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Abstract

Modeling human reasoning requires representation of underspecified information,
i.e., information which cannot precisely be specified by a single logical description.
The question arises what the underlying logic is of multiple logical interpretations.
Power logics! But how? I discuss and investigate different possibilities (happy ending
included).

Contents

1 Introduction 2
2 Quantified power logics 3
3 Partial power logics 4
4 Conclusions and reflections 6



1 Introduction

The interpretation of human reasoning requires representation of information
which may have no precise logical meaning. Many formalisms in artificial intelli-
gence and linguistics “postpone” this problem by using an interlingua between
the actual information and its logical interpretation. The inevitable conse-
quence of this approach in combination of the expressivity of human reasoning
is that such theories focus merely on the representation task and how we can
resolve the different possible logical readings once such representation has been
stipulated.

JFrom the logical point of view the question arises how we can define in-
ferential structure for such representation languages, which would reflect the
reasoning of agents accustomed to underspecified information. A first step to-
wards the implementation of such logical structure is to find an appropriate
setting for reasoning with multiple propositions, i.e., a logical structure over
the powerset of standard logical languages: power logics. In this essay we in-
vestigate such logics without incorporating representation languages.

Minimal desiderata What are the properties which we may expect from a
power logic representing the reading sets of underspecified information? The
most obvious requirement is that a power logic restricted to singletons should
be the same as the base logic that we impose the power construction on. More-
over, a power logic should preserve the basic structure of the base logic, i.e.,
the general rules of the base logic which do not depend on specific syntactic
constructions.

But which properties should we hold on to when we consider the additional
structure of sets that we obtain by the power construction? A simple require-
ment is that if we have a disjunction V in the base logic available, and ¢ and
1 are two formulas of this languages, then {p,¥} = {¢ V ¢} should at least
be valid. The converse of this property is certainly something unwanted, and
shows that defining underspecification as a disjunction of readings is not cor-
rect. On the other hand, the conjunction of readings of an expression should
be sufficient to derive the set of readings.

These two properties for sets of formulas can be described without connec-
tives by means of the following rules:
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OFdUV PUVEO

We call them ambiguation rules, since in the conclusion sets are extended.

Conventions A serious limitation in this essay, is that we only show logics for
the finite part of power logics, i.e., the logic of finite sets of formulas (fsfs). The
reason is merely technical, since the inheritance of metatheoretical properties
depends on this restriction.

In the remainder of this essay we use the following notation. Roman capitals
A, B, ... printed in boldface represent sets of fsfs, Greek capitals ¢,V , 0, ...



represent fsfs, and small Greek letters o, ), ... represent formulas of the base
logic.

We presume that the base logic has a well-defined semantics, and a standard
Tarskian notion of validity. For every formula ¢ there exists a class of models
[¢], and ¢ = 9 whenever [p] C [¢], with a standard generalization for sets
of formulae I' = A iff N, cp[v] € Useald]. Moreover, we assume that the
base logic has a complete Gentzen style axiomatization B: ® Fg W iff ¢ = W.
Furthermore, we only accept base logics which contains the normal structural
rules.

The first two desiderata mentioned above, entails that a power logic in-
herits the base logic for singletons and contains the normal structural rules as
displayed in Table 1.

2 Quantified power logics

A quantified power logic is a logic whose entailment is defined by the quan-
tity of individual entailments between the readings sets of ambiguous premise
and conclusion.! The safest and most simple candidate is to take this quantity
universal: ® |y W iff Vo € ®Vy) € W : ¢ |= 1. This logic can be completely
axiomatized (given the completeness of the underlying logic) by means of the
ambiguation rules as given in Section 1. The problem is that one important
structural rule is lost: START, that is, the logic is no longer reflexive: ® &y ®.

Structural quantified power logics Quantified power logics which preserve
structural rules can be obtained by mixing universal and existantial quan-
tification. Such powerlifting techniques originate from domain theory, where
power constructions are used as a semantics of nondeterministic computation.
The three important definitions are the so-called Hoare-, Smythe- and Plotkin-
construction. In Table 2 complete axiomatizations are given for those structural
power logics.

Implementation of the first would take a conclusion to be valid if for every
reading of the premises a reading of the conclusion can be given such that it
holds in the base logic: ® =g WV iff Vo € &3¢ € W : ¢ = . This logic is
structural and obeys the ambiguation rules. But, it is too strong, we obtain an
additional extension rule for conclusions: ® Fg ¥V = & g W U V. This rule

IFor a systematic linguistic discussion of these quantified logics, see [3].
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Table 1: Standard rules for power logics



is intuitively incorrect since W U W’ is less stable as a conclusion then W. For
example, {90} Fu {9071!)}

The Smythe construction is defined by switching conclusion and premise in
the Hoare construction. Every reading of the conclusion is entailed by some
reading of the premise. Again we obtain all the minimal desiderata, but in this
case we have free extensions of sets on the premise side: ® Fg V = dU®' g W,
which is again too strong.

The most interesting is the Plotkin construction, the conjunction of the two
others. Again it meets our minimal desiderata, but still we get more than we
want: ®Fp V & &' Fp V' = dUD Fp WUV, But does it hurt? Yes, it does:
the left hand side may mean something in ® and the right hand side may mean
something in V', and therefore could be incorrect.

Completeness of the quantified power logics The quantified power logics
are very closely connected to their base logics. If the base logic is complete, then
addition of the structural rules and the rules given in Table 2 yield complete
axiomatization for these different definitions of power entailment.

As an illustration, consider P, and say that ® =p W, which means, in
combination with the completeness of the base logic, that for all p € ® and
1 € W there exists ¢’ € ® and 1)’ € W such that {¢} Fp {¢'} and {¢'} Fp {9}
From the former, by a number (#®) of applications of the rule LR-AMB, we
derive ® Fp W’ for some subset W’ of W, while from the latter we obtain in the
same manner ¢’ Fp WV for certain ¢’ C ®. Yet a final application of LR-AMB of
these two results establishes ® Fp V.

3 Partial power logics

Another approach to settle a notion of valid reasoning over sets of readings is to
assign meaning (models) to such sets in a partial fashion,?. If the members of
a set agree on truth-values with respect to a given model, we assign this value

2For an extensive discussion on the use of partial logic in the context of representation of

underspecified information, see [10]. The partial evaluation chosen here originates from [1].
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Table 2: Additional rules for structural quantified power logics
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Table 3: Additional rules for the double barreled power logic Q2

to the full set:[®] = M,colp]. A straightforward copy of standard entailment
([®] C [V]) would then treat a set of readings as their conjunction.

Double barreled power logic In order to circumvent this problem we need
to strengthen the entailment relation. A possible candidate is to consider the
negative interpretation of a fsf ¢ as well, that is, the models which do not
support any of its readings: [®]™ = N, ce (], with [p]~ being the complement
of [p]. A standard strengthening of straight entailment of partial logic is the
double barreled entailment. In sequential format this entailment relation looks
as follows.

ABe (O1C (JWand (v [Je]

dcA veB veB dcA

The logic satisfies the minimal desiderata and violates the extension rules which
we have seen for quantified power logics.® But again, we need additional
strength. In this case not only logical rules have to be added, but also ad-
ditional expressivity is needed: negative interpretation in the double barreled
definition requires explicit syntactic means to establish completeness. If we
define [-®] = [®]~ and [-®]~ = [®],* then a complete calculus, Q2, can be
obtained by means of the rules in Table 3 together with the rules of the logic
P.

Besides the earlier obligation against the rule LR AMB, LR — is also prob-
lematic. One can derive from this rules that ® U —® Fq2 V U —WV, which
represents the fact that every expression with mutually contradictory readings,
entails every other expression of this form.

On the other hand, negative interpretation cannot be used as a plain nega-
tion, since ® UV, —® /g2 V. In other words, the status of negative interpreta-
tion, dominantly present in the calculus, is pretty unclear.

Context-dependent partial power logics The double barreled technique
is not needed if we take the interpretation of underspecified information to be
context-sensitive. Instead of taking all readings into account we use situations
or contexts in which certain readings may be eliminated.®

3For an extensive survey on double barreled power logic, see [4].

1 Additional to this interpretation we need to specify the meaning of U again: [® U W] =
[®]N[V] and [®UW]™ = [®]” N[W]~. This means that U coincides with Blamey’s interjunction
in partial logic [2].

5The difference with the definition of stage in [6] is that here only disambiguation is context-
dependent. In [0] also entailment is taken to be context-sensitive. The original idea to define
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Table 4: Ambiguation rules for singletons

A partial disambiguation is a function d from fsfs to fsfs such that d(®) C ¢
and d(®) = 0 if and only if ® = () for all fsfs ®. The relative interpretation
[®] of a fsf & is {(M,d) | M € [p] for all ¢ € d(P)}. The standard notion of
entailment yields a logic Q whose additional rules are displayed in Table 4. It
comes quite close to the minimal requirements of Section 1. The ambiguation
rules are not universally valid, but hold for ambiguation of singletons.

It is not very hard to find appropriate restrictions on the class of partial
disambiguations to regain the ambiguation rules, without getting additional
unwanted rules.

A partial disambiguation d is called left-monotonic iff d(®) C d(® U V) or
d(V) C d(® U V) for all fsfs & and W. A partial disambiguation d is right-
monotonic iff d(® U W) C d(P) U d(V) for all fsfs & and V. Left-monotonicity
can be axiomatized by adding L-AMB to the system above, whereas right-
monotonicity corresponds in the same manner to R-AMB. Moreover, the com-
bination of the two gives a logic which exactly corresponds to the logic of
Section 1.

The requirements of monotonicity are quite intuitive. They represent struc-
ture on the process of getting more certain about the meaning of an ambiguous
expression. The left variant tells us that if we seperate two reading sets that
at least one of these sets should count as a further specification. Right mono-
tonicity says that if an expression is partially disambiguated then the result is
better (or the same) as when partial disambiguation takes place after the ex-
pression has been assigned two possible readings in the original language with
ambiguous information.’

4 Conclusions and reflections

Starting from ordinary logic, the first step towards direct deduction on under-
specified information requires logics for sets of formulas. In this short survey we
have shown how a minimal calculus can be defined for a power logic which con-
tains ordinary structural rules, straightforward ambiguation rules, and which is
completeness preserving when we combine it with the base logic as the logic of
the singletons of the power logic.

It may be argued that an underspecification representation language not
always have full expressivity over finite sets. Nevertheless, it can be proven

entailment relative to disambiguation stems from [11].
SIn [8] the reader finds some additional strengthenings of partial disambiguations and
corresponding rules. The completeness proof for these calculi and Q2 can be found there.



that most of the results can be obtained for any such language describing a
limited range of finite reading sets [7].

Recently, different authors have suggested to use a ‘double logical’ approach
to underspecification (see for example [9], this volume). In this approach the
specifications of the base logic are the models of the underspecified descriptions.
The U-rules in this survey correspond to the rules for a disjunction in the
underspecification language. If such a disjunction is not present we need to use
the techniques as explained in [7].

Additional structure on partial disambiguations may be used for interpreta-
tion of more informative underspecification representations. A very interesting
enrichment is preferential structure [5], that is ordered sets of readings rather
than plain sets. Yet another important enrichment is to consider the process of
increasing disambigation by distinguishing states with an associated partial dis-
ambiguation. An approach which would bring us into the direction of dynamic
power logics. Last but not least, additional epistemic structure is an impor-
tant direction. In the setting of the logic Q, partial disambiguations represent
states of knowledge, but evaluation is still related to a total outer world, while
permission of uncertainty on this level, for example, by introducing multiple
possible worlds, may lead to more ‘realistic’ logics.
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