
Powering Decision Machines With Dynamo

Jan van Eijck

Abstract

This essay is an elaborated version of my last email to Johan van Benthem about
using dynamic logic programming, more specifically, programs written in Dynamo, for
building decision tools and reasoning about these tools. First we sketch the main fea-
tures of dynamic logic programming, next we look at the use of this new programming
paradigm in the analysis of decidable logics, taking propositional logic and the modal
logic K as our illustration material.

Contents

1 Dynamic Logic Programming 2

2 Modelling Variable Assignment in Dynamo 3

3 Translating Dynamo into Standard FOL 3

4 Recursion in Dynamo 4

5 Decision Machines for Propositional Logic 5

6 Decision Machines for Modal Logic 8

7 Conclusion 9

1

1 Dynamic Logic Programming

Dynamic logic programming is the result of making dynamic versions of first
order predicate logic executable. The main sources of inspiration for this are
the dynamic variable binding strategies that have become fashionable in nat-
ural language analysis (DRT [8], Anaphora Logic [2], DPL [7]), the idea of
implementing identity assertions as assignment commands familiar from con-
straint programming, and more in particular from Alma-0 [1], and the general
injunction to explore logical dynamics emanating from the works of Johan van
Benthem,, e.g. from [3].

The standard dynamic interpretation of FOL, where ∃x is interpreted as
the action of random assignment of a new value to register x, is computation-
ally unfeasible, because the ∃x action may lead to infinite branching. In the
executable interpretation this is avoided by splitting the quantifier action ∃x
in two parts: (i) clearing the variable space for x, and (ii) identifying the new
value. The second part is postponed until an identity statement x = t or t = x
is encountered.

To get away with this, a careful treatment of the operation of negation is
necessary. In dynamic FOL, a negation is simply treated as a test. If there
are b with a[[φ]]a then ¬φ fails for input state a, otherwise the negation test
succeeds, yielding a[[¬φ]]a. Since in a computable version of this states need

not be total, we should be careful with drawing conclusions from a
φ−→b (where

the arrow indicates a computed transition). We can only draw the conclusion
from this that ¬φ should fail on input a if we can be sure that φ succeeds for
all extensions of input state a. This is guaranteed if a

φ−→b has the so-called
forward property: for all a′ with a ⊆ a′ there is a b′ ⊇ b with a′ φ−→b′. It
turns out that the forward property for φ is satisfied if we forbid assignments to
global variables inside φ (see [6] for the definition of computable negation and
the proof that this is faithful to dynamic FOL; the forward property is defined
in [9]).

Dynamo (see [5]) is a programming language based on this executable inter-
pretation of first order logic. The executable version of dynamic FOL is faithful
to the ‘standard’ dynamic interpretation of first order logic, in the following
sense [6]:

• If Dynamo computes output b for formula φ on input a, then any extension
of a to a full valuation (defined on all variable of the language) will be
related by the FOL dynamic interpretation of φ to a full extension of b.

• If Dynamo yields failure for formula φ on input a, then φ will fail under
the FOL dynamic interpretation for any full extension of a.

Of course, the executable interpretation of dynamic FOL can never be complete,
for dynamic FOL has the same expressive power as standard FOL. Dynamo
admits defeat if an attempt is made to test a predicate in which an uninitialized
variable occurs.

2

2 Modelling Variable Assignment in Dynamo

In dynamic logic programming, destructive assignment is replaced by safe as-
signment. Write ∃j; j = i;∃i; i = t as:

i� j = t.

The destructive assignment statement x := x + 1 can be replaced by the safe
assignment statement x � x′ = x′ + 1. Here is the general procedure for
removing the sting from assignment:

(x := t)♥ :=
{ ∃x;x = t if x does not occur in t,
x� x′ = t[x′/x] otherwise.

3 Translating Dynamo into Standard FOL

The Dynamo s statement for incrementing register x, using x0 as an auxil-
iary register, x >> x0 = x0 + 1, has the following ‘forward translation’ into
standard FOL:

∃x0(x = x0 ∧ ∃x(x = x0 + 1 ∧ >))

Its ‘backward translation’ is:

x = x0 + 1 ∧ ∃x(x = x0 ∧ ∃x0>).

The general definition of the forward translation of dynamic FOL into standard
FOL is given by:

skip. ; >
(Pt1 · · · tn;φ). ; Pt1 · · · tn ∧ φ.

(t1
.= t2;φ). ; t1

.= t2 ∧ φ.

(some v;φ). ; ∃vφ.

(donot φ;ψ). ; ¬φ. ∧ ψ.

(either φ1 orelse φ2;ψ). ; (φ1;ψ). ∨ (φ1;ψ).

The translation satisfies: M |=a φ. iff there is a b with a[[φ]]Mb, where [[·]]
denotes the input output relation for dynamic FOL. Dynamo is faithful to [[·]],
so if Dynamo execution of φ succeeds for input a, then M |=a φ

., if it fails for
input a, then M 6|=a φ

..

The backward translation of dynamic FOL is given by:

skip/ ; >
(φ;Pt1 · · · tn)/ ; Pt1 · · · tn ∧ φ/

(φ; t1
.= t2)/ ; t1

.= t2 ∧ φ/

(φ; some v)/ ; ∃vφ/

(ψ; donot φ)/ ; ¬φ. ∧ ψ/

(ψ; either φ1 orelse φ2)/ ; (ψ;φ1)/ ∨ (ψ;φ2)/

This satisfies: M |=b φ
/ iff there is an a with a[[φ]]Mb. Dynamo is faithful to

[[·]], so if Dynamo execution of φ yields output b for some input, then M |=b φ
/.

3

4 Recursion in Dynamo

The current implemention of Dynamo assumes evaluation with respect to Z,
with relations < and =, and with operations +,−, ∗. Alternatively, one might
wish to start with just a successor operation +1, and then build the primitive
recursive functions as follows (we assume x is always the output variable):

• projection: x = xi.

• zero: x = 0.

• successor: x� x′ = x′ + 1

• composition: Let g1(x), . . . , gk(x) be programs that use input variables
x1, . . . , xn. Let f(x) be a program that uses input variables y1, . . . , yk.
Then composition f(g1, . . . , gn) is given by:

g1(x);x = y1; some x; . . . ; gk(x);x = yk; some x; f(x)

• primitive recursion, with program f for the basis case, program g for the
recursive step (assume that the programs f and g both use x for output,
that g use y for input, and that n is the recursion variable):

f(x); do n times begin x = y; some x; g(x) end

This shows that Dynamo computes all primitive recursive functions.
Primitive recursion is modelled using the Dynamo construction for bounded

iteration do n times This is an extension of dynamic FOL. Here is the
extension of the forward and backward translation instructions to bounded
iteration:

(do 0 times φ). ; >
(do n+ 1 times φ). ; (φ; do n times φ).

(do 0 times φ)/ ; >
(do n+ 1 times φ)/ ; (do n times φ;φ)/

Note, however, that these instructions yield translations of φn that are not
uniform in n, i.e., n does not occur in the translations as a parameter. To
see that this is no accident, recall that the theory of N with just successor is
decidable, but the theory of N with + and ∗ is not. Thus, + and ∗ are not FOL
definable in terms of successor.

Certainly, + and ∗ are primitive recursive, so these operations are definable
in Dynamo. If there were a uniform FOL translation for φn, then this trans-
lation would yield a FOL definition of + and ∗ in terms of just successor, and
we know that such a translation cannot exist. On the other hand, if f(x) is
a primitive recursive function with input parameter x, then for every specific
value m ∈ N that one substitutes for x there is a FOL formula φ(y) that com-
putes f(m) in y (in the obvious sense that a variable state s satisfies φ(y) in
N iff s(y) = f(m)). The snag is that if m 6= m′ the translations that compute
f(m) and f(m′) may look very different.

It is time to draw a moral. If one adds an explicit mechanism for definition
by primitive recursion to Dynamo, by introducing recursive datatypes, and

4

recursive operations on these datatypes, one does not extend the expressive
power of the formalism. E.g., the natural numbers might be represented by the
following datatype.

nat ::= 0 | succ nat

Now addition on the natural numbers can be defined by:

plus x 0 := 0
plus x (succ y) := succ (plus x y)

Compare this with the plain Dynamo definition (assume x and y are input
variables, and z is output variable):

begin
some z; z = x; do y times z >> z0 = z0 + 1

end

Still, explicit primitive recursion is a very useful feature. It makes Dynamo
programs much more readable. Moreover, the recursively defined functions and
predicates can be viewed as extensions of the signature, so that we can specify
the meanings of Dynamo programs in terms of FOL translations in which these
new functions and predicates occur.

5 Decision Machines for Propositional Logic

For present purposes, it is useful to have a datatype for formulas:

form ::= (p nat) | form ∧ form | form ∨ form | ¬form | 2form | 3form

We may assume that we have a read operation for this datatype. Thus, read
(form F) would read a formula into variable F . Primitive recursion over form
can now be used to give explicit translation instructions for formulas.

A Dynamo program for checking a formula of propositional logic against a
propositional valuation could look like this (we assume that the definition of
the datatype nat is built-in):

5

program propvalcheck;

form ::= (p nat) | form and form | form or form | not form

verify (p n) := p[n] = 1
falsify (p n) := p[n] = 0

verify (F and G) := begin verify F; verify G end
falsify (F and G) := donot begin verify F; verify G end

verify (F or G) := donot begin falsify F; falsify G end
falsify (F or G) := begin falsify F; falsify G end

verify (not F) := falsify F
falsify (not F) := verify F

begin
read (form F); verify F

end.

The clauses of verify and falsify are an example of procedure definition
by primitive recursion. The procedure verify is deterministic, so we have a
program that checks a formula against a propositional valuation in polynomial
time.

A thing to be noted is that the use of the Dynamo donot construction
is essential to get the definitions of verify and falsify deterministic. The
requirement on donot in Dynamo is that within its scope no global assignment
should take place. Global assignment is the use of identities of the form v = t
or t = v where v is a global variable (not introduced by a dynamic quantifier)
in a state a with a(t) defined and a(v) undefined. If we use the procedure for
checking against a valuation we can assume that truth values of the proposition
letters pi occurring in a formula are represented in the input state as values 0 or
1 of array elements p[i]. Therefore, the statements p[n] = 1 and p[n] = 0
are always tests and never assignment statements.

If one wants a procedure for satisfiability checking, matters are different.
Then the procedure for verifying a proposition letter pn is still given by p[n] = 1,
but now we cannot be sure anymore that this is a test. Therefore, the use of
Dynamo negation is out, and we have to use the Dynamo construction for in-
deterministic choice instead.

6

program propsatcheck;

form ::= (p nat) | form and form | form or form | not form

verify (p n) := p[n] = 1
falsify (p n) := p[n] = 0

verify (F and G) := begin verify F; verify G end
falsify (F and G) := either falsify F orelse falsify G

verify (F or G) := either verify F orelse verify G
falsify (F or G) := begin falsify F; falsify G end

verify (not F) := falsify F
falsify (not F) := verify F

begin
read (form F); verify F

end.

Program propsatcheck is nothing but a Dynamo implementation of the
Beth tableau procedure for satisfiability checking. Although this program looks
very similar to the previous one, it behaves quite differently. It builds a satis-
fying propositional valuation, and does so indeterministically, by trying out all
the possible avenues.

It is well known that the tableau method for propositional satisfiability
checking is not always an improvement on the truth table method: as [4] ob-
serves, the complexity of a tableau proof depends essentially on the length
(number of symbols) of the input formula, while the complexity of a truth table
for that formula depends only on the number of distinct propositional variables
that occur in it. Thus, for certain ‘fat’ formulas (formulas where the number
of symbols is large when compared to the number of distinct proposition vari-
ables), the truth table method may actually be more efficient than the tableau
method. The reason for this is, essentially, that the tableau method may list
possibilities that are not mutually exclusive as ‘different’, or in other words, that
the tableau method may explore redundant paths, because the branches do not
represent mutually exclusive partial valuations. The remedy is easy: branch-
ings should be made mutually exclusive. The following Dynamo program makes
clear how this can be done:

7

program propsatcheckALT;

form ::= (p nat) | form and form | form or form | not form

verify (p n) := p[n] = 1
falsify (p n) := p[n] = 0

verify (F and G) := begin verify F; verify G end
falsify (F and G) := either falsify F orelse

begin verify F; falsify G end

verify (F or G) := either verify F orelse
begin falsify F; verify G end

falsify (F or G) := begin falsify F; falsify G end

verify (not F) := falsify F
falsify (not F) := verify F

begin
read (form F); verify F

end.

6 Decision Machines for Modal Logic

To implement checking of a modal formula in a Kripke tree model, we assume
the model is represented as an array with the tree nodes as indices, and that d[n]
gives the number of daughters of node n. The program assumes that register
n holds the current point of evaluation in the Kripke model. Evaluation of
proposition letter pk at node n uses array element p[n][k].

As an example, here is the bit of code for verifying and falsifying a diamond
formula (using n^i for daughter i of node n, and m(n) for the mother of node
n):

8

verify (diamond F) :=
begin
some i; i = 0;
donot do d[n] times
begin

i >> i’ = i’+ 1; n >> n’ = n’^i;
falsify F; n >> n’ = m(n’)

end
end

falsify (diamond F) :=
begin
some i; i = 0;
do d[n] times
begin

i >> i’ = i’+ 1; n >> n’ = n’^i;
falsify F; n >> n’ = m(n’)

end
end

Again, the use of the Dynamo donot construction is licensed by the fact that
inside its scope no global assignment takes place.

Dynamo can also be used for constructing Kripke trees, i.e., for the gener-
ation of finite Kripke models. For this application, the use of donot is to be
avoided, for when Dynamo is used in model generation mode the nodes of the
tree are being built by means of assignment of values to array registers. What
the verifying procedure for 3F has to do now is: create a new daughter, move
to that daughter, verify F at that daughter node (i.e., extend the tree at that
node by the information supplied by F if that is possible), and return to the
mother.

7 Conclusion

What I hope to have demonstrated is that Dynamic Logic Programming is not
only an exciting new development in its own right, but that it is also useful. It
can be used to build perspicuous decision algorithms for decidable logics: the
form of the Dynamo program gives insight in the complexity of the decision
problem for the logic. An obvious next step will be the construction of a
Dynamo program that decides the Guarded Fragment of FOL. I am confident
that it can be done.

9

References

[1] K.R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-0: An im-
perative language that supports declarative programming. ACM Toplas,
1998.

[2] J. Barwise. Noun phrases, generalized quantifiers and anaphora. In
P. Gärdenfors, editor, Generalized Quantifiers: linguistic and logical ap-
proaches, pages 1–30. Reidel, Dordrecht, 1987.

[3] J. van Benthem. Exploring Logical Dynamics. CSLI & Folli, 1996.

[4] Marcello d’Agostino. Are tableaux an improvement on truth-tables? Jour-
nal of Logic, Language, and Information, 1:235–252, 1992.

[5] Jan van Eijck. Dynamo—a language for dynamic logic program-
ming. Manuscript, CWI/ILLC, December 1998. Available from
www.cwi.nl/~jve/dynamo.

[6] Jan van Eijck. Programming with dynamic predicate logic. Technical Report
CT-1998-06, ILLC, 1998. Available from www.cwi.nl/~jve/dynamo.

[7] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and
Philosophy, 14:39–100, 1991.

[8] H. Kamp. A theory of truth and semantic representation. In J. Groenendijk
et al., editors, Formal Methods in the Study of Language. Mathematisch
Centrum, Amsterdam, 1981.

[9] A. Visser. Prolegomena to the definition of dynamic predicate logic with
local assignments. Technical Report 178, Utrecht Research Institute for
Philosophy, October 1997.

10

	Dynamic Logic Programming
	Modelling Variable Assignment in Dynamo
	Translating Dynamo into Standard FOL
	Recursion in Dynamo
	Decision Machines for Propositional Logic
	Decision Machines for Modal Logic
	Conclusion

