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Abstract

Guarded fixed point logics are obtained by adding least and greatest fixed points
to the guarded fragments of first-order logic that were recently introduced by Andréka,
van Benthem and Németi. Guarded fixed point logics can also be viewed as the nat-
ural common extensions of the modal p-calculus and the guarded fragments. In a
joint paper with Igor Walukiewicz, we proved recently that the satisfiability problems
for guarded fixed point logics are decidable and complete for deterministic double ex-
ponential time. That proof relies on alternating automata on trees and on a forgetful
determinacy theorem for games on graphs with unbounded branching. We present here
an elementary proof for the decidability of guarded fixed point logics which is based on
guarded bisimulations, a tree model property for guarded logics and an interpretation
into the monadic second-order theory of countable trees.
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1 Introduction

Modal logics are widely used in a number of areas in computer science, in par-
ticular for the specification and verification of hardware and software systems,
for knowledge representation, in databases, and in artificial intelligence. The
most important reason for the successful applications of these logics is that they
provide a good balance between expressive power and computational complex-
ity. A great number of logical formalisms have been successfully tailored in such
a way that they are powerful enough to express interesting properties for a spe-
cific application but still admit reasonably efficient algorithms for their central
computational problems, in particular for model checking and for satisfiability
or validity tests. Many of these formalisms are essentially modal logics although
this is not always apparent from their ‘official” definitions (as for instance in the
case of description logics).

The basic propositional (poly)modal logic ML (for a given set A of ‘actions’
or ‘modalities’) extends propositional logic by the possibility to construct for-
mulae (a)y and [a]y) (where a € A) with the meaning that ¢ holds at some,
respectively each, a-successor of the current state. Although ML is too weak
for most of the really interesting applications, it can be extended by features
like path quantification, transitive closure operators, counting quantifiers, least
and greatest fixed points, and it has turned out that most of these extensions
are still decidable and indeed of considerable practical importance.

Up to now, the reasons for these good algorithmic properties of modal log-
ics have not been sufficiently understood. In [15] Vardi explicitly asked the
question: “Why is modal logic so robustly decidable?”.

To discuss this question, it is useful to consider propositional modal logic as
a fragment of first-order logic. Kripke structures which provide the semantics
for modal logics, are relational structures with only unary and binary relations.
Every formula ¢ € ML can be translated into a first-order formula *(x) with
one free variable, which is equivalent in the sense that for every Kripke structure
K with a distinguished node w we have that K,w | ¢ if and only if £ |
¥*(w). This translation takes an atomic proposition P to the atom Pz, it
commutes with the Boolean connectives, and it translates the modal operators
by quantifiers as follows:

(@)t ~ ((@)9)" (z) == Fy(Eazy A Y7 (y))
[a]tp ~ ([a])"(2) := Vy(Eazy — ¢"(y)),

where ¢*(y) is obtained from 1*(x) by replacing all occurrences of x by y and
vice versa and where FE, is the transition relation associated with the modality
a.

The modal fragment of first-order logic is the image of propositional modal
logic under this translation. It is properly contained in FO?, relational first-
order logic with only two variables. But although FO? is decidable and has the
finite model property (see [12, (]), it lacks the nice model-theoretic properties [1,
9] and, in particular, the robust decidability properties of modal logics. Indeed
while the extensions of modal logic by path quantification, transitive closure



operators, least fixed points etc. are still decidable, most of the corresponding
extensions of FO? are highly undecidable (see [7, 8]). In particular this is
the case for fixed-point logic with two variables, which is the natural common
extension of FO? and the p-calculus. The embedding of ML in FO? therefore
does not give a satisfactory answer to Vardi’s question.

An important property that is shared by modal logic and its extensions, but
not by FO?, and whose importance for the decidability of modal logics has been
pointed out by Vardi [15] is the tree model property: Every satisfiable sentence
has a model that is a tree of bounded branching. The tree model property is
the basis for the use of automata theoretic techniques to decide the satisfiability
problems for modal logics.

An alternative explanation for the good properties of modal logics has been
proposed by Andréka, van Benthem and Németi [1]. Starting from the obser-
vation that in the translation of modal formulae into first-order formulae, the
quantifiers are used only in a very restricted way, they defined the guarded frag-
ment of first-order logic. They dropped the restriction to use only two variables
and only monadic and binary predicates, but imposed that all quantifiers must
be relativized by atomic formulae. This means that quantifiers appear only in
the form

Jy(a(z,y) NY(z,y)) or  Vyla(z,y) — P(z,y)).

Thus quantifiers may range over a tuple y of variables, but are ‘guarded’ by an
atom « that contains all the free variables of .

The guarded fragment GF extends the modal fragment and turns out to
have interesting properties [1, 5]: (1) The satisfiability problem for GF is de-
cidable; (2) GF has the finite model property, i.e., every satisfiable formula in
the guarded fragment has a finite model; (3) GF has (a generalized variant
of) the tree model property; (4) Many important model theoretic properties
which hold for first-order logic and modal logic, but not, say, for the bounded-
variable fragments FO*, do hold also for the guarded fragment; (5) The notion
of equivalence under guarded formulae can be characterized by a straightfor-
ward generalization of bisimulation.

In a further paper, van Benthem [2] generalized the guarded fragment to the
loosely guarded fragment (LGF) where quantifiers are guarded by conjunctions
of atomic formulae of certain forms (details will be given in the next section.)
Most of the properties of GF generalize to LGF. In [5] it is shown that the
the satisfiability problems for GF and LGF are complete for 2EXPTIME, the
class of problems solvable by a deterministic algorithm in time 22p(n), for some
polynomial p(n).

Probably the most important extension of ML is the p-calculus, introduced
in [11], which extends propositional modal logic by least and greatest fixed
points and subsumes most of the other program logics such as PDL, CTL and
CTL* and also many description logics. It is known that the satisfiability
problem for the p-calculus is decidable and EXPTIME-complete [3]. Recently,
Vardi has shown that also a stronger variant of the u-calculus that includes
backward modalities remains decidable in exponential time [16].



If it is indeed the case that, as suggested by Andréka, van Benthem and
Németi, the guarded nature of quantification in modal logics is the main reason
also for their good algorithmic properties, then we are naturally lead to the
following question:

If we extend the guarded fragments of first-order logic by least and
greatest fixed points, do we still get a decidable logic?

In [10] we were able to give a positive answer to this question. We denote by
uGF and pLGF the extensions of GF and LGF by least and greatest fixed points
(precise definitions will be given in the next section). The model-theoretic and
algorithmic methods that are available for the p-calculus on one side, and the
guarded fragments of first-order logic on the other side, can indeed be combined
and generalized to provide positive results for the guarded fixed point logics.
Using automata theoretic methods and a forgetful determinacy theorem for
graph games we could in fact establish precise complexity bounds.

Theorem 1.1 (Gréadel, Walukiewicz). The satisfiability problems for uGF
and pLGF are decidable and 2EXPTIME-complete.

Hence, the guarded nature of quantification does indeed seem to provide a
convincing explanation for the good algorithmic and model theoretic properties
of modal logics.

In this paper, a somewhat simpler decidability proof for guarded fixed point
logic is presented which replaces the automata theoretic machinery used in
[10] by an interpretation argument into the monadic second-order theory of
countable trees which by Rabin’s famous result [13] is known to be decidable.
However, note that while this gives a more elementary decidability proof, it
does not give good complexity bounds. Indeed, even the first-order theory
of countable trees is non-elementary, i.e. its time complexity exceeds every
bounded number of iterations of the exponential function.

Here is the plan of this paper. In Sect. 2 we present the definitions and some
basic properties of the guarded fragments of first-order logic, GF and LGF, and
of the guarded fixed point logics uGF and puLGF. In Sect. 3 we explain the
notions of a guarded bisimulation and of the unraveling of a structure and show
that guarded fixed point logic satisfies a variant of the tree model property.
Finally, in Sect. 4 we reduce the satisfiability problem for uLGF to the monadic
second-order theory of countable trees and prove its decidability.

2 Guarded fixed point logics

Definition 2.1. The guarded fragment GF of first-order logic is defined induc-
tively as follows:

(1) Every relational atomic formula belongs to GF.

(2) GF is closed under propositional connectives =, A, V, — and «.



(3) If @,y are tuples of variables, a(x,y) is a positive atomic formula and
Y(x,y) is a formula in GF such that free() C free(ar) = Uy, then the
formulae

Jy(a(z,y) A(z,y))
Vy(a(z,y) — ¥(z,y))

belong to GF.

Here free(y)) means the set of free variables of ¥. An atom «(x,y) that
relativizes a quantifier as in rule (3) is the guard of the quantifier. Notice that
the guard must contain all the free variables of the formula in the scope of the
quantifier.

While the guarded fragment clearly contains the modal fragment of first-
order logic, it seems not to be able to express all of temporal logic over (N, <).
Indeed, the straightforward translation of (¢ until ¢) into first-order logic

Jy(z <y Ap(y) ANVz((x < 2 A2 <y) —1P(2))

is not guarded in the sense of Definition 2.1. However, the quantifier Vz in
this formula is guarded in a weaker sense, which lead van Benthem [2] to the
following generalization of GF.

Definition 2.2. The loosely guarded fragment LGF is defined in the same way
as GF, but the quantifier-rule is relaxed as follows:

(3)" If ¢(x,y) is in LGF, and a(x,y) = a1 A+ - Ay, is a conjunction of atoms,
then

Ely((al ARERNAN am) A 1#(«% y))
vy((al ARERNAN am) - Tﬂ(«’B’y))

belong to LGF, provided that free(y)) C free(ar) = & Uy and for every
quantified variable y € y and every variable z € {x,y} there is at least
one atom «; that contains both y and =.

In the translation of (1) until ¢) described above, the quantifier Vz is loosely
guarded by (x < zAz < y) since z coexists with both x and y in some conjunct
of the guard. On the other side, the transitivity axiom Vryz(ExyAEyz — Exz)
is not in LGF. The conjunction Ezy A Eyz is not a proper guard of Vxyz since
x and z do not coexist in any conjunct. Indeed, it has been shown in [5] that
there is no way to express transitivity in LGF.

Notation. We will use the notation (Jy.«) and (Vy.«) for relativized quan-
tifiers, i.e., we write guarded formulae in the form

(Fy . )Y(z,y) and (Vy.a)p(z,y).

When this notation is used, then it is always understood that « is indeed a
proper guard as specified by condition (3) or (3)'.



Definition 2.3. The guarded fixed point logics pGF and puLLGF are obtained
by adding to GF and LGF, respectively, the following rules for constructing
fixed-point formulae:

Let W be a k-ary relation symbol,x = x1,... ,z; a k-tuple of distinct vari-
ables and (W, x) be a guarded formula that contains only positive occurrences
of W, no free variables other than x1, ... ,z; and where W is not used in guards.
Then we can build the formulae

[LFP Wa . ¢](x) and [GFP Wx . |(x).

The semantics of the fixed point formulae is the usual one: Given a structure
2l providing interpretations for all free second-order variables in v, except W,
the formula (W, z) defines an operator on k-ary relations W C A* namely

PP W W) = {a € A¥: A = (W, a)}.

Since W occurs only positively in v, this operator is monotone (i.e., W C W'
implies (W) C ¥*(W')) and therefore has a least fixed point LFP (/%) and a
greatest fixed point GFP(1)%). Now, the semantics of least fixed point formulae
is defined by

A = [LFP Wa. (W, x)](a) iff ac LFP(@?)

and similarly for the greatest fixed points.

The Lowenheim-Skolem property. For future use, we recall that even the
(unguarded) least fixed point logic (FO + LFP), and hence also its fragments
uGF and pLGF, have the Lowenheim-Skolem property. This result is part of
the folklore on fixed point logic, but it is hard to find a published proof. Our
exposition follows the one in [4].

Theorem 2.4. FEvery satisfiable sentence in (FO + LFP) has a model of count-
able cardinality.

Proof. Consider a fixed-point formula of form ¢(x) := [LFP Rx.¢(R, x)|(x),
with first-order ¢ such that 2 = v¢(a) for some infinite model 2.

For any ordinal «, let R* be stage « of the least fixed point defined by ¢ on
2, ie RV := @, R® = gogl(Uﬂ<C¥ RP) for a > 0. Then the least fixed point 1>
coincides with R for some ordinal v (whose cardinality is bounded by |2]); v
is called the closure ordinal of 1 on 2.

Expand 2 by a monadic relation U a binary relation < and a m + l-ary
relation S (where m is the arity of R) such that

(1) (U, <) is a well-ordering of length v + 1, and < is empty outside U.
(2) S describes the stages of p* in the following way

S = {(u,b): for some ordinal o <, u is the a-th element of (U, <),
and b € R“}.



In the expanded structure 2* := (A, U, <, S) the stages of the operator %
are defined by the sentence

n == VuVe (Sux < Jz(z < u A p[Ry/Fz(z < u A Szy)(x))).

Here p[Ry/3z(z < u A Szy)](x)) is the formula obtained form ¢(R,x) by
replacing all occurrences of subformula Ry by 3z(z < u A Szy).

Let B* = (B,U%, <®,S%) be a countable elementary substructure of A*,
containing the tuple a. Since 2* |= 7, also B* = 1 and therefore ST encodes
the stages of ¢®. Since also B* |= JuSua, it follows that a is contained in the
least fixed point of %, i.e., B |= 1 (a).

A straightforward iteration of this argument gives the desired result for
arbitrary nestings of fixed point operators, and hence for the entire fixed point
logic FO + LFP. O

3 The tree model property

Tree width is an important notion in graph theory. Here we need a generali-
sation of this concept to arbitrary relational structures. For readers who are
familiar with the notion of tree width in graph theory and the notion of the
Gaifman graph of a structure we can simply say that the tree width of a struc-
ture is the tree width of its Gaifman graph. Here is a more detailed definition.

Definition 3.1. A structure B (with universe B and arbitrary vocabulary 7)
has tree width k if k is the minimal natural number satisfying the following
condition. There exists a directed tree 7' = (V, E) and a function

F:V o {XCB:|X|<k+1},
assigning to every node v of T" a set F'(v) of at most k + 1 elements of 9B, such
that the following two conditions hold.

(i) For every T-atom «(x1,... ,x,) and every tuple by, ... ,b, such that B =
a(by, ... ,b;) there exists a node v of T" such that {by,... ,b,} C F(v).

(ii) For every element b of B, the set of nodes {v € V : b € F(v)} is connected
(and hence induces a subtree of T').

For each node v of T, the set F(v) induces a substructure §(v) C B of
cardinality at most k + 1. (Since F'(v) may be empty, we also permit empty
substructures.) (T, (§(v)ver)) is called a tree decomposition of width k of B.

Definition 3.2. A set X of elements is loosely k-guarded in a structure B if,

for some s < k, there exists a tuple by, ... ,bs in B such that X C {by,...,bs}
and B = a(by,... ,bs) where a(by,... ,bs) = a3 A -+ A auy, is a conjunction of
atoms that guards by, ... ,bs in the sense of LGF (i.e. every pair b;,b; coexists

in some conjunct of ).

A set is loosely guarded if it is loosely k-guarded for some k. A tuple
b= (b1,...,b,) is loosely guarded in B if the set {by,... ,b,} is loosely guarded
in B.



Lemma 3.3. Let (T, (§(v)ver)) be a tree decomposition of B and X C B be a
loosely guarded set in B. Then there exists a node v of T' such that X C F(v).

Proof. Let by, ... ,bs) be a guard of X in B. In the case that « is atomic the
claim follows immediately from the definition of a tree decomposition. Other-
wise a(b) may be a conjunction aj A --- A ayy, of atoms. For each component
b € b, let V;, be the set of nodes v such that b € F'(v). By the definition of a tree
decomposition, each V;, induces a subtree of T'. The fact that B = a1 A+ Ay,
and the occurrence conditions of variables in guards imply that for all b,b’ € b
the intersection V;, N Vy is non-empty. It is a well-known result in graph theory
that any collection of pairwise overlapping subtrees of a tree has a common
node (see e.g. [14, p. 94]). Hence there is a node v of the T such that F(v)
contains all elements of b and therefore all elements of X. O

Guarded bisimulations. The notion of bisimulation from modal logic gen-
eralises in a straightforward way to various notions of guarded bisimulation
that describe indistinguishability in guarded logics. We focus here on loosely
guarded k-bisimulations, the appropriate notion for loosely guarded formulae
of width at most k. The width of a formula is the maximal number of free
variables in subformulae of 1.

Definition 3.4. A loosely guarded k-bisimulation, or briefly, a k-bisimulation
between two 7-structures 2 and ‘B is a non-empty set I of finite partial iso-
morphisms f : X — Y from 2 to B, where X C A and Y C B are loosely
k-guarded sets, such that the following back and forth conditions are satisfied.
For every f: X — Y in [,

forth: for every loosely k-guarded set X’ C A there exists a partial isomor-
phism g : X’ — Y’ in I such that f and g agree on X N X".

back: for every loosely k-guarded set Y/ C B there exists a partial isomorphism
g: X'+ Y'in I such that f~! and ¢! agree on Y NY".

Two 7-structures 2l and B are k-bisimilar if there exists a k-bisimulation be-
tween them.

Definition 3.5. Let LGF* be the infinitary variant of the loosely guarded
fragment, extending LGF by the following rule for building new formulae: If
® C LGF™ is a set of formulae, then also \/ ® and A ® are formulae of LGF*°.

Adapting basic and well-known model-theoretic techniques to the present
situation, one obtains the following result.
Theorem 3.6. Let A and B be two T-structures. The following are equivalent:
(i) A and B are k-bisimilar.
(i) For all sentences 1 € LGF™ of width at most k, A =9 <= B [=1.
The following simple observation relates pLGF to LGF* and shows that

k-bisimilar structures cannot be separated by guarded fixed point sentences of
width k.



Proposition 3.7. For each ¢ € pLGF of width k and each cardinal ~, there
is a ¢ € LGF®, also of width k, which is equivalent to 1 on all structures up
to cardinality .

Proof. Consider a fixed point formula [LFP Rx.¢(R,x)](x). For every or-
dinal «, there is a formula ¢,(x) € LGF* that defines the stage o of the
induction of . Indeed, let po(x) = false and, for o > 0, let @, (x) =
[RY/ \ g<o p3(y)](2), that is, the formula that one obtains from ¢ (R, x) if one
replaces each atom Ry (for any y) by the formula \/5_,, ¢5(y) which defines the
stages prior to a. On structures of bounded cardinality, also the closure ordinal
of any fixed-point formula is bounded. Hence for every cardinal v there exists
an ordinal « such that [LFP Rx.p(R,x) is equivalent to ¢, (x) on structures
of cardinality at most ~. O

Unravelings of structures. The k-unraveling B®*) of a structure B is de-
fined inductively. We build a tree T, with functions F' and G such that each
F(v) induces a loosely guarded substructure §(v) C B, each G(v) induces a
substructure &(v) € B®*) that is isomorphic to F(v), and (T, (&(v))wer) is a
tree decomposition of B*).

The root of T is A\, with F'(A\) = G(\) = @. Given a node v of T' with F'(v) =
{a1,... ,a,} and G(v) = {a7,... ,a’} we create for every loosely k-guarded set
{b1,...,bs} in B a successor node w of v such that F(w) = {b1,... ,bs} and
G(w) is a set {b],... bt} which is defined as follows. For those i, such that
bi = a;j € F(v), put b; = a} so that G(w) has the same overlap with G(v) as
F(w) has with F(v). The other b} in G(w) are fresh elements.

Let fy : F(w) — G(w) be the bijection taking b; to b} for i =1,...,s. For
§(w) being the substructure of B induced by F(w), define &(w) so that f,
is an isomorphism from §(w) to &(w). Finally B®*) is the structure with tree
decomposition (T, (&(v)yer))-

Note that the k-unraveling of a structure has tree width at most k£ — 1.
Proposition 3.8. B and B®) are k-bisimilar.
Proof. Let I be the set of functions f, : F'(v) — G(v) for all nodes v of T. [

It follows that no sentence of width k in LGF*°, and hence no sentence of
width & in uLGF distinguishes between a structure and its k-unraveling. Since
every satisfiable sentence in yLLGF has a model of at most countable cardinality,
and since the k-unraveling of a countable model is again countable we obtain
the following tree model property for guarded fixed point logic.

Theorem 3.9 (Weak tree model property). Every satisfiable sentence v
in pLGF of width k has a countable model of tree width at most k — 1.

Remark. Using more sophisticated arguments, one can establish a stronger
variant of the tree model property with the additional condition that the branch-
ing of the underlying tree is bounded by O(|¢|*) (see [10]).



4 Reduction to the monadic theory of trees

Let (T, (F(v))yer) be a tree decomposition of width & — 1 of a 7-structure
with universe D. We want to describe ® by a tree with a finite set of labels.
To this end, we fix a set K of 2k constants and choose a function f: D — K
assigning to each element d of ® a constant ay € K such that the following
condition is satisfied. If v, w are adjacent nodes of T', then distinct elements of
§(v) UF(w) are always mapped to distinct constants of K.

For each constant a € K, let O, be the set of those nodes v € T" at which
the constant a occurs, i.e., for which there exists an element d € F(v) such
that f(d) = a. Further, we introduce for each m-ary relation R of © a tuple
R := (Rq)ackm of monadic relations on T with

Rog :={veT:3()E Rdy - -dp and f(di1) =a1,..., f(dn) = am}.

The tree T' = (V, E) together with the monadic relations O, and R (for R €
7) is called the tree structure 7 (®) associated with © (and, strictly speaking,
with its tree decomposition and with K and f). Note that two occurrences of
a constant ¢ € K at nodes u,v of T represent the same element of ® if and
only if a occurs in the label of all nodes on the link between u and v. (The
link between two nodes u,v in a tree T is the smallest connected subgraph of
T containing both u and v.)

An arbitrary tree T = (V, E) with monadic relations O, and R does define
a tree decomposition of a structure 2, provided that the following axioms are
satisfied.

(1) At each node v, at most k of the predicates O, are true.

(2) Neighbouring nodes agree on their common elements. For all m-ary rela-
tion symbols R € 7 we have the axiom

consistent(R) := /\ V:ch((Exy A /\ (Opx A an)) — (Rqx < Ray)).

acK™ aca

Note that these are first-order axioms over the vocabulary 7 := { E}U{O, :
a € K}U{R: R € 7}. Given a tree structure 7 with underlying tree T' = (V, E)
and monadic predicates O, and R, satisfying (1) and (2), we obtain a structure
® such that 7 (D) = 7 as follows. For every constant a € K, we call two nodes
u,w of T" a-equivalent if 7 = Oyv for all nodes v on the link between v and
w. Clearly this is an equivalence relation on O7. We write [v], for the a-
equivalence class of the node v. The universe of © is the set of all a-equivalence
classes of T for a € K, i.e.,

D :={jv]g:veT, ae K, T = Oyv}.
For every m-ary relation symbol R in 7, we define

R = {([01lass -+ [omlan) T | Ry, for some
(and hence all) v € [v1]q; N+ N [Vm]a,, }-
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Recall that on any directed tree 7' = (V, E)) we can express that U is the
set of nodes on the link between x and y by a monadic second-order formula
link(U, z,y) constructed as follows. Let first

connect(U, z,y) :== Uz AUy A Ir(Ur AVz(Ezr — =Uz)
AVYWVz(BEwz AUz A z #r — Uw)).

This formula expresses that U contains the link from x to y. Then set
link(U, z,y) := connect(U, z,y) ANV Z(connect(Z,z,y) — U C Z).

We now describe a translation from puLGF into monadic second-order logic.
Given a formula ¢(xi,...,2,) € pLGF we construct, for all tuples a =
ai,...,am, over K, monadic second-order formulae ¢q(z) with one free vari-
able, which describe in the associated tree structure 7 (®) the same properties
of loosely guarded tuples as ¢(x) does in ©. (We will make this statement more
precise below). The translation is defined by induction as follows:

(1) If p(x) is an atom Sxz;, - - - x;,, then pq(2) := Spz where b = (a;,, ..., a;,).
2) If o = (x; = x;), let q(2z) = true if a; = aj and @q(2) = false otherwise.
3) If o =n AV, let pa(z) = na(z) A Va(2).
4) If p = =0, let g (2) = 04(2).
5) If o =(Fy.alx,y))n(x,y), let pa(z) ==

U3y <Iink(U, y,2) ANVz(Uz — /\ Ouz) A \/(/\ Opy A ctap(y) A nab(y)>>.

aca b beb

(
(
(
(

(6) If o = [LFP Sz .n(S,x)](x), let

va(z) == VS’((consistent(S) A /\V:):(be — np(S, x))) — Saz).
b

Here S is a tuple (Sp)pexm of monadic predicates where m is the arity of

S.

Theorem 4.1. Let o(x) be a formula in pLGF and ® be a structure with tree
decomposition (T, (F(v))ver). For an appropriate set of constants K and a
function f: D — K, let T(D) be the associated tree structure. Then, for every
node v of T' and every loosely guarded tuple d C F(v) with f(d) = a,

D Epld) <= T®)F va(v).

Proof. We proceed by induction on ¢. The only non-trivial cases are existential
quantification and least fixed points.

Suppose that ¢(x) = (Jy . a(x,y))n(z,y) and that ® = ¢(d). Then there
exists a tuple d’ such that ® | a(d,d’) An(d,d’).

Claim. There exists a node w of T such that all components of d U d' are
contained in F(w).

11



By assumption d is loosely guarded, and « guards d’ with respect to d (i.e.
a(d,d') is a conjunction ay A -+ A ayy, of atoms such that every d’ € d' coexists
with every element from d U d’ in at least one conjunct of a(d,d’). Hence the
conjunction of a with any guard for d is a guard for d,d’. Thus d,d’ is loosely
guarded and by Lemma 3.3, the claim follows.

Let f(d') =b. By induction hypothesis it follows that

T(®) = /\ Opw A agp(w) A nap(w).
beb

Let U be the set of nodes on the link between v and w. Then the tuple d occurs
in §(u) for all nodes u € U. It follows that

7(®) = link(U,v,w) AVz(Uz — /\ O,7).

aca

Hence 7 (D) E pa(v).

Conversely, if 7(D) |= pq(v) then there exists a node w such that the con-
stants @ occur at all nodes on the link between v and w (and hence correspond
to the same tuple d) and such that 7 (D) = agp(w) A nap(w) for some tuple
b. By induction hypothesis this implies that ® = «a(d,d’) A n(d,d’) for some
tuple d’, hence D = o(d).

Finally, let p(x) = [LFP Sx.n(S,z)](x). By definition, ® = ¢(d) is true
if and only if d is contained in every fixed point of the operator 7%, i.e. is in
every relation S such that S = {c: (D,5) = n(S,c)}.

We first observe that, for loosely guarded tuples d, this is equivalent to the
seemingly weaker condition that d is contained in every S such that ¢ € 5 iff
D = n(S, ) for all loosely guarded tuples c. Indeed this is obvious, since 7(S, )
is a Boolean combination of quantifier-free formulae not involving «, of positive
atoms of the form Su where w is a recombination of the variables appearing
in  and of formulae starting with a guarded existential quantifier. Therefore
the truth values of Sc for unguarded tuples ¢ never matters for the question
whether a given guarded tuple is in ©®(S).

Recall that the formula associated with ¢(x) and a is

va(z) = (VS)((consistent(S) A /\Vm(be — nb(g,:c))> — az).
b

Consider any tuple S = (Sp)pe = of monadic relations on 7 (D) that satisi-
fies the consistency axiom such that

(T(D),5) E \Va(Spz < nu(S, ).
b

This tuple S defines a relation S on ® such that for all nodes w of T and
all tuples ¢ in §(w) with f(¢) = b, we have ¢ € S iff w € Sp. Conversely
each relation S on ® defines such a tuple S of monadic relations on 7 (D)
which describes the truth values of S on all loosely guarded tuples of ®. Since

12



T (D) = Spw < np(S,w) it follows by induction hypothesis that ® = Sc <
n(S,c). Further d € S if and only if v € S,.

Hence the formula @4 (v) is true in 7 () if and only if d is contained in all
relations S over D such that for all loosely guarded tuples ¢, ¢ € S iff ¢ € n®(9).
By the remarks above this is equivalent to saying that d is in the least fixed
point of n®. O

Theorem 4.2. The satisfiability problem for pLGF is decidable.

Proof. Let 1 be a sentence in pLLGF of vocabulary 7 and width k. We translate
1) into a monadic second-order sentence * such that 1 is satisfiable if and only
if there exists a countable tree T'= (V, E) with T' = ¢*.

Fix a set K of 2k constants and let O be the tuple of monadic relations
O, for a € K. Further, for each m-relation symbol R € 7, let R be the tuple
of monadic relation R, where a € K™. The desired monadic second-order
sentence has the form

U* = (30)(3R) (X A Varpa(z)).

Here x is the first-order axiom expressing that the tree T expanded by the
relations O and R does describe a tree structure 7 (D) associated to some 7-
structure ©®. We have shown above that this can be done in first-order logic.
The formula 1 g(x) is the translation of ¢ (and the empty tuple of constants)
into monadic second-order logic, as described by Theorem 4.1.

If ¢ is satisfiable, then by Theorem 3.9, ¢ has a countable model ® of
tree width & — 1. By Theorem 4.1, the associated tree structure 7 (D) satisfies
X A Vzpg(z), hence there exists a tree T' such that T' = *. Conversely, if
T k= 9*, then there exists an expansion 7 = (T, O, R) which satisfies y and
hence describes the tree decomposition of a 7-structure ®. Since 7 = Vaz(z)
it follows by Theorem 4.1 that © = 1.

The decidability of pLGF now follows by the decidability of the monadic
second-order theory of countable trees, which has been established by Rabin
[13]. O

5 Variations

Instead of reducing the satisfiability problem for yLGF to the monadic second-
order theory of trees, we could also define a similar reduction to the p-calculus
with backward modalities and then invoke Vardi’s decidability result for this
logic [16].

Further, the reduction argument can be generalized to provide in fact a re-
duction from a (loosely) guarded variant of second-order logic over structures of
bounded tree width to monadic second-order logic over trees. As a consequence
we obtain the following decidability result.

Theorem 5.1.
For every constant k, the satisfiability problem for loosely guarded second-order
formulae on structures of tree width at most k is decidable.
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