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1 Introduction

The aim of this paper is twofold: In the first place we present a partial and
heterogeneous mirror for modality which serves to build a modal predicate
partial logic; in the second place, we propose a general method to redesign a
logic.

In both cases the starting point is a logic non totally developed or accepted,
which we call here a prelogic. From a complete analysis of this prelogic, we build
a possibly partial and heterogeneous logic which serves as the underlying logic
of the whole construction to be carried out afterwards. For the predicate modal
logic ML (as presented in [2]), the logic we build is PHL, a fashionable mirror
where ML is reflected1. In this logic the implicit partiallity of ML is made
explicit, with a complete set of partial connectives and suitable quantifiers.
Moreover, modality is washed out, heterogeneous quantification used for the
purpose. We also provide some broad guidelines to build the appropriate PHL
for any prelogic XL.

Once we have our partial and heterogeneous logic, PHL, we should define
a translation of formulas of the original logic into PHL and a conversion of
structures of the original logic into the partial and heterogeneous structures 2.
As a result of this process, we obtain a theory in PHL representing the original
logic. In the case of predicate modal logic this is the theory ∆, while for the
general case we provide some goals in the form of theorems we will need in
further stages.

Provided we have a representation theorem, we easily obtain the enumerabil-
ity theorem for the logic being studied and the possibility of using the deductive
machinery of the underlying logic. In case you can represent in PHL not only
validity, but also consequence, compactness and Löwenheim theorems can be
dragged out from PHL to the original logic.

In correspondence theory, where the logics we study are well equipped, with
a proper semantics, this is the end of the story. But in our case we use the
mirror image to build an improved logic in the real world. This has been done
for predicate modal logic, obtaining PML; i.e., a modal logic where partiality is
proper. In the general case, some goals are provided to guide the construction.

2 Predicate Modal Logic (ML) as a Prelogic.

A prelogic is a non totally defined or accepted logic. There are many reasons for
regarding predicate modal logic as a prelogic. First of all, although the seman-
tics of propositional modal logic has been known and accepted since Kripke, the
suitable semantics for the predicate case is still an open problem. The number
of papers written on predicate modal logic is small, if we compare it to the
enormous quantity of work on propositional modal logic. In fact, in many cases
predicate modal logic appears as a single chapter or an appendix in books on
propositional modal logic. Modal predicate logic is usually given syntactically

1The results are in Antonia’s thesis[4].
2This plan coincides basically with the one followed in Chapter VII of Maria’s [5]
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and no fixed semantics is often discussed.

We refer to three of the most important works on predicate modal logic:
chapters VIII and X of [2], chapter IX of [3] and chapter XII of [6]. In all these
papers, and in most of the papers written on the subject, predicate modal
logic is obtained by adding the monadic operator � (or L), with the usual
modal interpretation of necessity, to the standard language of predicate logic,
i.e. exactly in the same way that it is added to the standard language of
propositional logic in order to obtain the propositional modal logic. Terms and
formulas are defined as expected.

Modal predicate logic usually given syntactically. Modal predicate logic
is usually given by axiomatization, i.e. adding modal axioms and the modal
rule of necessitation to the classical first order axioms and the classical rules.

On the other hand, including the equality symbol in a predicate modal
language brings about enormous difficulties and it is often left out.

Modal predicate logic without a fixed semantics. All the historically
proposed semantics have problems and, as we mentioned before, equality is a
big problem when defining predicate modal semantics. The main reason is that
terms can be interpreted either as objects (a fixed individual for all possible
worlds) or concepts (possible different individuals for different worlds). In the
first case problems appear when the objects do not persist when accessing to a
new world. In the second case the usual Tarski semantics is no longer applicable.
Hughes and Cresswell imposed the nested domain’s condition as the minimal
acceptable prize to be paid in the objectual option. A more complete study
of the development of predicate modal logic and the related problems can be
found in [4].

The history of predicate modal logic tells us that no satisfactory system
can be found. But, it also tells us that, eliminating up the identity issue,
the most acceptable and successful choice for a general predicate modal logic
is Hughes and Cresswell truth-value gaps system. In this context the modal
formulas whose interpretation involves objects that don‘t exist in the domain
of the given world lack classical truth-value true or false. They have truth-value
gaps. In what follows we call ML to that predicate modal logic.

The two problems of this system (ML) are the impossibility of defining iden-
tity and the existence of so many formulas outside the bounds of semantics (the
formulas which have no truth-value assigned). Hughes & Cresswell explained
well the problems with identity (in “Identity and Description” in [2]) and it was
clear that no satisfactory solution could be found. But, with regard to the other
problem, there is still an avenue that they did not try: to avoid the semantic
deficiency of the ‘undefined formulas’ or truth-value gaps by accepting that the
absence of truth-value should be a truth-value in itself (a third non-classical
one). Thus, why not investigate this partial nature of Hughes & Cresswell’s
predicate modal logic [2]?

ML deals with two kinds of objects: individuals and worlds, and then
we have two different universes, a universe of individuals and a universe of
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possible worlds. In what follows we start off with this particular presentation
of predicate modal logic (ML).

Variables are interpreted as individuals, and if a variable x is assigned to
the individual h′ in the domain Am of individuals of the world m′ but not in
the domain Am of the world m, we can’t associate a truth value T (true) or
F (false) to a formula ϕ(x) in the world m. Thus ϕ(x) has a truth-value gap
in this world. Implicitly, we have three different truth-values, T , F and gap.
For the time being, ML is not using the gap as a third truth value in a proper
sense, but we will transform ML into a partial logic in a explicit way.

VARIABLES
.........................x.......

H ↓

...
Am

•h′

Am′

...
UNIVERSE

OF
INDIVIDUALS

Q ↑

..., m , ......., m′, ....
POSSIBLE
WORLDS

ϕ(x) interpretation−−−−−−−−−−→ I(ϕ)(h′)

Note that a variable assignmentH is a universal (global) concept in ML, that
is, it does not depend on the worlds. Hughes and Cresswell also investigated
the possibility of taking assignments as local concepts, but they ended up in
predicate S5 (with a unique universe of individuals). A variable x is assigned to
an individual of the universe A, and then, whether H(x) belongs to a particular
world’s universe of individuals Am′ ( m′ a world) or not, depends only on the
assignment of domains, Q. It is similar to the classical first order assignment
concept. We will define the modal structures A and interpretations I = 〈A,H〉
based on Hughes & Cresswell’s truth-value gaps’ semantics [2].

Definition: A = 〈A,W,R,Q,{fA}
f∈OPER.SY M

〉 , where W 6= ∅ is the set of
worlds, R ⊆W×W is the accessibility relation between worlds, Q: W −→ PA
is a function assigning a domain of individuals to each world, and fA is the
interpretation of the symbol f in A (for function symbols, fA : Ak → A , for
predicate symbols, rA ⊆ Ak ×W ).
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We define Im as 〈A,H,m〉 and we also define (Im)ax as 〈A,Ha
x,m〉 where

Ha
x = (H− 〈x,H(x)〉) ∪ {〈x, a〉} with m ∈W.

Getting to know the qualities of ML. We need to know the specific
properties and qualities of ML. By using the available literature on ML we have
elaborated a questionnaire that will allow us to classify the different components
of ML.

Some general questions that can be useful in the understanding of any pre-
logic are the following:

(a) How many kinds of objects does ML have?
(b) How many truth values?
(c) Is there any kind of quantification? If so, is it classical?
(d) Are the semantics concepts defined?
(e) Is there a concept of identity?
(f) Are there semantical restrictions?
(g) How much ‘classicality’ do we have or want in ML?

The answers of ML, as presented in Hughes & Cresswell to the questionnaire
above are:

(a) ML has two kinds of objects; i.e. individuals and worlds.
(b) ML has T and F as the linguistic truth-values and ‘gaps of truth−value’

(null) as an extralinguistic truth-value, i.e. while T and F are semantic values,
the gaps are not properly considered as such.

(c) There is a classical quantification for individuals, that is, a universal
quantified formula ∀xϕ is true when the formula ϕ is true for all possible values
of the quantified variable x and it is false when the formula ϕ is false for at
least one value. There occurs, however, a quantification over worlds at the
metalanguage level when interpreting modal formulas such as �ϕ.

(d) Validity is defined but logical consequence is not.
(e) It doesn’t include identity.
(f) There is the semantical restriction of nested domains.
(g) Language and deductive rules must be as fully classical as possible.

3 The Logic PHL for ML.

In order to build the suitable Partial and Heterogeneous Logic for ML (namely,
PHL), which we will use as the underlying logic (i.e. as mirror), we need to
make clear what the corresponding partial and heterogeneous components of
ML are. The construction will proceed on the following seven steps.

After presenting these seven steps for ML, in the next section, we will see
that they can suggest the equivalent seven steps to build the suitable PHL in a
general case, for any prelogic XL.

Step 1. Defining the set of genera and of truth-values. We define the
set of genera GEN (dealing with the different kinds of objects: individuals and
worlds) and the set of truth-values TV.

The set of genera is GEN={1,2}, 1 for individuals and 2 for worlds.
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As we pointed out above, gap can be a new third value. The truth-values set
is TV = {T , F , N} , where T and F are values truth and false of the classical
two-valued logic and N is value null corresponding to the truth-value gaps.

We build PHL as a fruitful tool to construct a counterpart of ML; i.e. its
image in the PHL mirror. This image is the PHL-theory PHLM, which will be
used at the end of the process to build PML as an improved modal logic. PML
is placed at this side of the mirror, it is a predicate modal logic and incorporates
partiality in a explicit way.

Step 2. Finding a complete set of connectives. As we have a third
truth-value, we will need to extend the system of primitives connectives (the
classical negation and disjunction for example) to a functional complete system
of connectives for the three valued system.

It is known that the suitable extension of negation and disjunction connec-
tives for the truth-value gaps semantics of predicate modal logic are Bočvar‘s
(see [1]). They preserve the classical connectives and they generate null from
null. We refer to them as ¬B and ∨B, respectively:

α ¬Bα

T
F
N

F
T
N

α ∨B β

α\β T F N
T
F
N

T T N
T F N
N N N

But they are not a functionally complete set of connectives, that is, we can
not express any other three-value connective as a composition of ¬B and ∨B .
What we want is a set of connectives containing the Bočvar connectives ¬B, ∨B

being functionally complete for Bočvar‘s system. This issue is solved in [4]

Definition: C is a functionally complete set of connectives for TV iff for any
n-ary function F :TVn →TV (n ≥ 0) there is G :TVn →TV (n ≥ 0) such that
G is obtained by composition of connectives of C , and F (x̄) = G(x̄) for all x̄ ∈
TVn .

The solution is to consider C = {¬B, ∨B, V, ξ}

α V α ξα

T
F
N

T
F
F

T
N
T

Where V is called verification and ξ is called defalsification.
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What is proved in [4] is Theorem 1:

Theorem 1. C is a functionally complete set of connectives for TV. (Where C
= {¬B , ∨B , V, ξ})

We say that the connectives in C are significant in the sense that they have
some semantic relevance or distinctive character; meaning that they show up
at the semantic or syntactical theorems of the logic.

Step 3. Defining the language. We build the terms and formulas of PHL
for ML by using the primitive connectives ¬B, ∨B, V, ξ, and ∀,∃ as heteroge-
neous quantifiers (quantification over variables of different kinds), as we usually
do in heterogeneous logic.

Step 4. Defining the interpretation of quantifiers. There are two pos-
sibilities for the PHL quantification.
(a) ∀ as an infinite Bočvar conjunction and ∃ as an infinite Bočvar disjunction
(if we follow the usual construction in predicate logic). We will call them Bočvar
quantifiers [B]

I(∀xiϕ) =




T ⇔ {a ∈ Ai / Ia
xi

(ϕ) = T} = Ai

F ⇔
{ {a ∈ Ai / Ia

xi
(ϕ) = N} = ∅ and

{a ∈ Ai/ Ia
xi

(ϕ) = F} 6= ∅
N ⇔ {a ∈ Ai / Ia

xi
(ϕ) = N} 6= ∅

and I(∃xiϕ) = I(¬∀xi¬ϕ).
where I is an interpretation, Ia

xi
= 〈A,Ha

xi
〉 , Ha

xi
= (H−〈xi,H(xi)〉)∪{〈xi, a〉},

a and xi are of the same genera, i ∈ {1, 2} .

(b) ∀ and ∃ as classical quantifiers. They are the ones Hughes & Cresswell [2]
defined when xi is assigned to an individual. Remember that we also have the
genera corresponding to worlds.

I(∀xiϕ) =




T ⇔ {a ∈ Ai / Ia
xi

(ϕ) = T} = Ai

F ⇔ {a ∈ Ai / Ia
xi

(ϕ) = F} 6= ∅
N ⇔

{ {a ∈ Ai / Ia
xi

(ϕ) = N} 6= ∅ and
{a ∈ Ai / Ia

xi
(ϕ) = F} = ∅

I(∃xiϕ) = I(¬∀xi¬ϕ)
As in PHLM we want to model ML, we have chosen option (b). There are

other reasons for doing it, mainly the difficulty to extend the classical predicate
calculus to a calculus with a quantification of the (a) kind.

Step 5. Defining semantics: interpretation, validity and logical con-
sequence. The assignments of variables are heterogeneous, i.e., they assign
an element of the universe of genus 1 or 2 to a variable of genus 1 or 2, re-
spectively. An interpretation is a pair I = 〈A,H〉 where H is a heterogeneous
assignment of variables and A is a heterogeneous structure.
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A = 〈A1, A2,
{
fA

}
f∈OPER.SY M

〉, where A1 and A2 are the universes of genus
1 or 2, respectively, and

{
V A, ξA

} ⊆ {
fA

}
f∈OPER.SY M

.

1. I(xi) = H(xi)
2. I(fε1...εm) = fA(I(ε1), ...,I(εm))
3. I(¬ϕ) = ¬A(I(ϕ))
4. I(ϕ ∨ ψ) = ∨A(I(ϕ),I(ψ))
5. I(V ϕ) = V A(I(ϕ))
6. I(ξϕ) = ξA(I(ϕ))

7. I(∀xiϕ) =




T ⇔ {a ∈ Ai / Ia
xi

(ϕ) = T} = Ai

F ⇔ {a ∈ Ai / Ia
xi

(ϕ) = F} 6= ∅
N ⇔

{ {a ∈ Ai / Ia
xi

(ϕ) = N} 6= ∅ and
{a ∈ Ai / Ia

xi
(ϕ) = F} = ∅

where Ia
xi

= 〈A,Ha
xi
〉 and Ha

xi
= (H− 〈xi,H(xi)〉) ∪ {〈xi, ai〉}, a and xi are

of genera i.
Now we need the validity and logical consequence concepts for defining the

core of the semantics of PHL for ML.
As we have three truth-values and thus false is different from not true we

will have more than one possibility for validity. We also have more than one
possibility for logical consequence, because we have more than one kind of
validity.
Validity: We have two possibilities.
(a) strong. I is a model of ϕ ( I |=s ϕ ) iff I(ϕ) = T (ϕ is true in I).
(b) weak. I is a model of ϕ ( I |=w ϕ ) iff I(ϕ) 6= F (ϕ is not false in I).

We also have strong and weak satisfiability: for any set Γ of formulas, I |=s Γ
iff I(γ) = T for all γ ∈ Γ and, I |=w Γ iff I(γ) 6= F for all γ ∈ Γ.

Logical consequence: we have four possible consequences (ss, sw,ws,ww).
(a) strong-strong. Γ |=ss ϕ iff for every model I , if I |=s Γ then I |=s ϕ.
(b) weak-weak. Γ |=ww ϕ iff for every model I , if I |=w Γ then I |=w ϕ.
(c) strong-weak. Γ |=sw ϕ iff for every model I , if I |=s Γ then I |=w ϕ.
(d) weak-strong. Γ |=ws ϕ iff for every model I , if I |=w Γ then I |=s ϕ.

The semantics of ML was not fixed and therefore we have to check the
different possibilities to choose the best option, so, we prove some theorems
of comparison between different validities and different logical consequences of
PHL:

Theorem 2:.
Γ |=sw ϕ iff Γ ∪ {¬ϕ} is NOT s-satisfiable.
Γ |=ws ϕ iff Γ ∪ {¬ϕ} is NOT w-satisfiable.
Γ |=ss ϕ iff Γ ∪ {ξ(¬ϕ)} is NOT s-satisfiable.
Γ |=ww ϕ iff Γ ∪ {V (¬ϕ)} is NOT w-satisfiable.

Theorem 3:.

(1) Γ |=ws ϕ =⇒
{

Γ |=ss ϕ
Γ |=ww ϕ

}
=⇒ Γ |=sw ϕ .
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(But Γ |=ss ϕ and Γ |=ww ϕ are not comparable).

(2) Γ |=ws ϕ =⇒ V Γ |=ws ξϕ⇐⇒

Γ |=ss ϕ
⇓{

Γ |=ss ξϕ
V Γ |=ww ϕ

}

⇑
Γ |=ww ϕ

⇐⇒ Γ |=sw ϕ.

The logical consequence finally chosen for PHL will be the one giving us the
equivalence with the best syntactical deduction for PHL. In theorem 4 bellow
we will see how each one of the four logical concepts of consequence corresponds
to some well known syntactical rules of inference. These important rules are
Modus Ponens (MP), Generalization Rule (GEN), Deduction Rule (DED) and
Cut Rule (CUT).

Theorem 4.
|=ss verifies mp, cut, gen.
|=sw verifies mp, ded, gen.
|=ww verifies ded, cut, gen.
|=ws verifies cut.

Now that we have these results, we can provide an accurate discussion about
the four logical consequences. Thus, |=sw is the only one having a good con-
dition of satisfiability and verifying Modus Ponens, GEN and the Deduction
rule, it is also the weakest one. The only objection is that it does not verify the
Cut rule, and so there is no hope of having a Hilbert-style complete calculus
for |=sw. But it is known that in this case a Gentzen-style calculus is possible
(see[4] for a complete calculus for PHL).

For all these reasons our choice for PHL semantics must be the strong-weak
logical consequence (|=sw) and the strong validity (s-satisfiability). Note that
from now on we will write |= instead of |=sw and |= instead of |=s.

Step 6. Checking semantic theorems. Once validity and logical conse-
quence are fixed, we can adjust and check the semantic properties of PHL:
compactness, enumerability and Löwenheim-Skolem theorems, etc.

These properties can be proved either directly, or as corollaries of the com-
pleteness theorem. When we plan to have a complete calculus, these properties
are easier proved in the next step.

PHL for ML has the semantical properties of compactness and Löwenheim-
Skolem. In our case we prove them after the completeness of PHL.

Step 7. Finding a complete calculus. To complete PHL for ML a further
construction is required. We can try to find a calculus for PHL to make it a
sound and complete logic; this is always a difficult thing but it is worth trying.
Although it is not fundamental for our partial and heterogeneous tools, it will
surely make PHL a more desirable logic. In [4] a complete and sound sequent
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calculus for PHL for ML and |=sw is presented. The common corollaries of
completeness are also proved.

4 Building PHL for any prelogic XL.

Taking the process to build PHL for ML as modelwe can define the correspond-
ing seven steps to build PHL for XL.

Step 1. Defining the set of genera and truth-values. We define the
set of genera GEN (dealing with the different kinds of objects) and the set of
truth-values TV (truth, false and some new partial values ).

We build the mirror PHL as a useful tool to construct a counterpart of XL,
so the image of XL in the mirror (the theory PHLX, ) has to be semantically
equivalent to PXL (the improved XL, to be built at the end of the whole
process).

Step 2. Finding a complete set of connectives. We need to fix a func-
tionally complete set of connectives for the set TV. We also desire that the
connectives in C are significant in the sense that they have some semantical
relevance or distinctive character. We have two possibilities: either to look for
it in the logic stock or to construct them ourselves. We know that the set is
the suitable one if we obtain the following result:

GOAL-1
Theorem I.

For any n-ary function F :TVn →TV (n ≥ 0) there is G :TVn →TV (n ≥ 0)
such that G is obtained by composition of connectives of C , and F (x̄) = G(x̄)
for all x̄ ∈TVn. (i.e. C is a complete set of connectives for TV.)

Step 3. Defining the language. The alphabet of PHL includes: the partial
connectives, different sorts of variables for every genera, quantifiers (if XL is a
quantified logic) and function and relation symbols. Terms and formulas are
defined as they usually are in heterogeneous logic.

Step 4. Defining the interpretation of quantifiers. If XL were a quan-
tified logic, we would need PHL quantifiers. As in partial logic we have non-
classical connectives, we have a variety of options. Following the case of ML we
can choose the PHL quantification among the following possibilities.

(a) ∀ as an infinite partial conjunction and ∃ as an infinite partial disjunc-
tion.

(b) ∀ and ∃ as classical quantifiers: ∀xϕ is true iff for every a ∈ A, Ia
x(ϕ) is

true and ∀xϕ is false iff there is a ∈ A such that Ia
x(ϕ) is false, independently

of the remaining truth-values. Also ∃xϕ = ¬∀x¬ϕ holds.
(c) Other quantifiers, depending of the nature of partiality and other aspects

of XL.
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Step 5. Defining validity and logical consequence. At this stage we
need to define the concepts of validity and logical consequence to define the
semantic core of PHL.

As we have more than two classical truth values and thus false is different
from not true we will have more than one possibility for validity:

(a) I is a model of ϕ iff ϕ is true in I.
(b) I is a model of ϕ iff ϕ is not false in I.
(c) Others (depending on the remaining truth-values).
We also have more than one possibility for logical consequence, because we

have more than one kind of validity.
If the semantics of XL were fixed enough, we would take those definitions

from XL. But if the semantics of XL were not fixed, we would need to check the
different possibilities to choose the best for PHL. Then, the goal is the following:

GOAL-2
(a) To find the theorems of comparison for the variety of validity and logical

consequence concepts of PHL.
(b) We also have to study the degree of compatibility between these concepts

and some desirable deductive rules for PHL.

Step 6. Checking semantic theorems. We can now look for the seman-
tical properties of PHL: compactness, enumerability and Löwenheim-Skolem
theorems, etc. These properties can be proved either directly or as corollaries
of the completeness theorem. If we plan to have a complete calculus, these
properties will be proved in the next step.

Step 7. Finding a complete calculus. We can try to find a calculus for
PHL to make it a sound and complete logic. Although it is not fundamental
for our purpose, it will surely make PHL a more desirable logic.

Since we have the Henkin style of completeness proof in mind, we start by
fixing the required theorems of consistency and maximal consistency. They
depend on the connectives, quantifiers and other semantic concepts for PHL.
We can also aim at having some desirable rules in PHL, as for example some
classical rules (Modus Ponens, Deduction, etc.).

5 Translating XL into PHL

In the general case we have constructed already the partial and heterogeneous
logic PHL which will serve as the underlying logic. What we need to do now is
to obtain a theory, PHLX (∆, for short) as a counterpart of XL. ∆ is a theory
in PHL representing XL in a sense to be clarified below.

The general plan is as follows3: the signature of the logic XL is transformed
into a partial and heterogeneous signature, the expressions of the logic XL

3This plan coincides basically with the one followed in Chapter VII of Extensions of First
Order Logic [5].
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are translated into PHL and the structures of the original logic are converted
into partial and heterogeneous structures. And then, we should try to find
the TRANS and CONV1 functions which will allow us to obtain semantic
equivalence theorems.

Step1. Toward a representation theorem. So we need to find the defi-
nitions of:

TRANS : EXPR(XL) → EXPR(PHL)

and

CONV1 : ST (XL) → ST (PHL)

(Where EXPR and ST stand for ‘expressions of’ and ‘structures of’ respec-
tively).

Let us call S∗ to the class of converted structures; i.e.

S∗ = CONV1(ST (XL))

When defining the direct conversion of structures what we want is to obtain
the equivalence between validity in the original structures for XL and validity
of the translated formulas in the class S∗.

The goal must be to produce the following theorems:
GOAL-3

Theorem 5. For every A ∈ ST (XL) there is CONV1(A) ∈ ST (PHL) such
that for every ϕ ∈ SENT (XL) , A is a ‘model’ of ϕ iff CONV1(A) is a model
of TRANS(ϕ).

Using Theorem 5 we easily obtain the desired semantic equivalence; namely,
Theorem 6.

Theorem 6. Let S∗ ⊆ ST (PHL) .
ϕ ‘is valid in XL’ iff TRANS(ϕ) is valid in PHL with respect to the structures
in the class S∗.

Remember that the semantics in XL might be not fixed, and in fact this is
usually the situation. In this case, those goal-theorems must be understood as
a tool to improve XL, adding the necessary elements to obtain such theorems.
Since the concepts of model and validity in XL required definition (and still
had), we use quoted expressions to denote that they should be defined later so
that the goal-theorems are fulfilled.

What we want is S∗ to be close to

MOD(TRANS(V AL(XL)))

Possibly, we also want every expression ε of XL to define in its own structures
“almost” the same object that TRANS(ε) defines in CONV1(A).
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And then the important question is if S∗ can be axiomatized in PHL. In
fact, we look forward to a representation theorem and so we are satisfied with
an axiomatizable class containing S∗ such that Theorem 7 can be proved.

Theorem 7. There is a recursive ∆ , ∆ ⊆ SENT (PHL) , with
CONV1(ST (XL)) ⊆MOD(∆) such that
‘|= ϕ in XL’ iff ∆ |= TRANS(ϕ) in PHL, for every ϕ in XL.

Once we have a representation theorem, we easily obtain the enumerability
theorem for XL provided we have plugged in the missing semantic components.

So we have learned that a calculus for the logic XL is a natural demand, but
we have also learned that in PHL we can simulate such a calculus. If available,
we can use the PHL theorem prover, and we can certainly use the PHL calculus.

Step 2. Further semantic equivalences. Is the representation theorem
our ultimate goal? When the logic XL admits a concept of logical consequence,
we can try to prove Theorem 9 ; that is, the equivalence of consequence in the
original XL with the logical consequence in PHL, module the theory ∆. From
Theorem 9, compactness and Löwenheim-Skolem can be dragged from PHL to
XL. To prove Theorem 9 a reverse conversion of structures should be defined;
our goal is to prove first the Theorem 8.

If ∆ exists we will define the reverse conversion:

CONV2 : MOD(∆) → ST (XL),where MOD(∆) ⊆ ST (PHL)

Now the goal is to obtain the following theorems:
GOAL-4

Theorem 8: There is a recursive ∆ ⊆ SENT (PHL) such that for every B
∈MOD(∆), CONV2(B) is ‘a model’ of ϕ iff B is a model of TRANS(ϕ).
Now, by using theorems 5 and 8, we easily prove theorem 9 bellow.
Theorem 9: There is a recursive ∆ ⊆ SENT (PHL) with
CONV1(ST (XL)) ⊆MOD(∆) such that

‘Γ |= ϕ in XL’ ⇔ TRANS(Γ) ∪∆ |= TRANS(ϕ) in PHL.
Using Theorem 9 we obtain compactness and Löwenheim-Skolem for free.

6 Translating the prelogic ML into PHL

We have constructed already the partial and heterogeneous logic PHL which
will serve as the underlying logic. What we need to do now is to obtain the
theory PHLM (∆, for short) as a counterpart of the prelogic ML.

Step1. Toward a representation theorem. So we need to define TRANS
and CONV1:

TRANS : EXPR(ML) → EXPR(PHL for ML)
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CONV1 : ST (ML) → ST (PHL for ML)

In this case the partial and heterogeneous language of PHL contains two
genera and three truth-values, the connectives ¬,∨, V, ξ , the quantifiers and
the operation symbols in ML. In addition, PHL contains two special binary
relation symbols: R and Q .

Notation: Let us assume that we have an enumeration of the set of variable
of genus 2, V2. TRANS(ϕ)[u] means that u is the free variable of genus 2 in
TRANS(ϕ), although we simple write TRANS(ϕ) if the variable u is not rel-
evant. TRANS(ϕ)[u/v] means that u was the free variable in TRANS(ϕ) and
all the occurrences of u were replaced by the first variable v in the enumeration
of V2 different from u.
In the translation to be defined below we need a new connective, the restricted
implication ↪→ , which is defined by the following table:

α ↪→ β

α\β T F N

T
F
N

T F N
T T T
N N N

Definition of the translation of expressions: We define TRANS :
EXPR(ML) → EXPR(PHL) inductively:

1. TRANS(rε1...εn) = ξ(Quε1 ∧ ... ∧Quεn)∧ rε1...εnu , where u ∈ V2 is the
first variable in the enumeration of V2 , r is a relation symbol, and Q is
one of the added PHL-relation symbol.

2. TRANS(¬ϕ) = ¬TRANS(ϕ) and TRANS(α∨β) = TRANS(α)[v/u]∨
TRANS(β)[w/u]

3. TRANS(∀xϕ) = ∀x(Qux ↪→ TRANS(ϕ)[u])

4. TRANS(�ϕ) = ∀v(Ruv ↪→ TRANS(ϕ)[u/v]) , where R is a PHL-
relation symbol.

The intuition behind these translations is:

1. Quε is always T or F , because it says whether or not the term ε is in the
domain of the world u. When it is F , then Quε1 ∧ ... ∧Quεn is F , and
ξ(Quε1 ∧ ... ∧Quεn) is N . Thus TRANS(rε1...εn) is N , as desired. This
guarantees the truth-value gaps.

2. The translation respects booleans.

3. The translation of ∀xϕ acts as a restricted quantification over the universe
of individuals corresponding to the given world; it only takes into account
the value of the formula TRANS(ϕ)[u] for variables such that Qux.

14



4. The translation of �ϕ acts as a restricted quantification over the accessible
worlds from u.

Definition of the conversion of structures: We define CONV1 :
ST (ML) → ST (PHL) as follows: If

A = 〈W,R,Q,{fA}
f∈OPER.SY M

〉 ∈ ST (ML)

then

CONV1(A) = A∗ = 〈A1, A2,
{
fA∗

}
f∈OPER.SY M∗〉 ∈ ST (PHL)

(where OPER.SY M∗ −OPER.SYM = {R,Q})
fA∗ = fA if f ∈ OPER.SYM , and
RA∗ =R, QA∗ =Q. A∗ consists of the PHL-structure resulting by replacing

in A the classical interpretation of the connectives by the partial one.

Let us call S∗ to the class of converted structures; i.e. S∗ = CONV1(ST (ML))
The conversion of a modal assignment is its extension obtained by adding

the values for the variables of genus 2.
The conversion of an interpretation is the PHL interpretation obtained by

the translation of its structure and its assignment. We will only consider the
global modal interpretations here, that is, the ones not depending on the world.

Now that we have defined the translation from the prelogic ML into PHL
we can obtain the following semantic equivalence theorems4.

Theorem 5. For every A ∈ ST (ML) there is CONV1(A) ∈ ST (PHL) such that
for every ϕ ∈ SENT (ML), A |=s ϕ iff CONV1(A) |=s TRANS(ϕ).

Using Theorem 5 we easily obtain the desired semantic equivalence; namely,
Theorem 6.

Theorem 6. Let S∗ ⊆ ST (PHL).
ϕ ‘is valid in prelogic ML’ iff TRANS(ϕ) is valid in PHL with respect to the
structures in the class S∗.

Remember that the semantics in ML is no fixed. Since the concepts of
model and validity in the improved ML still require definition, we use quoted
expressions to denote that they should be defined later so that these goal-
theorems are fulfilled. We want S∗ to be close to MOD(TRANS(V AL(ML))).
In fact, we look forward to a representation theorem and so we are satisfied with
an axiomatizable class containing S∗ such that Theorem 7 can be proved.

Definition: ∆ = {σ1, σ2, σ3, σ4} ∪ {σr / r ∈ OPER.SYM} ⊆ SENT (PHL)
where:

4The proofs of these theorems are in [4].
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σ1 ≡ ∀u∃xQux
σ2 ≡ ∀u∃vRuv
σ3 ≡ ∀u∀x((V Qux) ∨ (V ¬Qux))
σ4 ≡ ∀u∀v((V Ruv) ∨ (V ¬Ruv))
σr ≡ ∀((V rε1...εk) ∨ (V ¬rε1...εk)) , for every relation symbol r of a modal

language L.
The quantifier in σr means that we quantify over all the variables appearing

in ε1, ..., εk .

Theorem 7.
There is a recursive ∆ , ∆ ⊆ SENT (PHL) , with CONV1(ST (ML)) ⊆
MOD(∆) such that

‘ϕ is valid in XL’ iff ∆ |=sw TRANS(ϕ) in PHL, for every ϕ in XL.

Step 2. Further semantic equivalences. ML admits a concept of logical
consequence, an so we can try to prove Theorem 9 ; that is, the equivalence of
consequence in the improved ML with the logical consequence in PHL module
the theory ∆. From Theorem 9, compactness and Löwenheim-Skolem can be
dragged from PHL to ML. To prove Theorem 9 we will prove first Theorem 8
and a reverse conversion of structures should be defined:

Taking ∆ as above, the reverse conversion:

CONV2 : MOD(∆) → ST (ML),where MOD(∆) ⊆ ST (PHL)

can be defined in a trivial way.
Now the goal is to obtain the following theorems:
Theorem 8: CONV2(B) is ‘a ML-model’ of ϕ iff B |=s TRANS(ϕ).

Now, by using theorems 5 and 8, we easily prove theorem 9 below.

Theorem 9: ‘ϕ is logical consequence of Γ in ML’ iff TRANS(Γ) ∪ ∆ |=sw

TRANS(ϕ) in PHL.
Using Theorem 9 we obtain compactness and Löwenheim-Skolem for free.

7 Building the improved PML.

Since PHL has been built and we have defined a translation from ML into PHL,
we are ready to define an improved ML, which we call PML.

The construction of PML is reached in two steps corresponding with two
different levels of completion. The first one concerns the definition of the se-
mantics for PML. The best semantics for PML is the one allowing the semantic
equivalence theorems between PML and PHLM (∆).

In the second step we define a sound and complete calculus for PML. This
calculus is based on the calculus of PHL and uses the fact that derivability in
PML is implied by derivability of the translation in PHL.
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Step 1. Defining the partial modal logic PML. We can redefine ML as a
partial logic PML providing a semantics in which the above mentioned Theorem
5 to Theorem 9 hold for PML. The function TRANS will be extended to
include the formulas with the new partial connectives.

We redefine predicate modal logic ML as a partial logic in such a way that
we can obtain the equivalence theorem, extending the function TRANS. We
call it the partial modal logic PML, whose definition is:

(1) Language for PML is defined as a language for ML by adding the set
{V , ξ} to the alphabet.

(2) Structures for PML are defined as ML-structures by eliminating the
restriction of the nested-domains and adding the condition that the accessibility
relation is serial.

(3) Semantics of PML. The set of truth-values, assignment of variables
and interpretation over a structure are defined as in ML, but replacing the
classical interpretation of the connectives by the partial ones and adding the
interpretation for the new partial connectives. Denotation of an expression of
the language with an interpretation Im in PML is defined as in ML, by adding
the following conditions:

(i) Im(V ϕ) = T iff Im(ϕ) = T
Im(V ϕ) = F iff Im(ϕ) = F or Im(ϕ) = N
Im(V ϕ) 6= N for all ϕ ∈ FORM

(ii) Im(ξϕ) = T iff Im(ϕ) = T or Im(ϕ) = N
Im(ξϕ) 6= F for all ϕ ∈ FORM
Im(ξϕ) = N iff Im(ϕ) = F

Validity in PML must be the strong one: a modal interpretation I is a
(strong) model of a formula ϕ iff I(ϕ) = T . In such a situation we write I |= ϕ

The concept of Logical consequence in PML must be the strong-weak one:
ϕ is (global) consequence for models of Γ iff for all interpretation I, if I |= Γ
then I(ϕ) 6= F.

Now we can prove the semantical equivalence theorems between PML and
PHL.

Theorem 5 (bis). For every A ∈ ST (PML) there is CONV1(A) ∈ ST (PHL)
such that for every ϕ ∈ SENT (PML), sentence of PML,

A |= ϕ iff CONV1(A) |=s TRANS(ϕ).

Theorem 6 (bis). ϕ is valid in PML iff TRANS(ϕ) is valid in PHL in the
class S∗.

Theorem 7 (bis). |= ϕ in PML iff ∆ |=sw TRANS(ϕ) in PHL, for every ϕ in
PML.

Theorem 8 (bis). for every B ∈MOD(∆), CONV2(B) |= ϕ iff B |=s TRANS(ϕ).

Theorem 9 (bis). Γ |= ϕ in PML iff TRANS(Γ) ∪ ∆ |=sw TRANS(ϕ) in
PHL.
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Step 2. Defining a calculus. The common calculi for ML extends a pred-
icate calculus by adding the necessitation rule and, occasionally, the Barcan
Formula. This calculus is usually given just to generate the set of validities as
in Hughes and Cresswell. As we also have defined the concept of consequence,
we would like our calculus to be able to derive in the whole set of semantical
consequences of a given set of sentences. In this situation we can try to find a
complete and sound calculus for PXL in such a way that Theorems 10 and 11
holds.

Theorem 10: If ∆ ` TRANS(ϕ) in PHL then ‘` ϕ’ in PML.

Theorem 11: If TRANS(Γ) ∪∆ ` TRANS(ϕ) in PHL then ‘Γ ` ϕ’ in PML.

We can define a calculus for PML by adding to the calculus of our underlying
logic PHL some modal rules. The calculus will be accepted, provided that
Theorem 10 and Theorem 11 hold5.

Finally, we can borrow from PHL soundness, completeness, compactness
and Löwenheim-Skolem.

8 Building the logic PXL.

As in previous sections we can now write the generalization to the case to any
prelogic XL, with the characteristics expressed above.

The construction of PXL is reached in two steps:

Step 1. Defining the partial logic PXL. We redefine XL as a partial
logic, PXL, providing a semantics in which the above mentioned Theorem 5 to
Theorem 9 hold for PXL. The function TRANS will be extended to include
the formulas with the new partial connectives.

Theorem 5 (bis). For every A ∈ ST (PXL) there is CONV1(A) ∈ ST (PHL)
such that for every ϕ ∈ SENT (PXL), sentence of PXL, A is a ’model’ of ϕ iff
CONV1(A) is a model of TRANS(ϕ).

Theorem 6 (bis). Let S∗ ⊆ ST (PHL).
ϕ is valid in PXL iff TRANS(ϕ) is valid in PHL with respect to the structures
in the class S∗.

Theorem 7 (bis). There is a recursive ∆ , ∆ ⊆ SENT (PHL), with
CONV1(ST (PXL)) ⊆MOD(∆) such that

|= ϕ in PXL iff ∆ |= TRANS(ϕ) in PHL, for every ϕ in PXL.

Theorem 8 (bis). There is a recursive ∆ ⊆ SENT (PHL) such that for every
B ∈MOD(∆), CONV2(B) is a model of ϕ iff B is a model of TRANS(ϕ).

Theorem 9 (bis). There is a recursive ∆ ⊆ SENT (PHL) with
CONV1(ST (PXL)) ⊆MOD(∆) such that

Γ |= ϕ in PXL iff TRANS(Γ) ∪∆ |= TRANS(ϕ) in PHL.

5See [4].
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Step 2. Defining a calculus. There are two possible cases:
Case (a): XL had a calculus already. Frequently a prelogic is given as a set

of formulas produced within a deductive calculus. In that case the translation
into PHL can be used to test that calculus. The test is section (a) of Theorem
11. below.

Case (b): XL had no calculus. In this situation we can try to find a complete
and sound calculus for PXL in such a way that section (b) of Theorem 11 holds.

In both cases the translation could allow us to borrow soundness and com-
pleteness from PHL. The goal now is:

GOAL-5
Theorem 10:

(a) (a) If ’` ϕ’ in XL then ∆ ` TRANS(ϕ) in PHL.
(b) If ∆ ` TRANS(ϕ) in PHL then ’` ϕ’ in PXL.

Theorem 11:
(a) If ‘Γ ` ϕ’ in XL then TRANS(Γ) ∪∆ ` TRANS(ϕ) in PHL
(b) If TRANS(Γ) ∪∆ ` TRANS(ϕ) in PHL, then ‘Γ ` ϕ’ in PXL.

We will look for a calculus for PXL satisfying the condition posed by Theo-
rem 11 (b). The idea is to build up a proof of ϕ from Γ in PXL, given that we
have a proof of TRANS(ϕ) from ∆∪ TRANS(Γ).

As discussed above, there are several choices for the semantical definition of
logical consequence and these choices are linked with certain deduction rules.
We may use the semantical decisions for PXL and we should add these rules.

9 Concluding Remarks.

We have presented a general method for building new logics using the existent
semantics and/or syntactic components of a logic. This procedure is an ex-
tension of the method used by ourselves when representing non-classical logics
in a flexible setting such as heterogenous logic. There are several important
differences from the previous method that we would like to point out:

(1) The underlying logic; i.e. the Partial and Heterogeneous logic has to be
modelled in the process using the existent first order heterogeneous logic but
adding the partiality to it. As a consequence, we need to find a complete set
of connectives and also to design the semantics and syntax of the partial and
heterogeneous logic emerging from the connectives and quantifiers. Soundness
and completeness results are also a common demand.

(2) Since the logic we depart from could be very limited, the translation of
this logic into the partial and heterogeneous logic is not the end of the process.
Our aim can’t be the representation of a logic in a better known and studied
logic (since there is little to be represented). The emphasis now is placed in
modelling a new logic. This new logic is obtained with the help of the partial
and heterogeneous logic already developed. In fact, properties of the original
logic can now be established clearly and even proved in the deductive calculus
of the underlying logic.
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The translation of the original logic into the logic acting as a framework
will guide the whole process of building a better equipped logic; i.e. with a
good defined semantics and/or calculus. It is mainly in this sense that we can
consider the partial and heterogeneous logic as a tool for building the new,
redesigned logic.
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