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Abstract

We study a generic problem of proving semantic completeness of a logical system
with respect to a class of “standard models”, provided a weaker completeness result
with respect to a larger class of “general models” has been obtained. We propose a
natural topological approach to this problem based on the notion of logical topology
and the related concept of logical approximation. We then obtain some general results
regarding these concepts and then discuss them in the framework of first-order logic.
The paper ends with an example of a particualr application of the ideas developed here,
and a discussion on further research.
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To Johan van Benthem, on the occasion of his fiftieth birthday, with high
respect.

1 Introduction

1.1 The relative completeness problem

The present study is motivated by the following, often arising in logical studies,
generic problem. A deductive system L (of any nature) in a certain logical
language is intended to axiomatize a class of standard models SM. A com-
pleteness theorem is proved with respect to a larger class of general models GM
, i.e. it is proved that

L ` φ iff L |=GM φ

The goal is to prove completeness of L with respect to the standard
models, i.e.

L ` φ iff L |=SM φ

Here are two typical cases:

1. Finite model property in classical, modal, or other non-classical logics.
The “general models” are all models for the logic L, and the “standard
models” are the finite models. While completeness with respect to general
models is a uniform result in classical logic, due to Gődel’s completeness
theorem, completeness with respect to “standard” (i.e. finite) models is
an essentially nontrivial property, as Trakhtenbrot’s theorem testifies.

2. Kripke-frame completeness in modal logic. The “general models” are all
Kripke models for the logic L, and the “standard models” are those Kripke
models based on frames for L . Again, the completeness with respect to
the class of general models is a general result in modal logic (based on the
standard canonical construction) but the completeness with respect to the
standard models, i.e. Kripke completeness, is the non-trivial and impor-
tant one For more details and numerous results, see [van Benthem, 1985].

There is no general method for solving the problem described above, but
usually some specific model-theoretic constructions are applied which transform
general into standard models while preserving satisfiability.

Here we do not offer a solution to that problem either, but rather a method-
ology based on a natural topological approach which can be applied in various
particular cases. An example of a non-trivial application is outlined at the end
of the paper.

1.2 A topological approach.

The idea is to find an appropriate topology T on the class of general models
GM such that:
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(i) The class of standard models SM is dense in GM with respect
to T , i.e. the closure in T of SM is GM.

(ii) Validity is a continuous property with respect to T , i.e. pre-
served in cluster points of nets (in particular, limits of sequences) of
models.

The following proposition is immediate.

Proposition 1.1 If the two conditions above hold for some topology T on GM
then completeness with respect to GM implies completeness with respect to SM.

Alternatively, we can associate with every general model its theory, i.e. the
set of its valid formulae, and look for an appropriate topology on the set of all
theories of general models, for which an analogous result can be stated. This
approach has some technical advantages, but the two approaches are essentially
equivalent, as it will be shown further.

Although many intimate connections between logic and topology have been
established and studied, it seems that topological methods and results have
so far been under-utilized for solving purely logical problems. Besides exten-
sive research on abstract model theory involving topological machinery (see
[Barwise and Feferman, 1985]) I am aware of not many other publications, such
as [Rasiowa and Sikorski, 1963] and [Goldblatt, 1985], which more explicitly
pursue that direction.

In this paper we begin systematic exploration of the idea of using basic topo-
logical techniques and results to obtain relative completeness results in logic.
The preliminary section 1 contains some background from logic and topology.
In section 2 we introduce the notion of logical topology and the related con-
cept of logical approximation, and study their basic properties. In particular,
as a direct consequence of Baire’s category theorem, we obtain a general rela-
tive completeness result (theorem 3.5, and theorem 4.6 as a particular case in
first-order logic) which seemingly has so far been unnoticed, or certainly not
popular, despite the well-known relationship of Baire’s theorem to logic (see
[Rasiowa and Sikorski, 1963] and [Goldblatt, 1985]).

In section 3 we discuss logical topologies and logical approximation in clas-
sical logic. Not surprisingly, we show that a topology on the set of all complete
theories in a first-order language is logical iff it contains Stone topology (propo-
sition 4.1) and briefly study a simple and natural extension of Stone topology in
languages with infinite signature. In section 4 we mention a specific application
to the first-order theory of discrete trees, and outline a proof of completeness
based on ideas and results from the paper. The last section 5 discusses a re-
search program arising from this study.

2 Preliminaries

Here we summarize some basic topological facts that will be used further. For
details on definitions and related results, [Ebbinghaus et al, 94] and [Hodges, 93]
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are general references on the necessary logical background, and [Engelking, 85]
– on topology.

Let L be a first-order language, SEN(L) be the set of sentences of L, and
C(L) be the set of complete theories in L. The Stone topology S(L) is defined
on the set C(L) by a base of clopen sets {[φ]|φ ∈ SEN(L)} where [φ] = {T ∈
C(L)|φ ∈ T}. It is easy to see that the closed sets in C(L) are precisely the
sets {T ∈ C(L)|Γ ⊆ T} where Γ is a theory in L and that S(L) is a totally
disconnected compact Hausdorff topological space.

The topology S(L) determines a topology SSTR(L) on the class of all L-
structures STR(L), called by Tarski the elementary topology, where the closed
subclasses are precisely the first-order axiomatizable classes. This topology is
pseudo-metrizable when the language is countable and every first-order axiom-
atizable class, considered as a subspace of SSTR(L) then becomes a complete
pseudo-metric space.

Given a topology T and a set A in T , by ClT (A) we denote the closure of
A in T .

Definition 1 A subset A of a topological space T on a set X is dense if
ClT (A) = X. A subset A of a set B in a topological space T on a set X is
dense in B if ClT |B(A) =B, . where T |B is the topology on B induced by T .

Definition 2 A topological space T has Baire’s property if every countable
intersection of dense open sets in T is dense in T.

A version of Baire category theorem states that every complete pseudo-
metric space, and every compact Hausdorff space has Baire’s property.

A topology is first-countable if every point has a countable base of open
neighbourhoods. It is easy to see that a Stone topology is first countable iff
the language is at most countable. In first-countable topologies continuity and
closure can be characterized in terms of convergent sequences, while in general,
they are characterized in terms of convergent nets or clustering filters.

3 Logical topologies on theories and structures.

Let us fix an arbitrary logical language L with specified semantics, i.e. a class
of L-structures and a relation |= of validity of L -formulae in L-structures.

Let T be a topology on the class of L-structures.

Definition 3 The topology T is logical on a class of L -structures M if
validity is a continuous property with respect to the topology on M induced by
T . T is logical if it is logical on the class of all L-structures.

For every L-structure A, we denote by TH(A) the theory of A, i.e. the set
of L-formulae valid in A.

Now, let T be a topology on a set TH of theories of L-structures and ClT (F)
be the closure of F with respect to T .
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Definition 4 The topology T is logical on TH if for every subset F ⊆TH,⋂F =
⋂

ClT (F).

T is logical if it is logical on the set of all theories of L-structures.
There is an easy duality between the two notions of logical topologies. For

every topology T on a class of structures M we can associate a topology TTH on
the set of their theories, where the closed sets are of the type {TH(A)|A ∈ C}
for each closed set C in T . Conversely, for every topology T on a set of theories
T we can associate a topology TSTR on the class of all models of theories from
T, with closed sets of the type {A|TH(A) ∈ C} for each closed set C in T .

Proposition 3.1 1. If T is a logical topology on a class M of L-structures,
then TTH is a logical topology on the set T of their theories.

2. If T is a logical topology on a set T of theories of L-structures, then TSTR

is a logical topology on the class M of their models.

Proof:

1. It is sufficient to note that for every F ⊆ T TH , the closure of F in TTH con-
sists of all theories of structures which are in the closure of
{A|TH(A) ∈ F} in T .

2. Likewise. ♣

Thus, both notions are essentially equivalent. While most of the ideas and
concepts discussed here look more natural when formulated in terms of struc-
tures, it is technically more convenient and elegant to state and prove many
of the results in terms of theories, so we shall use interchangeably the two
frameworks.

Proposition 3.2 If T ,R are topologies on a set of theories TH, T ⊆ R, and
T is logical, then R is logical, too.

Proof: T ⊆ R implies ClR(F) ⊆ ClT (F), so
⋂F ⊆ ⋂

ClT (F) ⊆⋂
ClR(F) for every F ⊆ TH. ♣

Definition 5 Let T be a logical topology on the class of L-structures. A struc-
ture A is logically approximated (with respect to T ) in a class of struc-
tures M if A belongs to the closure of M (with respect to T ). A class of
structures K is logically approximated (with respect to T ) by M if every
structure from K is logically approximated in M. The closure ClT (K) of K, i.e.
the class of all structures logically approximated in the class K, will be called
the logical closure of K (with respect to T ).

The following theorem, the proof of which is straightforward, formalizes the
idea outlined in the introduction and provides formal grounds for application
of our approach to solving the relative completeness problem.

Theorem 3.3 Let L be a deductive system in the language L, complete for a
class of structures K, T be logical on K, and M be a dense with respect to T
subclass of K. Then L is complete for M.
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A direct application of Baire category theorem yields the following result.

Lemma 3.4 Let K be a class of L-structures, T be a logical topology on K
with Baire’s property, and {Mk}k∈N be a family of open subclasses of K such
that K is logically approximated by each Mk. Then K is logically approximated
by M =

⋂
k∈N Mk.

The following theorem is a combination of the previous two statements.

Theorem 3.5 Let L be a deductive system in L, complete with respect to a
class of L-structures K, T be a logical topology on K with Baire’s property and
{Mk}k∈N be a family of open and dense subclasses of K. Then L is complete
with respect to M =

⋂
k∈N Mk.

4 Logical topologies in first-order logic and elemen-
tary approximations of structures.

We now fix an arbitrary first-order language L. With no risk of confusion we
shall denote both the Stone topology on C(L) and the elementary topology
SSTR(L) by S, and the closure operator in both topologies by ClS .

Note that for every F ⊆ C(L), ClS(F) = {T ∈ C(L)|⋂F ⊆ T} . On the
other hand, for every class of L-structures K , ClS(K) is the elementary closure
of K, i.e. the smallest elementary class which contains K. Thus, ClS(K) =
MOD(TH(K)), the class of all models of the first-order theory of K. Therefore,
a theory T is complete for a class K iff TH(K) = T i.e. K is dense in MOD(T ).

Proposition 4.1 A topology T on C(L) is logical iff it contains the Stone topol-
ogy.

Proof: First, suppose T is logical and let F ⊆ C(L) be closed in S(L),
i.e. F = {T ∈ C(L)|⋂F ⊆ T}. Then

⋂F ⊆ ⋂
ClT (F), so ClT (F)⊆ F , i.e.

ClT (F) = F . For the converse, by proposition 3.2, it suffices to show that
Stone topology is logical. Indeed, for any F ⊆ C(L), if T ∈ ClS(F) then⋂F ⊆ T, hence

⋂F ⊆ ⋂
ClS(F). ♣

Thus, Stone topology is the weakest logical topology on the class of all L
-structures, but there can be even weaker logical topologies suitable on some
subclasses. Besides, sometimes it may easier to deal with logical topologies
stronger than Stone topology. A typical example of such a topology in first-
order logic can be introduced by using an appropriate metric (which need not
be inducing the Stone topology) on C(L).

The notion of quantifier rank of a formula is introduced as usual in lan-
guages with relational signatures, and appropriately modified for languages
including constant and functional symbols, as in [Ebbinghaus et al, 94], p. 257.

Let SEN (n)(L) be the set of L-sentences of (modified) rank ≤ n and for
every Γ ⊆ SEN, Γ(n) = Γ ∩ SEN (n)(L).
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First, we define distance in C(L) as follows:

d(T1, T2) =

{
0 if T1 = T2,
1

n+1 if n is the least integer such that T
(n)
1 6= T

(n)
2 .

Proposition 4.2

1. 〈C(L),d〉 is a bounded and complete metric space.

2. The topology Cd(L) on C(L) induced by d is logical.

Proof:

1. To see that d is a metric it is sufficient to note that for any T1, T2, T3 ∈
T (L)

d(T1, T3) ≤ max(d(T1, T2),d(T2, T3)).

Boundedness is obvious. For completeness1, let T1, T2, . . . , Tn . . . be a
Cauchy sequence in T (L). Then, for each n ∈ N there is N ∈ N such
that for all p, q > N , T

(n)
p = T

(n)
q . Let us denote the latter by Γn. Thus

we obtain a chain of theories Γ0 ⊆ Γ1 ⊆ . . .. Let Γ =
⋃∞

n=0 Γn. Γ is a com-
plete theory. Indeed, Γ is closed. For, let Γ |= φ where φ ∈ SEN (m)(L)
for some m. Then Γk |= φ for some k. Hence φ ∈ Γmax(k,m), so φ ∈ Γ.
Furthermore, for every φ ∈ SEN (m)(L) for some m, either φ or ¬φ is in
Γk for every k≥m. Finally, it is clear that limn→∞ Tn = Γ.

2. We shall prove that Cd(L) contains Stone topology. Let F be a closed set in
S(L). Then F = {T ∈ C(L)|⋂F ⊆ T}. Since every metric space is first-
countable, it is sufficient to show that the limit T in Cd(L) of any sequence
T0, T1, . . . from F is in F . Indeed,

⋂F ⊆ T since every sentence from
⋂F

with a rank n will belong to all theories in the open 1
n+1 -neighbourhood

of each theory from F . Thus, F is closed in C(L).

♣

Proposition 4.3 For every first-order language L the following are equivalent:

1. The language L has finitely many non-logical symbols.

2. The topology Cd(L) coincides with the Stone topology.

3. The space Cd(L) is compact.

4. Cd(L) is totally bounded.

5. For every n ∈ N, the set {T (n)|T ∈ C(L)} is finite.

6. For no n ∈ N there is an infinite independent subset of SEN (n)(L).
1Cifuentes, Sette and Mundici have proved in [Cifuentes et al, 1996] the stronger result,

that for any first-order language L, the elementary topology SSTR(L) is Cauchy complete, i.e.
every Cauchy net converges.
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Proof:
(1) ⇒ (2): Let F ⊆ C(L) be closed in Cd(L) and Γ =

⋂F . We shall prove
that F = {T ∈ C(L)|Γ ⊆ T} . We only need to show that T ∈ F whenever
Γ ⊆ T. Indeed, for every n ∈ N, T (n) is finite, so it is included in some Tn ∈ F ,
otherwise ¬∧

T (n) ∈ Γ, so T would be inconsistent. Thus, T is the limit in
Cd(L) of a sequence T1, T2, ... in F , hence T ∈ F .

(2)⇒(3) Follows from compactness of Stone topology.
(3)⇔ (4): Every complete metric space is compact iff it is totally bounded.
(4)⇔ (5): Since the theories in every 1

n+1 -neighbourhood of T (L) share
the same SEN (n)(L)-fragment, T (L) is covered by finitely many open balls of
radius 1

n+1 iff there are finitely many SEN (n)(L)-fragments of theories from
T (L).

(5) ⇒ (6): Suppose Γ is an infinite independent subset of SEN (n)(L) for
some natural n. For each δ ∈ Γ we consider the consistent theory Γδ = Γ −
{δ} ∪ {¬δ}. All these theories have different SEN (n)(L) -fragments.

(6) ⇒ (1): If the language has infinitely many non-logical symbols, then
there are infinitely many atomic formulae of (at most) one variable and rank
not greater than 1, no two of which share non-logical symbols, hence there is
an infinite independent set of sentences in SEN (2)(L). ♣

Thus, we see that, although Cd(L) is stronger than Stone topology, it is
simpler and easier to deal with in case of infinite languages, especially in un-
countable languages where the latter is not first-countable.

The logical approximation with respect to S(L) will be called elementary ap-
proximation, and the approximation with respect to Cd(L) — strong elementary
approximation. Note that a structure A is strongly elementarily approximated
in a class K iff for every n ∈ N there is An ∈ K such that A ≡n An. The class of
all structures which are strongly elementarily approximated in K will be called
the strong elementary closure of K. Thus, every structure, strongly elemen-
tarily approximated in a class K, is elementarily approximated in K, but the
converse need not hold in a language with an infinite signature. Respectively,
every elementary closure is a strong elementary closure, but not conversely, and
the elementary closure of any class K contains its strong elementary closure.

Elementary approximation and closure are already well-understood from
various classical model-theoretics results, and we shall only mention just two
characterizations of elementary approximation. The first one, in S(L) is es-
sentially equivalent to the compactness theorem (see [Hodges, 93]): a theory
T ∈ C(L) is elementarily approximated by a set F ⊆ C(L) iff every finite sub-
set of T is included in some theory from F . The second one, in SSTR(L), is
a well-known preservation result: a structure A is elementarily approximated
by a class of structures K iff A elementarily equivalent to an ultraproduct of
structures from K .

Here are two easy characterizations of strong elementary approximations.

Definition 6 A net of L-structures 〈Ai〉i∈D , where D is a directed indexing
family, is strongly convergent if it is convergent in Cd(L).
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Theorem 4.4 A class K of L-structures is a strong elementary closure iff it
is closed under elementary equivalence and ultraproducts of strongly convergent
nets.

Proof: If K satisfies the closure conditions, then every structure strongly
elementarily approximated in K belongs to K since the ultraproduct of 〈Ai〉i∈D

over any free ultrafilter on D is elementarily equivalent to the limit of that
net. Conversely, every strong elementary closure is closed under elementary
equivalence and therefore, under ultraproducts of strongly convergent nets. ♣

In the case of a countable language, the result above can be stated in terms
of converging sequences, rather than nets.

A simple game-theoretic characterization of strong elementary approxima-
tions exists, too.

Definition 7 Ehrenfeucht game with choice of a companion: Given a
structure A, and a class of structures K, the game goes between two players as
follows. In his first move Player I selects a natural number n. Then Player II
selects a structure B from K. Then the game continues as the usual Ehrenfeucht
game for A and B and ends after n more moves. The winning conditions are
the same as for the usual Ehrenfeucht games.

Proposition 4.5 A structure A is strongly elementarily approximated in a
class K iff Player II as a winning strategy for every game with choice of a
companion.

Finally, we state a useful, though seemingly not popular, result on relative
completeness, which is a particular case of theorem 3.5. (Recall that a first-order
theory T is complete with respect to a class K iff K is dense in MOD(T ).)

Definition 8 A class of first-order structures is co-elementary if its comple-
ment is elementary.

Theorem 4.6
Let {Mk}k∈N be a family of co-elementary classes of L-structures, and let T be
a first-order theory complete with respect to each Mk. Then T is complete with
respect to M = ∩k∈NMk.

5 An application: a relative completeness result of

the first-order theory of coloured ω-trees.

In this section we shall mention just one sample completeness result obtained
by applying ideas and results from the previous sections. For detailed proofs
and more related results see [Goranko, 98]

By a tree we mean any (strictly) partially ordered set with a least element
(root), in which every element has a linearly ordered set of predecessors. The
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elements of a tree will be called nodes. A child of a node x is a successor of x
which is not a successor of any successor of x. A tree will be called discrete if
every successor of a node is either a child or a successor of a child of that node.
(This, every well-ordered tree is discrete.) A path in a tree is any maximal
linearly ordered subset. A tree in which every path has the order type of ω will
be called an ω-tree. Given a node a in a tree, the set of nodes {b|b < a} will
be called the stem of a. A sibling of a node t in a tree T is any other node in
T which has the same stem as t. For any order type τ, a τ -level in a tree T
is the set Tτ of all nodes whose stems have an order type τ. The finite levels
in a tree are all α-levels for finite ordinals α. (Thus, the 0-level consists of the
root of the tree). A discrete tree is finitely branching if every node has finitely
many siblings; it is finitely branching on a level α if all nodes on that level have
finitely many siblings.

Here we shall consider trees enriched with finitely many additional unary
predicates, which will be called colours, and the resulting structures coloured
trees.

Note that the class of all discrete trees is first-order definable.

Theorem 5.1 The first-order theory TTω of all coloured ω-trees is complete
with respect to the class of finitely branching coloured ω -trees.

Sketch of proof: Let Mω be the class of all models of TTω and Mf be
the subclass of Mω consisting of all trees which are finitely branching on all
finite levels and in which every satisfiable formula of one variable is satisfiable
on a finite level.

The proof goes through two major steps. The first step is to prove that
TTω is complete with respect to Mf by showing that Mf is dense in Mω

with respect to the elementary topology. That can be done using theorem 4.6,
since Mf can be represented as an intersection of the family of open classes
{Mk}k∈N , where Mk consists of the models M of TTω finitely branching at
the first k levels and satisfying on finite levels the first k formulae of some
enumeration, satisfiable in M . It can be proved, using Ehrenfeucht’s theorem,
that each Mk is dense in Mω.

The second step then is to prove completeness with respect to the class of
finitely branching ω-trees, and it uses the omitting types theorem. ♣

6 Concluding remarks.

In this paper we have only discussed some rather immediate results regarding
logical topologies. This topic can be further developed both from logical and
from topological perspective.

¿From topological perspective, there is much more to be done, as there is a
number of non-trivial topological results which can be usefully reformulated in
logical terms and applied for solving relative completeness (and other) problems.
For instance, it is known (see [Fräissé 67]) that SSTR(L) are uniform spaces,
which brings additional useful properties, little explored and used in logic so
far.
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A major logical perspective is to study logical topologies in second-order,
infinitary, modal, etc. logics and to apply them to non-trivial completeness
problems in these logics. Some of the results in first order logic easily generalize
to a wide variety of other logical languages and systems. For instance, an
analogue of Stone topology can be introduced in every logical language which
has a disjunction, and the theories under consideration are consistent and prime
in sense that α∨β ∈ T iff α ∈ T or β ∈ T. Then it is easy to check that Cl(F) =
{T ∈ TH|⋂F ⊆ T} defines a topological closure, and the logical topologies in
that language are precisely the extensions of the resulting topology. Still, in
these and other cases it is interesting and important to search for other useful
constructions of topologies, logical on a class of structures.

A generic problem of particular importance in second-order logic is to study
elementary approximation of second-order properties. A typical completeness
problem in that respect can be stated as follows: given a second-order theory T ,
and a first-order fragment T1 of T, is the class of models of T1 elementarily
approximated in the class of models of T? In other words: is T1 complete with
respect to the class of models of T ? An interesting special case is the case of
Π1

1-theories. For every Π1
1-sentence Φ we can consider the first-order schema

Φp
1 obtained from Φ by restricting the universal second-order quantification

to all instances of parametrically first-order definable relations and functions
and thus obtain a natural first-order fragment of the theory of Φ. A number
of elaborated positive completeness results for such fragments are obtained in
[Doets, 87] and [Backofen et al, 95]. It would be interesting to explore this
problem using logical topologies.

Finally, there are a number of basic model-theoretic constructions used in
modal logic to transform Kripke models into “standard” ones for the logic under
consideration, such as Segerberg’s filtration and bisimulation (which subsumes
most of the others), the latter, inter alia, introduced in modal logic by Johan
van Benthem under the name of zig-zag morphism (see [van Benthem, 1984]).
We hope that these constructions can be linked into the topological framework
discussed here and thus the toolkit for proving completeness in modal logic can
be strengthened and expanded.
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