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Abstract

The guarded fragment (GF) was introduced in [1] as a fragment of first order logic
which combines a great expressive power with nice modal behavior. It consists of
relational first order formulas whose quantifiers are relativized by atoms in a certain
way. While GF has been established as a particularly well-behaved fragment of first
order logic in many respects, interpolation fails in restriction to GF, [9]. In this paper
we consider the Beth property of first order logic and show that, despite the failure
of interpolation, it is retained in restriction to GF. The Beth property for GF is here
established on the basis of a limited form of interpolation, which more closely resembles
the interpolation property that is usually studied in modal logics. ¿From this we
obtain that, more specifically, even every n-variable guarded fragment with up to n-
ary relations has the Beth property.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Defining the guarded fragment: Syntax . . . . . . . . . . . . . . . 5
2.2 Semantic characterization of the guarded fragment . . . . . . . . 6

3 Interpolation for the guarded fragment 7

4 The Beth theorem for GF 11

1



1 Introduction

The Guarded Fragment It has proven useful to view modal logics not only
as systems in themselves but also as fragments of first order logic. As is well-
known, the basic modal logic K can be seen as a fragment of first order logic
via the translation t which maps a proposition letter p to the atom Px, which
commutes with the Boolean connectives, and which maps formulas of the form
3ϕ to ∃y(Rxy ∧ ϕt(y)) and 2ϕ to ∀y(Rxy → ϕt(y)). The image of K under
this translation is referred to as the modal fragment. This fragment turns out
to behave excellently. It shares several nice model-theoretic properties with full
first order logic (e.g., interpolation, Beth definability or the  Los-Tarski prop-
erty), and has in addition good algorithmic qualities: it is decidable and every
satisfiable modal formula has a finite model and a tree model (in other words,
the modal fragment has the finite model property and the tree model prop-
erty). Moreover, the decidability of this fragment is robust in the sense that
various extensions remain decidable. For example, adding features like count-
ing quantifiers or fixed points to the modal fragment does not affect decidability.

The usefulness of the modal fragment brought logicians to search for gener-
alizations of this fragment which retain the afore-mentioned nice properties.
An obvious candidate of such a generalization is the two variable fragment of
first order logic, denoted by L2. Although this logic is decidable and has the
finite model property, it does not have interpolation nor the Beth property.
Neither does it have the tree model property, and also its decidability is not as
robust as the modal fragment.

In [1] it is argued that the distinguishing characteristic of the modal frag-
ment is not its restriction to two variables but its restriction on occurrences
of quantifiers (nl. to quantifier patterns ∃y(Rxy ∧ ϕ(y)) or ∀y(Rxy → ϕ(y))).
This brings Andréka, van Benthem and Németi to investigate to what extent
these quantifier restrictions can be loosened while retaining the attractive modal
behavior. The outcome is the guarded fragment (GF) which allows for quantifi-
cations of the form ∃ȳ(Rx̄ȳ ∧ ϕ(x̄, ȳ)) and ∀ȳ(Rx̄ȳ → ϕ(x̄, ȳ)), where x̄, ȳ are
finite sequences of variables in any order or multiplicity and ϕ is a guarded for-
mula containing variables from x̄, ȳ which all appear in the atomic formula Rx̄ȳ.

In [1] this fragment is shown to have the finite model property, the  Los-Tarski
property and, most importantly, to be decidable. Grädel [3] improves on this
result by classifying the satisfiability problem for GF to be complete for deter-
ministic double exponential time; satisfiability for the finite variable guarded
fragments is even in Exptime, in fact Exptime-complete. This is worth comparing
with the satisfiability problem for L2 which is known to be Nexptime-complete
(cf. [5]). What is more, GF has a certain tree model property. Since the tree
model property of the modal fragment can be seen as the main reason behind
the robustness of the decidability of that fragment (cf. e.g., [16]), this gives
hope as to the robustness of GF. And indeed, adding least and greatest fixed
points to GF yields a decidable extension ([6]).
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However, as shown in [9], the interpolation theorem of first order logic fails
for GF. In the present paper it will be shown that GF does have an alternative
interpolation property that closely resembles the interpolation property usually
studied in modal logics. This result turns out to be strong enough to entail the
Beth definability theorem for GF.

The Beth (definability) property In a slogan, the Beth definability prop-
erty states that implicit definability equals explicit definability. Generally, this
property may be regarded as an indication that there is a good balance between
syntax and semantics of a logic: the semantic phenomenon that the meaning
of a basic relation is implicitly determined, guarantees that there is an explicit
syntactic expression for that relation. Let us go somewhat more into this. In-
tuitively, an implicit definition of a relation R is a definition of R (in the sense
that it fixes the interpretation of R) in which the relation symbol R may oc-
cur. For example, consider the conjunction Σ of formulas saying that “< is
an irreflexive linear order”, “there exists a first element and this element has
property R”, and “an element has property R iff its successor does not have
property R”. Note that these statements can be formulated in first order logic
(with equality) using the predicates < and R. It is obvious that on every finite
irreflexive linear order the interpretation of the relation R is fixed. In other
words, on finite models, Σ implicitly defines R. On the other hand, as first
observed by [7], there is no first order formula θ(x) which does not mention R
and which would explicitly define R over the finite models of Σ. I.e., there is
no formula θ(x) using just < such that Σ |= Rx ↔ θ(x) would be true over
all finite models. Obviously, every relation that is explicitly definable is also
implicitly definable. As the above example showed, the converse is in general
not true. However, in the classical context of not necessarily finite models,
implicit definability and explicit definability in first order logic coincide. This
property of first order logic has first been observed by E.W. Beth (see Beth
(1953)). Nowadays, logics for which an analogous statement holds are said to
have the Beth (definability) property. So the above-mentioned example shows
that first order logic restricted to finite models does not have the Beth prop-
erty. Another logic which fails to have this property is L2 (cf. [14]. See also
Remark 4.4). Besides first order logic, logics with the Beth property include
classical (and intuitionistic) propositional calculus, or the modal logics K, K4
and S5.

Note that for GF (and the modal logics), as long as we consider finite set of
sentences Σ it does not make a difference for the Beth property whether we are
in the classical context of not necessarily finite models or regard finite models
only. For, as these logics have the finite model property, a finite set of sentences
Σ implicitly defines a relation over finite models if and only if it does so over
all models. The same for explicit definitions.

Description Logics Description logics were designed for the purpose of knowl-
edge representation. Roughly speaking, a description logic starts from some
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some set of primitive concepts (which are unary predicates) and roles (binary
predicates). The logic then specifies (or defines) complex concepts out of these
primitives and makes assertions about these specifications, mostly in terms of
modally expressible dependencies between concepts via roles. E.g., the logic
can assert that a certain object, or all objects related to it via a designated
role, belongs to a certain concept. Although they originated from entirely dif-
ferent backgrounds, there is a close correspondence between description logics
and modal logics. For example the basic multi-modal logic Kn is nothing but
a syntactic variant of the description logic ALC [15]. Hence the guarded frag-
ment can also be seen as a general framework for description logics, which may
express more than the ordinary modal dependencies. In particular, it may go
beyond the built-in arity restriction of modal logics, so that one can speak of
higher-arity concepts and roles. The interested reader is referred to [4] for a
proposal of GF as a framework for description logic and for further references.
In the description logic context, the Beth property seems particularly desirable
as it guarantees explicit definability of concepts (and roles): e.g., concept speci-
fication in the framework of GF is closed in the sense that any concept that can
implicitly be characterized can actually be defined explicitly within the logic.

Outline of paper Ever since 1956 when W. Craig gave an alternative proof
of the Beth theorem for first order logic via his interpolation theorem, these
two properties are almost always studied simultaneously. This paper forms no
exception. In Section 3 we will prove a certain interpolation property for GF
from which the Beth property for GF will be derived in Section 4. Even better,
both these properties will be shown to hold for each of the the n-variable frag-
ments of GF individually, in the presence of at most n-ary relations. Compared
to results in [14] this shows that guarded finite variable fragments are much
better behaved w.r.t. definability than the full finite variable fragments of first
order logic.

2 Preliminaries

In this section we will collect all the necessary preliminaries. It also serves to
fix notation and terminology.

Convention 2.1 By a language L we will henceforth understand a relational
first order language without function- or constant symbols. Besides variables,
and the parentheses ), (, we consider as logical symbols the connectives ∧, ¬,
the existential quantifier ∃ and the identity symbol =. /

Notation 2.2 Models will be denoted by calligraphic letters like M, N , and
their respective universes by M,N , etc. The interpretation of an n-ary predicate
R in the model M (notation: IM(R)) is defined as usual. Moreover, we will
extend this terminology to sets. That is, for X ⊆M we will write X ∈ IM(R)
if the elements of X are R-related, in any order or multiplicity. E.g., if R
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is ternary and 〈n,m, n〉 ∈ IM(R), then {m,n} ∈ IM(R). For a model M,
〈m1, . . . ,mn〉 ∈ Mn and a formula ϕ with free variables among {v1, . . . , vn},
we will write M |= ϕ[m1, . . . ,mn] iff each assignment which maps vi to mi

satisfies ϕ in M. If Σ is a formula (or a set of formulas) and ψ a formula, then
Σ |= ψ denotes the consequence relation. That is, Σ |= ψ iff any assignment
into a model M which satisfies (all formulas in) Σ also satisfies ψ in M. In
particular, ϕ |= ψ is the same as to say that ϕ → ψ is valid, i.e., |= ϕ → ψ.
For any formula ϕ, by free(ϕ) we denote the set of free variables occurring
in ϕ. By Lϕ (read: the language of ϕ) we denote the set of relation symbols
occurring in ϕ. /

2.1 Defining the guarded fragment: Syntax

Definition 2.3 (Guarded formula) Let L be a language. The atomic L-
formulas (or, L-atoms) are of the usual form:

1. v1 = v2, for variables v1, v2.

2. Pv1 · · · vn, for n-ary P ∈ L, and variables v1, . . . , vn, not necessarily dis-
tinct.

The guarded L-formulas are defined by induction as follows.

1. Any atomic L-formula is a guarded L-formula.

2. If ϕ,ψ are guarded L-formulas, then ϕ∧ψ and ¬ϕ are guarded L-formulas.

3. Let v̄ be a finite, non-empty sequence of variables, ψ a guarded L-formula,
and G an L-atom such that free(ψ) ⊆ free(G). Then ∃v̄(G ∧ ψ) is a
guarded L-formula. In this case, the atom G is called the guard of the
quantifier. /

Note that as a dual of guarded existential quantification we also get guarded
universal quantification, of the form ∀v̄(G→ ψ).

A typical example of a guarded formula is the one expressing symmetry of
a relation: ∀v1v2(Rv1v2→Rv2v1). On the other hand, the formula ∃v2(v1 <
v2∧ψ(v2)∧∀v3[(v1 < v3∧v3 < v2)→ϕ(v3)]) (the translation of the tense logical
formula Until(ϕ,ψ)) is non-guarded, as the guard in the subformula expressing
betweenness (i.e., the formula ∀v3[(v1 < v3 ∧ v3 < v2)→ϕ(v3)]) is not atomic.

Remark 2.4 For readers familiar with [1] we note that contrary to that paper,
Definition 2.3 allows for identity atoms as guards. Since this issue does not affect
decidability nor interpolation, we decided to concentrate on this slightly more
general fragment. This also places us in line with [3]. /

Guarded formulas are obviously first order formulas. The fragment of first order
logic consisting of guarded formulas is aptly called the guarded fragment
(GF). We understand by GFn, n ∈ ω, the fragment of GF that consists of
formulas whose variables (free or bound) are among v1, . . . , vn. The collection
of formulas in GFn which are built up from at most k-ary relation symbols will
be denoted by GFkn.
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2.2 Semantic characterization of the guarded fragment

Similar to modal logics, the guarded fragment can be semantically analyzed
via a suitable notion of bisimulation. This has been done in [1]. Here we will
recapitulate as much of these results as needed for the purposes of the present
paper.

Definition 2.5 (live set) Let Z be a finite subset of a model M. The set Z
is called live in M if Z is either a singleton, or there exists a relation R and
a set X such that Z ⊆ X ∈ IM(R). In this case we will say that Z is R-live
(in M). For any language L we use the notation Z ⊆lL M to denote that Z
is L-live in M. That is, Z is R-live in M for some R ∈ L. We will omit the
subscript L if it does not cause confusion. /

Note that by definition subsets of live sets are again live.

Below, by a partial L-isomorphism we mean a finite one-to-one partial map
between two models which preserves the relations in L both ways. By the
image of a map f : X −→ Y we understand the set {f(x) : x ∈ X}.

Definition 2.6 (Guarded bisimulation) Let L be a language. A guarded
L-bisimulation between two models M and N is a non-empty set F of finite
partial L-isomorphisms between M and N such that for any f : X −→ Y ∈ F
the following holds:

1. For any Z ⊆lL M there is a g ∈ F with domain Z such that g and f agree
on the intersection of their domains. (The zig-condition)

2. For any W ⊆lL N there is a g ∈ F with image W such that g−1 and f−1

agree on the intersection of their domains. (The zag-condition) /

Guarded bisimulations are defined in such a way as to preserve guarded for-
mulas. That is, for every guarded L-formula ϕ with free variables among
{v1, . . . , vk}, every guarded L-bisimulation F between models M, N , every
f ∈ F and every 〈m1, . . . ,mk〉 ∈ dom(f)k,

M |= ϕ[m1, . . . ,mk] ⇔ N |= ϕ[f(m1), . . . , f(mk)].

This can be shown by a straightforward induction on the complexity of ϕ.
The zig- and zag-conditions take precisely care of the induction step for the
existential quantifier. Indeed, preservation under guarded bisimulations is the
characteristic feature of GF, in the sense of the following Characterization The-
orem from [1]: up to logical equivalence, GF precisely consists of those first
order formulas that are preserved under guarded bisimulations.

Note that in the definition of a guarded bisimulation that can be found in [1],
the above role of live sets is taken over by what ABN call guarded sets. These
are subsets Z of a modelM such that Z ∈ IM(R), for some relation R. Mutatis
mutandis, all arguments in [1] and in particular the characterization theorem
also apply to guarded formulas and guarded bisimulations as defined in this
paper. Note e.g., that a guarded formula of the form ∃v(v = v ∧ ¬Pv) which
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is not guarded in the ABN-sense, is preserved under guarded bisimulations in
our sense by virtue of the fact that singletons are live.

In the remaining of this section we will dirty our hands on some formalization
which paves the way for the proof of Theorem 4.1. Let R be a relation. We will
construct a guarded formula λR(v1, . . . , vl) in the language {R} which defines
the set of R-live l-tuples. That is, for all models M and 〈m1, . . . ,ml〉 ∈ M l:
M |= λR[m1, . . . ,ml] iff the set {m1, . . . ,ml} is R-live in M.

Let s be the arity of R. Let e range over all complete equality types in
variables v1, . . . , vl. We regard e both as a quantifier-free formula e(v1, . . . , vl)
in the empty vocabulary and as an equivalence relation on the set {1, . . . , l}
according to (j, i) ∈ e iff e |= vj = vi. Let ρ: {1, . . . , s} → {1, . . . , l + s} be a
mapping that is onto {1, . . . , l}/e, i.e., for every j ∈ {1, . . . , l} there is some
i ∈ {1, . . . , s} such that ρ(i) is in the same e equivalence class with j. Put, for
any such pair of e and ρ,

γe,ρ = e(v1, . . . , vl) ∧ ∃v̄(Rvρ(1) . . . vρ(s) ∧ true),

where v̄ consist of those vρ(i) for which ρ(i) > l (if there are such; else no
quantification is necessary and γe,ρ is actually atomic). The desired formula
λR(v1, . . . , vl) is obtained as the disjunction over all γe,ρ for matching pairs
(e, ρ).

For any finite language L we further obtain a formula λL(v1, . . . , vl) defining
the set of L-live l-tuples by putting

λL(v1, . . . , vl) =(
∧

1≤i,j≤l
vi = vj) ∨

∨

R∈L
λR(v1, . . . , vl),

where the first disjunct reflects the fact that all singleton sets are regarded as
live (namely, as guarded by equality).

We finally note that ∃v̄(Rvρ(1) . . . vρ(s) ∧ true), can be rewritten in at most
s variables. Hence γe,ρ is equivalent to a formula in GFmax(l,k). We conclude
that for every finite language L which contains at most k-ary relations and any
l ≤ k, we may assume λL(v1, . . . , vl) ∈ GFkk.

3 Interpolation for the guarded fragment

As shown in [9], GF does not have the interpolation property.

THEOREM 3.1 (Failure of interpolation in GF) There exist sentences ϕ,
ψ ∈ GF3

3 such that |= ϕ → ψ, for which there does not exist a guarded inter-
polant (in any number of variables). That is, there does not exist a guarded
formula ϑ built up from relation symbols which occur both in ϕ and ψ such that
|= ϕ→ ϑ and |= ϑ→ ψ.

To see why this property fails for GF, it is useful to compare it to the interpo-
lation property studied in modal logic. In modal logic, the interpolant is usu-
ally confined to proposition letters in the common language but may however
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contain non-shared modalities. Strengthening the requirement on the com-
mon language to also include common modalities results in a much stronger
interpolation property. [2] shows this property for the basic multi-modal K.
[10] generalizes this result to Sahlqvist axiomatizable multi-modal logics whose
axioms correspond to universal Horn frame conditions which do not specify
any interaction between the different accessibility relations (e.g., bi-modal S5).
When we have interaction, the stronger interpolation property is easily lost as
the following example from [2] shows. Consider the multi-modal logic defined
by the axiom 31p →32p. This logic does not have the stronger interpolation
property. For, in this logic 31True → 32True is a theorem whereas the only
formulas in the common language (in the strong sense) are True and False,
which are obviously not interpolants. However, this logic does have the usual
interpolation property (cf. [11, Corollary B.4.1]).

Thinking of guarded formulas as translations of modal formulas, we see that
Theorem 3.1 formulates exactly this strong version of interpolation, where ‘com-
mon language’ means the set of common relation symbols which includes both
the relations which are translated proposition letters, and the relations that are
obtained in translating the modalities. This suggests to consider an alternative
interpolation property for GF that more closely resembles the one that is usu-
ally studied in modal logic. For this we will distinguish occurrences of relation
symbols as guards from other occurrences.

Notation 3.2 For any guarded formula ϕ we understand by LG(ϕ) the set of
relations that occur in ϕ as the guard of some quantifier. /

Note that the relations in LG(ϕ) may at the same time occur in ϕ at non-guard
positions. For example, in ϕ = ∃x(Px∧ ∀y(Sxy→Py)), the relation P occurs
both as a guard and as a non-guard.

Definition 3.3 (Guarded L1/L2-bisimulation) Let L1 ⊆ L2 be languages.
A guarded L1/L2-bisimulation between models M and N is defined as a
non-empty set of finite partial L2-isomorphisms between M,N with zig- and
zag- condition stipulated for L1-live sets only. /

This type of bisimulation supports a characterization theorem for that fragment
of GF in which only L1-predicates may be used as guards, but all predicates
in L1 and L2 may occur at non-guard positions. Analogously to the character-
ization theorem for GF, the following characterization can be shown, using [9,
Proposition 3.11].

PROPOSITION 3.4 Let L1 ⊆ L2 be languages which contain at most k-
ary relation symbols. A first order sentence ϕ is preserved under guarded
L1/L2-bisimulations iff ϕ is logically equivalent to an L2-sentence ψ ∈ GFkk
with LG(ψ) ⊆ L1.

8



Notation 3.5 Let L be a language. For modelsM,N and 〈m1, . . . ,mk〉 ∈Mk,
〈n1, . . . , nk〉 ∈ Nk, we write

M,m1 · · ·mk ≡GFkL N , n1 · · ·nk
if for any L-formula θ in GFk, M |= θ[m1, . . . ,mk] iff N |= θ[n1, . . . , nk]. /

Recall that for any formula ϑ, by Lϑ we denote the language consisting of all
the relation symbols occurring in ϑ. The theorem below states that GFkk (and
hence GF) has interpolation provided an interpolant for ϕ → ψ is allowed to
contain relations in LG(ϕ) and LG(ψ) which are not necessarily in the common
language. Modally speaking, an interpolant may contain non-shared modalities.

THEOREM 3.6 (GFkk has interpolation w.r.t. non-guard occurrences)
Let k ∈ ω. For any ϕ,ψ ∈ GFkk such that |= ϕ → ψ, there exists a ϑ ∈ GFkk
such that

1. Lϑ ⊆ (Lϕ ∩ Lψ) ∪ LG(ϕ) ∪ LG(ψ), and

2. |= ϕ→ ϑ and |= ϑ→ ψ .

Proof of Theorem 3.6: We will show ‘amalgamation via bisimulation’ in the
same spirit as e.g., the proof of interpolation for the basic modal logic K in [1,
Theorem 2.5]. Its main construction is a deviation of a fairly standard amalga-
mation method as can be found in e.g., [12] and [13].

For the course of this proof, let k ∈ ω be fixed but arbitrary. Consider ϕ,ψ ∈
GFkk such that |= ϕ → ψ. For brevity, write L for (Lϕ ∩ Lψ) ∪ LG(ϕ) ∪ LG(ψ).
Let

Θ def= {ϑ ∈ GFk : Lϑ ⊆ L & |= ϕ→ ϑ}.
Our aim is to show that

Claim 3.7 Θ |= ψ.

By compactness, it follows from this claim that ψ is implied by some finite
conjunction ϑ of formulas in Θ. Note that ϑ is again an L-formula in GFkk.
Hence ϑ is an interpolant for ϕ, ψ, and we are done.

To prove Claim 3.7, consider an Lψ ∪ LG(ϕ)-model N , and 〈b1, . . . , bk〉 ∈ Nk

such that N |= ϑ[b1, . . . , bk], for every ϑ ∈ Θ. Our task is to show that
N |= ψ[b1, . . . , bk].

We first note that there exists some Lϕ∪LG(ψ)-model M and 〈a1, . . . , ak〉 ∈Mk

such that

M |= ϕ[a1, . . . , ak], and M, a1 · · · ak ≡GFkL N , b1 · · · bk.
For, reasoning to contraposition, assume such M, 〈a1, . . . , ak〉 do not exist. In
that case, Φ def= {ϑ ∈ GFk : Lϑ ⊆ L & N |= ϑ[b1, . . . , bk]} |= ¬ϕ. By compact-
ness it follows that |= ϕ → ¬∧

Φ0, for some finite conjunction of formulas in
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Φ. Therefore ¬∧
Φ0 ∈ Θ, whence N |= ¬∧

Φ0[b1, . . . , bk]. Quod non.

By passing to ω-saturated elementary extensions of M and N , we may assume
w.l.o.g. M, N to be ω-saturated. As shown in the proof of the Characterization
Theorem for GF in [1, Theorem 4.2.2], the relation of guarded L-equivalence
between ω-saturated structures induces a guarded L-bisimulation. The same
is true for the relation of ≡GFkL if L contains at most k-ary relations. Hence
our assumption in particular implies the existence of a guarded L-bisimulation
between M, N which links 〈a1, . . . , ak〉 and 〈b1, . . . , bk〉.

The aim of the rest of this proof is to amalgamate the models M and N in such
a way that we can define guarded LG(ϕ)/Lϕ- (resp. LG(ψ)/Lψ-) bisimulations
from the amalgamated model to M (resp. N ) which, when composed, will map
〈a1, . . . , ak〉 to 〈b1, . . . , bk〉. Chasing the resulting diagram and using the fact
that ϕ |= ψ will yield the desired conclusion that N |= ψ[b1, . . . , bk]. This will
be made precise in the sequel.

Begin Construction Model
We will define a model over the set MN consisting of pairs 〈m,n〉 ∈ M ×
N whose components can not be distinguished by L-formulas in GFk. The
interpretation of the predicates will be read of coordinatewise. More precisely,

• MN
def= {〈m,n〉 ∈M ×N : M,m ≡GFkL N , n}.

• For l-ary R ∈ Lϕ, set 〈〈m1, n1〉, . . . , 〈ml, nl〉〉 ∈ IMN (R) iff

– M,m1 · · ·ml ≡GFkL N , n1 · · ·nl,
(i.e., mi, ni, i = 1, . . . , l, are not only pairwise equivalent but jointly
so), and

– 〈m1, . . . ,ml〉 ∈ IM(R).

• The interpretation of relations in Lψ is defined similarly.

End Construction Model

Note that the interpretation of relations in the common language is well-defined
thanks to the requirement on live subsets of MN to be jointly L-equivalent.
The upshot of amalgamating our models into a product is that we can take pro-
jection functions as building blocks for the desired bisimulations. This is the
purport of the following lemma, where πi, i = 1, 2, denotes the projection func-
tion to the i-th coordinate, and the k-tuples 〈a1, . . . , ak〉 ∈ Mk, 〈b1, . . . , bk〉 ∈
Nk are the ones picked at the very beginning of this proof.

LEMMA 3.8 (Amalgamation lemma) The set Fπ1 defined by Fπ1

def= {π1 :
X −→ Y : X ⊆lLG(ϕ)

MN or X = {〈a1, b1〉, . . . , 〈ak, bk〉}}, is a guarded

LG(ϕ)/Lϕ-bisimulation between MN and M. The analogously defined set Fπ2

is a guarded LG(ψ)/Lψ-bisimulation between MN and N .

Before proving the above lemma, let us first demonstrate its use and finish the
proof of Claim 3.7. Recall that the model M and the sequence 〈a1, . . . , ak〉 ∈
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Mk were chosen in such a way that M |= ϕ[a1, . . . , ak]. We took care to
include π1 : {〈a1, b1〉, . . . , 〈ak, bk〉} −→ {a1, . . . , ak} in Fπ1 . Since ϕ is invari-
ant under guarded LG(ϕ)/Lϕ-bisimulations, it follows from the amalgamation
lemma that MN |= ϕ[〈a1, bk〉, . . . , 〈ak, bk〉]. By assumption, then MN |=
ψ[〈a1, b1〉, . . . , 〈ak, bk〉]. Since π2 : {〈a1, b1〉, . . . , 〈ak, bk〉} −→ {b1, . . . , bk} is in
Fπ2 , the second part of the amalgamation lemma allows us to conclude that
N |= ψ[b1, . . . , bk].
Q.E.D. Claim 3.7.

Now we turn to the proof of the amalgamation lemma.

Proof of Lemma 3.8: We will prove the first part of the lemma concerning
Fπ1 . The second statement about Fπ2 can be shown similarly.

Fπ1 is obviously non-empty. Let π1 : X −→ Y ∈ Fπ1 . Then X =
{x1, . . . , xl}, for some l ≤ k, and M, π1(x1) · · · π1(xl) ≡GFkL N , π2(x1) · · · π2(xl).
By construction this implies that for n-ary R ∈ Lϕ, and 〈x1, . . . , xn〉 ∈ Xn it
is the case that 〈x1, . . . , xn〉 ∈ IMN (R) iff 〈π1(x1), . . . , π1(xn)〉 ∈ IM(R). In
other words, π1 is a partial Lϕ-isomorphism.

For the zag-condition, consider π1 : X −→ Y ∈ Fπ1, and W ⊆lR M, for some
R ∈ LG(ϕ). Again, X = {x1, . . . , xl}, for some l ≤ k, and M, π1(x1) · · · π1(xl)
≡GFkL N , π2(x1) · · · π2(xl). Recall that the relation ≡GFkL forms a guarded L-
bisimulation between M and N . The above equivalence states that the partial
map f from M to N which maps π1(x) to π2(x), for any x ∈ X, is an element
of this bisimulation. By the zig-condition, there exists a partial L-isomorphism
g in this bisimulation with domain W which agrees with f on the intersection
of their domains. Let W ∗ = {〈w, g(w)〉 : w ∈ W} ⊆lR MN . Then W ∗ is
the desired pre-image for W . As the zig-condition is trivially fulfilled, this
completes the proof.
Q.E.D. Lemma 3.8.
Q.E.D. Theorem 3.6.

Corollary 3.9 GF has interpolation w.r.t. non-guard occurrences.

4 The Beth theorem for GF

In general, an important reason to investigate the interpolation property is that
it can be seen as an intermediate stage in proving the Beth definability theorem.
It will be shown that the limited form of interpolation expressed in Theorem 3.6
still serves this purpose for GF.

Let L0 be a language and R and R′ distinct relation symbols of the same arity
that are not in L0. Let L = L0 ∪ {R}. Let Σ be a set of guarded sentences in
the language L, and let Σ′ denote the result of renaming R to R′ in Σ.

THEOREM 4.1 (Beth Theorem for GFkk) Let L0, L, R, R′, Σ and Σ′ be
as above. Let k ∈ ω be such that Σ ∪ {Rv̄} ⊆ GFkk. If Σ implicitly defines R,
i.e., if
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Σ,Σ′ |= ∀v̄(Rv̄ ↔ R′v̄),

then there exists some formula ϕ(v̄) ∈ GFkk in the language L0 such that

Σ |= ∀v̄(Rv̄ ↔ ϕ(v̄)),

i.e., ϕ is an explicit definition for R relative to Σ.

Proof of Theorem 4.1: Let all data be as in theorem, and assume that

Σ,Σ′ |= ∀v̄(Rv̄ ↔ R′v̄). (1)

We will first show that this assumption enables us to conclude that any R-live
set in a model for Σ is L0-live, i.e., P -live for some P ∈ L0.

Claim 4.2 Assume (1). Let M be a model of Σ, and let Y ⊆lR M. Then
Y ⊆lL0

M.

Proof of Claim 4.2: Assume (1). Let M be a model of Σ, and let Y0 ⊆lR M.
Reasoning to contraposition, suppose Y0 6⊆lL0

M. We will derive a contradiction
from this.

Let 2 denote the two-element universal L-model with domain {0, 1}. That is,
s̄ ∈ I2(P ), for every l-ary P ∈ L and every s̄ ∈ {0, 1}l . Let M×2 denote
the usual product model. Writing π1 for the projection on the first coordinate,
this definition entails that s̄ ∈ IM×2(P ) iff 〈π1(s1), . . . , π1(sl)〉 ∈ IM(P ), for
s̄ ∈ (M×{0, 1})l and l-ary P ∈ L. As the reader can easily verify, this in its turn
implies that F1

def= {π1 : X −→ Y : X ⊆lL M× 2} is a guarded L-bisimulation
between M×2 and M. Since M |= Σ, we conclude that M×2 |= Σ.

Our aim is to modify the interpretation of R on M×2 in such a way that
the resulting structure is again a model for Σ, contradicting the fact that Σ
implicitly defines R. For this, we pick some X0 ⊆ (M × {0, 1}) for which
π1[X0] = Y0. Consider the model (M×2)′ on the set (M × {0, 1}) which dif-
fers from M×2 only in the respect that X0 6∈ I(M×2)′(R). We claim that
F ′

1
def= {π1 : X −→ Y : X ⊆lL (M×2)′} is a guarded L-bisimulation between

(M×2)′ and M.

F ′
1 is certainly not empty. Consider some π1 : X −→ Y in F ′

1. If X0 6⊆ X,
then L-relations are obviously preserved by π1 in both ways. But we changed
the interpretation of R such that X0 is not R-live in (M×2)′. As Y0 is not L0-
live, it follows that X0 is not L0-live in (M×2)′ either, and hence no superset
of X0 is the domain of some π1 ∈ F ′

1.
The zig-condition needs no comment. For the zag-condition, consider some

π1 : X −→ Y in F ′
1, and W ⊆lL M. If W ⊆ Y , the condition is trivially fulfilled.

If not, then π−1
1 [Y ∩W ] can be extended in at least two ways to a set Z for
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which π1[Z] = W . For W 6= Y0, either one of these two extensions constitutes
the domain of a projection in F ′

1 fulfilling the zag condition for π1,W . For
W = Y0 any extension other than X0 can be taken as such.

This shows that (M×2)′ |= Σ. Summarizing, M×2 |= Σ, (M×2)′ |= Σ but
IM×2(R) 6= I(M×2)′(R). This contradicts the fact that Σ implicitly defines
R. We conclude that Y0 is indeed L0-live, as was to be shown.
Q.E.D. Claim 4.2.

By compactness we may assume Σ to be a single formula, and L0 finite. Assume
R to be l-ary, and let v̄ = 〈v1, . . . , vl〉. Let λ0(v̄) be the canonical L0-formula
in GFkk saying that the set {v1, . . . , vl} is L0-live (cf. page 7). For all L-models
M we define R0

def= {m̄ ∈M l : M |= Rv̄ ∧ λ0(v̄)[m̄]}. Note that by Claim 4.2,
IM(R) = R0, for models M of Σ. Let Σ0 be the result of replacing in Σ any
occurrence of Rv̄ by the conjunction λ0(v̄) ∧ R(v̄). In other words, Σ0 is the
canonical set of formulas which asserts that Σ holds of R0 (rather than R itself).
It is now straightforward to check the following:

(i) Σ0 is preserved under guarded L0/L-bisimulations. Hence, by Proposi-
tion 3.4, Σ0 is equivalent to an L-formula Γ in GFkk with LG(Γ) ⊆ L0.

(ii) Σ |= Σ0, by Claim 4.2.
(iii) For every L0-model M, and every interpretation of R in M: if (M, R) |=

Σ0, then (M, R0) |= Σ.

Let Σ′
0 be the result of replacing R by R′ in Σ0. It follows from (1) and (iii)

that
Σ0 ∧ λ0(v̄) ∧Rv̄ |= Σ′

0 → R′v̄. (2)

For, consider an L0 ∪ {R,R′}-model (M, R,R′) and some m̄ ∈ M l such that
(M, R,R′) |= Σ0 ∧ λ0(v̄) ∧ Rv̄ ∧ Σ′

0[m̄]. We have to show that (M, R,R′) |=
R′v̄[m̄]. It follows from (iii) that (M, R0, R

′
0) |= Σ ∧ Rv̄ ∧ Σ′[m̄]. By (1), then

(M, R0, R
′
0) |= R′v̄[m̄]. Hence certainly, (M, R,R′) |= R′v̄[m̄].

Replace Σ0 and Σ′
0 in (2) by L0-guarded formulae Γ and Γ′ according to (i). We

then may apply Theorem 3.6 to obtain, as an interpolant for (2), a formula ϑ(v̄)
in GFkk such that Lϑ ⊆ L0 and Σ0 ∧ λ0(v̄) ∧Rv̄ |= ϑ(v̄) and ϑ(v̄) |= Σ′

0 → R′v̄.
Applying (ii) and Claim 4.2, we find that Σ ∧ Rv̄ |= ϑ(v̄). Renaming R′ back
into R in the second implication and one more appeal to (ii) gives us that
ϑ(v̄) |= Σ → Rv̄. Hence Σ |= Rv̄ ↔ ϑ(v̄) and ϑ provides the desired explicit
definition of R relative to Σ. Q.E.D. Theorem 4.1.

Corollary 4.3 GF has the Beth definability theorem.

Remark 4.4 Theorem 4.1 shows that guarded finite variable fragments behave
much nicer w.r.t. definability than the full finite variable fragments of first order
logic (FO). For not only does the Beth theorem fail for any n-variable fragment
of FO, n ≥ 2, it fails drastically. Even FO2

2 (using the terminology FOk
n for

fragments of FO similar to our use of GFkn for guarded fragments) does not
have the Beth property. For more information, the reader is referred to [14] or
[8]. /
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