⊆ G ×H such that if wZw′ then

(a) if X ⊆ Succ(w) and Y = {y ∈ Succ(w′) : ∃x ∈ X xZy}, then
∑
x∈X

mG(w, x) ≤
∑
y∈Y

mH(w′, y);

(b) if Y ⊆ Succ(w′) and X = {x ∈ G : ∃y ∈ Y xZy}, then
∑
y∈Y

mH(w′, y) ≤
∑
x∈X

mG(w, x).
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A multi-bisimulation Z between two rooted multigraphs (G, w), (H, w′) is a
multi-bisimulation between G and H with wZw′. We write (G, w) ≈m (H, w′)
(or simply w ≈m w′, if the multigraphs G, H are uniquely determined from the
context) if there is a multi-bisimulation between (G, w) and (H, w′).

In the following, we often consider a multi-bisimulation Z between rooted
multigraphs (G, w), (H, w′) which is the restriction to G ×H of an equivalence
relation ∼ on the class of rooted multigraphs. This is the case of ≈m, or, as we
shall see later, of the relation to satisfy the same graded formulae. In this case
it make sense to consider, for any node w in a multigraph, the classes of ∼ over
w, that is, the sets {z ∈ Succ(w) : z ∼ v}, for any v ∈ Succ(w). The following
remark proves that we can consider only this kind of elementary subsets to give
an equivalent (and easier to visualize) definition of a multi-bisimulation.

Remark 3.4 If Z ⊆ G×H is the restriction to G×H of an equivalence relation
∼ on the class of rooted multigraphs, Definition 3.3 is equivalent to: if wZw′

then

(c) for all v ∈ Succ(w) there exists a v′ ∈ Succ(w′) such that vZv′ and∑
z∼v mG(w, z) =

∑
z′∼v′ mH(w′, z′);

(d) for all v′ ∈ Succ(w′) there exists a v ∈ Succ(w) such that vZv′.

It is easy to check that a Γ-bisimulation (as in Definition 3.1) is a multi-
bisimulation, but the converse is not true. However, the following lemma says
that ≈m is the maximal multi-bisimulation between any pair of multigraphs,
and Lemma 3.6 says that ≈m is a Γ-bisimulation as well.

Lemma 3.5 The equivalence relation ≈m, when restricted to multigraphs G, H,
is a multi-bisimulation between G and H. In particular, if (G, w) ≈m (H, w′)
and u ∈ Succ(w) ∪ Succ(w′) then

∑
v≈mumG(w, v) =

∑
v′≈mumH(w′, v′).

Lemma 3.6 The relation {(w,w′) : (G, w) ≈m (H, w′)} is a Γ-bisimulation
between any pair of multigraphs G,H.

From the above lemma and Proposition 3.2 it follows:

Lemma 3.7 (G, w) ≈m (H, w′) ⇔ DG(w) = DH(w′).

3.1 The Collapse

As in the set-context we use the notion of collapse to give canonical representa-
tives for the classes of the equivalence relation to have the same multi-decoration
between multigraphs. In other words, given a class of multigraphs with the same
multi-decoration (that is, a class of multigraphs that are pictures of the same
multiset), we give a way to select a unique representative in the class (modulo
isomorphism). This allow us to identify collapsed multigraphs and multisets.

Definition 3.8 The Collapse of a multigraph G is defined as the multigraph G?

with set of objects equal to {[w] : w ∈ G} where [w] = {v ∈ G : w ≈m v}, and
mG?([w], [v]) =

∑
z≈mv mG(w, z).

8



The collapse of a multigraph is well-defined by Lemma 3.5. We define the
collapse of a rooted multigraph (G, w) as the rooted multigraph (G?, [w]).

Notice that it is not possible to define G? by simply considering as edges
between two classes σ, τ all G-edges between objects in σ and objects in τ . If
we were doing so, the collapse of the rooted multigraph (G, w) on the right of
picture 2 would be the multigraph K = (OK,mK), with OK = {w1, w2, w3},
root w1, and mK(wi, wj) = 2, if j = i+ 1, and 0 otherwise. But the two rooted
multigraphs do not have the same decoration (the root of the multigraph on
picture 2 is decorated by [[ [[∅]] , [[∅]] ]] , while the root w1 of the one described
here is decorated by [[ [[∅, ∅]] , [[∅, ∅]] ]] ).

A multigraph and its collapse belong to the same ≈m-class:

Lemma 3.9 The relation Z = {(w, [w]) : w ∈ G} is a multi-bisimulation be-
tween G and G?.

The following lemma says that a collapsed multigraph is an exact picture
of its decoration, in the sense that different multisets correspond to different
nodes.

Lemma 3.10 The decoration DG? of a collapsed multigraph G? is an injective
function.

Using the previous lemma we see that for a collapsed multigraph G? the multi-
decoration DG? satisfies

z ∈k DG?(w) ⇔ ∃v ∈ Succ(w) with D(v) = z and mG?(w, v) ≥ k,

and vice versa, any injective function satisfying this equivalence is a multi-
decoration of G?.

A rooted multigraph has the same decoration as its collapse:

Lemma 3.11 DG?([w]) = DG(w), for any multigraph G.

and multi-bisimilar rooted multigraphs have the same collapse, modulo isomor-
phism:

Theorem 3.12 (G, w) ≈m (H, w′) ⇔ (G?, [w]) is isomorphic to (H?, [w′]).

Theorem 3.12 and Lemma 3.7 allow us to identify multisets and collapsed
multigraphs. Given a multiset x, define its multi-transitive closure mTC as the
set containing all multisets that are hereditarily members of x (i.e. if x = [f ],
where f is a function from a cardinal to multisets, then mTC(x) contains the
multisets that are in the range of f , as well as the multisets that are in the range
of a function representing an element in this range, and so on; mTC(x) can be
defined by a simple recursion. Define the canonical rooted multigraph G(x) of
a multiset x as the rooted multigraph having set of objects equal to mTC(x) ∪
{x}, as root the multiset x, and as MSucc the identity function. Starting
from a multigraph (G, w), we can either perform its collapse (G∗, [w]), or first
consider its multi-decoration DG(w) and then its canonical rooted multigraph
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G(DG(w)), ending with isomorphic rooted multigraphs. The isomorphism is
given by sending [v] ∈ G∗ to DG?([v]) = DG(v). Define a multigraph to be
extensional if two different objects are never multi-bisimilar. Every collapsed
multigraph is extensional and every extensional rooted multigraph (G, w) is
isomorphic to G(DG(w)). So the G(DG(w)) provide standard representatives
for the extensional-rooted-multigraph equivalence classes modulo isomorphism.

Finally, notice that the multi-membership relations are represented in the
class of collapsed multigraphs by:

(G, w) ∈k (H, v) ⇔ ∃z ∈ H with (H|z , z) ∼= (G, w) and mH(v, z) ≥ k,

where H|z is the restriction of H to the set of nodes that are reachable in H
from z.

4 Scott-bisimulation and unravelings

In this section we show that the notion of multi-bisimulation between multi-
graphs is the natural generalization of the notion of Scott-bisimulation between
graphs (see [1]). This allow us to identify multisets and rooted trees. With
this aim, we generalize the notion of unraveling, from graphs to multigraphs.
First, we summarize the relationship between bisimulation and unraveling in
the context of graphs. Here, unravelings can be used to characterize both the
maximal bisimulation and the Scott one. The unraveling of a graph produces
a rooted tree, in which every node is copied once (in the simple unraveling) or
k-times for a cardinal k (in the k-unraveling). It is possible to prove that two
graphs are bisimilar if there exists a cardinal k such that the k-unravelings of
the graphs are isomorphic, while two graphs are Scott-bisimilar if the simple
unravelings are isomorphic.

In the following definition we generalize the notion of simple unraveling to
multigraphs.

Definition 4.1 The Unraveling of a rooted multigraph (G, w) is the rooted
multigraph (G, w)U defined as follows:

(a) The set of objects is the set of finite sequences of type v0k1v1 . . . knvn, where
v0 = w and the ki’s are cardinal numbers satisfying: ki+1 < mG(vi, vi+1),
for all i ∈ {0, . . . , n − 1} (in particular, if v0k1v1 . . . knvn ∈ (G, w)U then
mG(vi, vi+1) ≥ 1 and vi+1 ∈ Succ(vi), for all i < n).

b) The root of (G, w)U is the sequence w.

c) If σ = v0k1v1 . . . knvn and τ = σkn+1vn+1 ∈ (G, w)U then m(G,w)U (σ, τ) = 1,
while in all other cases we have m(G,w)U (σ, τ) = 0.

For example, in fig.1 the unraveling of the multigraph (G, w) is the multi-
graph (H, w′). Notice that the unraveling of a multigraph G is always a graph
(i.e. mG(w, v) ≤ 1, for w, v ∈ G), and if G is a graph then the notion of
multigraph unraveling coincides with the notion of graph unraveling. Scott-
bisimulation (in the equivalent definition given in [1]) relates two rooted graphs
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(G, w), (H, w′) exactly when their unravelings are isomorphic. Theorem 4.2
below says that two multigraphs are multi-bisimilar if and only if their unrav-
elings are isomorphic, thereby showing that we are working on a generalization
of Scott-bisimulation.

Theorem 4.2 If G,H are multigraphs then (G, w) ≈m (H, v) ⇔ (G, w)U is
isomorphic to (H, v)U .

Theorem 4.2 and Lemma 3.7 allow us to identify multisets and rooted trees.
Define the canonical rooted tree T (x) of a multiset x as (G(x))U , where the
rooted multigraph G(x) has been defined at the end of Section 3.1. Staring
from a rooted multigraph (G, w), we can either perform its unraveling (G, w)U ,
or first consider its multi-decoration DG(w) and then its canonical rooted tree
T (DG(w)) ending with isomorphic rooted trees. The isomorphism is given by
sending a sequence σ = v0k1 . . . knvn to DG(v1)k1 . . . knDG(vn). Then as in the
case of collpased multigraphs we have a way to select standard representatives
for the rooted-tree equivalence classes modulo isomorphism.

The multi-membership relations are represented in the rooted-tree class by

(T, t) ∈k (S, s) ⇔ |{u ∈ S : (S|u, u) is isomorphic to (T, t)}| ≥ k,

where (T, t) and (S, s) are rooted trees, and (S|u, u) denotes the subtree of S
with root u.

5 Multisets and the logic of graded modalities

In this section we give a characterization of multi-bisimulation via logic. In the
set-context, the appropriate logic for describing bisimulation between graphs
was proved to be infinitary modal logic ([2]). In the multiset-context we shift
to the graded extension of this logic by proving that two rooted multigraphs
are multi-bisimilar iff they satisfy the same formulae of infinitary graded modal
logic. More than this, we prove that any multigraph can be characterized by
a single infinitary graded modal formula, and we isolate a class of formulae
that correspond to multisets. In this way we have three alternative ways for
modeling multisets: as collapsed multigraphs, as trees, or as infinitary formulae.

Let Lgrad∞ be the infinitary logic of graded modalities, that is, the logic ob-
tained from infinitary modal logic by adding the unary operators �h, for all
h ∈ Card+. More formally, we define Lgrad∞ as the smallest class closed under
infinitary conjunction (if Φ ⊆ Lgrad∞ is a set then

∧
Φ ∈ Lgrad∞ ), negation (if

φ ∈ Lgrad∞ then ¬φ ∈ Lgrad∞ ), and graded diamonds (if h is a strictly positive
cardinal and φ ∈ Lgrad∞ then �hφ ∈ Lgrad∞ ).

The truth of a formula φ of Lgrad∞ in a rooted multigraph (G, w) is obtained
by adding the clause below to the inductive definition of truth in L∞:

(G, w) |= �hφ ⇔
∑

(G|v ,v)|=φ

mG(w, v) ≥ h.

11



If we denote �1 by �, we see that the logic Lgrad∞ is an extension of infinitary
modal logic. We write (G, w) ≡g (H, w′) (or simply w ≡g w

′) if (G, w), (H, w′)
are two rooted multigraphs that satisfy the same Lgrad∞ -formulae.

The following theorem show that Lgrad∞ is the appropriate language for char-
acterizing multi-bisimulation.

Theorem 5.1 For any rooted multigraph (G, w) there exists a formula φ(G,w) ∈
Lgrad∞ which characterizes (G, w) modulo multi-bisimulation, i.e., for any multi-
graph H it holds: (H, w′) |= φ(G,w) ⇔ (G, w) ≈m (H, w′).

This result suggests another representation of the class of multisets, in which
the domain of the universe is a fragment of the class of infinitary graded modal
formulae. First, we characterize the graded formulae of type φ(G,w) for a rooted
multigraph (G, w) (for a set-analogue, see [2]).

Definition 5.2 Consider the preorder ≤ defined in Lgrad∞ by ψ ≤ φ⇔|= ψ → φ,
where |= ψ → φ stands for: any rooted multigraph that satisfies ψ, satisfies φ
as well. Define the class MS(Lgrad∞ ) as the one containing, modulo equivalence,
all satisfiable Lgrad∞ -formulae which are minimal with respect to ≤ on satisfiable
formulae, that is:

φ ∈MS(Lgrad
∞ )

m

φ is satisfiable and for all satisfiable ψ if ψ ≤ φ then ψ is equivalent to φ.

Lemma 5.3 φ ∈ MS(Lgrad∞ ) ⇔ ∃ (G, w) with |= (φ(G,w) ↔ φ), for all φ ∈
Lgrad∞ .

Then, we identify the class MS with the class MS(Lgrad∞ ), with ∈k given
by the relation {(φ,ψ) ∈MS(Lgrad∞ )×MS(Lgrad∞ ) :|= φ→ �kψ}.
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