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Abstract

Out of the joint work of Johan van Benthem and the Hungarian group round Hajnal
Andréka, István Németi and Ildikó Sain and their PhD students, two approaches for
taming a logic evolved. With taming a logic we mean changing the logic in such a way
that it becomes decidable. For first order logic, they took a semantic route using rela-
tivisation of models, and a syntactic route focusing on guarded fragments. The purpose
of this paper is to show that these two routes are really two sides of the same coin. We
do this by showing that a certain guarded fragment (called here the packed fragment)
of first order logic forms precisely the set of first order sentences which are invariant for
relativisation with a tolerance relation. Besides this technical contribution we provide
an intuitive explanation of relativisation in terms of information transmission.
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Dedicated to Johan van Benthem on his fiftieth birthday.

1 Introduction

The main purpose of this paper is to give a semantic characterisation of the
guarded fragment (here called the packed fragment) in terms of invariance for
relativisation (Theorem 4.11). We will argue that relativisation in a first order
setting is the analogue of taking generated submodels in modal logic. Our
tentative conclusion will be that the packed fragment is the true modal fragment
of first order logic, because it has the same “local flavour” and is decidable for
very similar reasons. Besides this technical result we provide an interpretation
of relativisation as a sceptical information processing strategy in section 2. We
show that for sentences in the packed fragment, this sceptical strategy leads
to the same results (in terms of validity and satisfaction) as the classical first
order interpretation. This result makes the sceptical strategy an interesting
alternative because it has great computational advantages over the classical
first order way of interpreting sentences.

The technical part of this paper is organised as follows. We introduce relativised
semantics for first order logic in Section 3. We take a modal view on first
order logic and arrive to the notion of admissible assignments. We show how
relativised semantics can be obtained from two primitive concepts: context sets
and tolerance relations. Then we introduce our version of the (loosely) guarded
fragment, called the packed fragment, and relate it to relativised semantics. We
conclude by arguing that the packed fragment is the true modal fragment of
first order logic.

2 Relativisation interpreted as a sceptical informa-

tion processing strategy

We employ a very simple model of information transmission: there are two
participants of which one does all the talking and the other merely listens and
interprets the incoming information. It will be convenient to ascribe gender to
the two participants. We assume that the speaker is male and the listener is
female. The language used by the speaker is a first order language, which will
be interpreted dynamically, in the style of Dynamic Predicate Logic (DPL) of
[3, 4].

The update–semantics version of DPL provides a model for the interpreta-
tion process performed by the listener

In the dynamic view the interpretation process consists of two components:

1. finding antecedents for anaphora (interpreting discourse information)

2. building a model of the world described by the speaker (interpretation of
world–information).

The speaker however is not God or some other embodiment of the world just
reporting what is the case, the speaker is an observer of the world reporting
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how he perceives it. Thus the interpretation of the world–information is more
accurately described by

2’ building a model of the world perceived by the speaker on the basis of his
report of it.

Once the listener realises that she is building a model of the world relative to
the perception of the speaker, a number of information processing strategies are
open to her. In this paper, we will focus on one such a strategy: the listener
does not accept universal statements made by the speaker unconditionally, but
relativises them with the proviso

“provided that the elements quantified over are perceived together by
the speaker.”

We will make this proviso more precise in due course. First an example

Example 2.1 A company like McDonald’s can be modeled in many different
ways. A natural way to think about it is as a collection of databases each
containing the employees of one outlet, databases containing the managers of
a region, databases containing the whatevers of some larger geographical unit,
and so on, all the way up to the database containing the president and his com-
panions. In other words, a hierarchical setup of partially overlapping databases.

Let’s look at the following situation. The president of McDonald’s gives his
yearly address and says: “In this company, everybody loves each other.” A
logician who ows his money baking hamburgers raises his finger and says that
he doesn’t love his neighbour in the audience at all, since that man works in an
outlet at the other side of the world. The president answers, rather annoyed,
that he meant of course that “everyone within a unit in McDonald’s loves each
other”.

The president and the logician interpret the first sentence differently because
they amalgamated the databases in a different way. The logician used the
classical way, while the president amalgamated them in a relativised manner. In
this way he could keep the natural structure of the company. For the president,
the natural way of interpreting his universal statement was using the proviso
given above.

Before we go into the strategy, let’s look at some more basic questions. Why
would a listener employ such a strategy? And, supposing there are good reasons,
how does she know when elements of discourse are perceived together by the
speaker? In other words, can she practically perform such a strategy at all?

To start with the first question, why would a listener not want to accept
universal statements unconditionally? The answer is that the computational
costs connected to universal statements are very high. They can quickly lead to
infinite models, moreover it is undecidable to find out whether a set of sentences
has a model at all.

Given this it is reasonable to postulate that the listener uses some kind
of mechanism to cope with these difficulties of interpretation. What kind of
mechanism she uses is of course open to debate. Whatever mechanism she will
use, we can expect some natural properties of it:
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• It should be sound: “whatever can still be deduced, can also be deduced
in the “classical setting”.

• It shouldn’t lead to too much loss of information: on a large natural frag-
ment of natural language, the classical and the adjusted interpretation
process should lead to the same results.

• It should have definite computational advantages.

The strategy we propose satisfies all these. So let’s look at the second question:
suppose the listener uses the “proviso–strategy”, how does she implement it?
In particular how does she know which elements in the domain of discourse are
perceived together by the speaker, and what does that mean?

We start with the latter. Given a domain D of individuals, and a subset
X ⊆ D, how can we describe when the elements in X are perceived together by
the speaker? One natural way to do this is to postulate that there exists a “dis-
tance” function f : D ×D −→ R, which describes for the speaker the distance
between each two elements in D. With distance we mean something inherently
vague with many dimensions. It has at least spatial, temporal, conceptual and
cultural components, but also cognitive ones, individualised to each speaker.
The listener could now state that the elements in X are perceived together by
the speaker if for all a, b in X, the distance between a and b is less than some
fixed value d. But if the listener cannot know the function f , she also has no
idea about d. So what is left for her is just the abstract information that there
exists a tolerance relation on D for the speaker. With the assumption that
the distance between one object is arbitrarily small, the only thing she knows
then is that there exists a binary relation δ(x, y) on D which is reflexive and
symmetric.

So far so good, but how does she know which elements stand in this rela-
tion? She can’t know anything but the discourse of the speaker provides her
with clues. That is, from the discourse she gets information which makes it
reasonable to assume that indeed the speaker can perceive certain individuals
together. The following are examples of such clues:

Named individuals all individuals which the speaker gives a name are per-
ceived together.

Existentially introduced individuals If the speaker introduces two individ-
uals existentially in the same discourse, then their denotation can be per-
ceived together by him.

Primitive relations If the speaker puts certain individuals together in a prim-
itive relation, then he can perceive them together. (We can view this as
“naming” a group.)

Related to named individuals Quite a bit stronger is to postulate that the
distance between any individual and any named individual is arbitrarily
small.

Macho or classical δ is the universal relation on the domain of discourse.
That is, the speaker can perceive each two individuals in the domain of
discourse together.
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The last clue brings us back to the classical interpretation of a discourse. Clearly
such clues can be provided by the speaker. We will assume though that he can
only do this outside the object language that we are studying. So the speaker
should make a kind of meta–statement in order to effectuate this information.
(Think of a math teacher who starts a class with: “Everything I will say holds
for all the natural numbers and for them only”.)

This concludes our view on relativisation in a discourse setting. We wil now
turn to the technical work. The clues presented above will re-occur there.

3 Relativised semantics for first order logic

We provide first order logic with a different semantics than the standard seman-
tics. We assume we are working with a standard first order language without
function symbols: thus the language contains equality, the usual first order con-
nectives, a countable stock of variables and individual constants, and a count-
able stock of n-ary relation symbols, for every n. In addition we will assume
that we have as primitive symbols also ∃v̄, where v̄ is a finite set of variables.
When v̄ = {v1, . . . , vk}, then ∃v̄ϕ just means ∃v1 . . . ∃vkϕ in classical logic. For
ϕ a formula in this language, FV (ϕ) denotes the set of free variables of ϕ,
defined in the standard way.

In classical first order logic, the interpretation of a formula in a model
(D, I) is given relative to an assignment of the variables s. Given a domain
D, the set of assignments consists of all functions from the set of variables into
D. The key idea of relativised semantics is that meaning of formulas becomes
relativised to a subset of the set of all assignments. We call such a set the
admissible assignments.

In what follows we will first define this relativised semantics. Then we see
what intuitions one can develop about the set of admissible assignments. We
finish with providing the connection with standard first order logic and establish
a notion of bisimulation.

3.1 Admissible assignments

Assignments. Given a model (D, I), an assignment is a function from the set
of variables into D. We assume our language has ω many variables v0, v1, . . . ,.
An assignment g can then be viewed as a sequence from ωD: g(i) then gives
the value of vi according to g.

To define the meaning of the existential quantifier, it is handy to create the
following relation between assignments:

s ≡i t iff for all j 6= i: s(j) = t(j). (1)

That is: two assignments s and t are ≡i related iff they agree on all values of
the variables except possibly for vi. We can also define these relations for sets
of variables v̄:

s ≡v̄ t iff for all j 6∈ v̄: s(j) = t(j). (2)
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Using the relation ≡i, we can give an alternative equivalent definition of the
meaning of the existential quantifier. Given a model M = (D, I) and an assign-
ment s ∈ ωD, define
M |= ∃viϕ[s] ⇐⇒ there exists a t ≡i s such that M |= ϕ[t].

Let us now look at this definition from a modal perspective. We view the as-
signments as worlds and ≡i as an accessibility relation. Then this definition is
just the standard modal truth–definition of the “diamond” ∃vi.

Given a first order model (D, I), the set of assignments (worlds) is uniquely
determined: it is the set ωD. The theory we will develop below abandons this
classical rigidness: we will allow other subsets of ωD to be set of “worlds” of
our first order models.

Before we can start we have to solve a technical difficulty. First order logic
satisfies the following appealing locality condition. It says that the meaning of
a formula depends only on the model and the variables occurring free in the
formula.

Fact 3.1 [Locality] Let ϕ be a first order formula. Let M = (D, I) be a model,
and s, t be two assignments such that s(i) = t(i) for all vi ∈ FV (ϕ). Then

M |= ϕ[s] if and only if M |= ϕ[t].

When we give first order logic a relativised semantics, locality does not neces-
sarily hold, cf [1, 6]. We will give meaning to the existential quantifier using
the dual of the relation ≡v̄. This relation was introduced into cylindric alge-
bra theory by Y. Venema. On relativised models, this will ensure locality, and
on standard models, the meaning of the existential quantifier is just the same.
Define for s, t assignments, v̄ a set of variables,

s ≡∂v̄ t iff for all vi ∈ v̄ s(i) = t(i). (3)

Admissible assignments. The key idea of relativised semantics for first or-
der logic is that given a model M = (D, I), only a subset of the set of all
assignments ωD is available for the interpretation of the formulas. We will now
provide the truth definition for a first order language relative to such an admis-
sible set of assignments V ⊆ ωD. First we give meaning to terms: let s be an
assignment, and M = (D, I) a model. We define a function i from the set of
terms into D as

i(t) =
{
I(t) if t is a constant
s(i) if t is the variable vi

(4)

Now for M = (D, I) a model, and V ⊆ ωD a set of assignments, we define truth
of a formula in M relative to assignments in V . For s ∈ V ,
M |=V R(t1, . . . , tn)[s] ⇐⇒ (i(t1), . . . , i(tn)) ∈ I(R)
M |=V t1 = t2[s] ⇐⇒ i(t1) = i(t2)
M |=V ¬ϕ[s] ⇐⇒ M 6|=V ϕ[s]
M |=V ϕ ∧ ψ[s] ⇐⇒ M |=V ϕ[s] and M |=V ψ[s]
M |=V ∃v̄ϕ[s] ⇐⇒ there exists a t ∈ V such that

s ≡∂FV (∃v̄ϕ) t and M |=V ϕ[t].
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Note that the only difference with the definition in any textbook on first order
logic is in the clause for the existential quantifier: the assignment t witnessing
ϕ must be admissible, and we use the dual relation ≡∂ . For comparison, let us
define |=c

V —for “classical |=”, where all clauses are the same as for |=V above,
except the existential quantifier is defined as
M |=c

V ∃v̄ϕ[s] ⇐⇒ there exists a t ∈ V such that s ≡v̄ t and M |=c
V ϕ[t].

The next fact states that the two definitions are equivalent on classical models.

Fact 3.2 Let M = (D, I) be a model and let V = ωD. Then for any s ∈ V ,
for any formula ϕ,

M |=V ϕ[s] if and only if M |=c
V ϕ[s].

Proof. The only difference is in the meaning of the existential quantifier. That
case goes through by the facts that locality holds on classical models and s ≡v̄ t
implies that s ≡∂FV (∃v̄ϕ) t. qed

The next fact states that on relativised models, locality holds as well.

Fact 3.3 Let M = (D, I) be a model and V ⊆ ωD a set of admissible assign-
ments. For any formula ϕ, for any s, t ∈ V such that s ≡∂FV (ϕ) t (that is, s and
t assign the same values to the free variables in ϕ):

M |=V ϕ[s] if and only if M |=V ϕ[t].

Truth at non–admissible assignments. Given a model M = (D, I) and
a set of admissible assignments V ⊆ ωD, we have defined what it means for a
formula to be true in M at assignments in V . But what about the assignments
in ωD \ V ? The obvious way to do this for s ∈ ωD \ V is as follows,

M |=V ϕ[s] ⇐⇒ there exists t ∈ V such that t ≡∂FV (ϕ) s and M |=V ϕ[t].

Note that for formulas ϕ, M |=V ϕ[s] can still be undefined. If we assume that
V is always non–empty, then for sentences however it is always defined. We
now have two ways of defining truth in a model for sentences:
M |=1

V ϕ iff (∀s ∈ ωD) : M |=V ϕ[s]
M |=2

V ϕ iff (∀s ∈ V ) : M |=V ϕ[s].
For sentences, these two definitions give the same result:

Fact 3.4 For every model M, for every non–empty V ⊆ ωD, for every sentence
ϕ,

M |=1
V ϕ if and only if M |=2

V ϕ.

Since |=2
V is more economical, we will use this notion from now on and delete

the superscript.
Finally we define the notion of validity and of valid consequence. As usual

we will overload the meaning of the symbol |=. Let Σ be a set of conditions on
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sets of admissible assignments. Let ϕ be a sentence and Γ a set of sentences.
We define
|=Σ ϕ iff for every first order model M = (D, I),

for every V ⊆ ωD satisfying Σ,M |=V ϕ.
Γ |=Σ ϕ iff for every first order model M = (D, I),

for every V ⊆ ωD satisfying Σ, M |=V Γ implies M |=V ϕ.

3.2 Different relativisations

Above we have defined relativised semantics for any choice of V ⊆ ωD. In the
literature several restrictions on V have been proposed.

Here we will show how one can define a set of admissible assignments from a
tolerance relation on the domain of the model and from the notion of a context
set [9]. Tolerances were introduced in the previous section. For M = (D, I)
a model, a context is just a subset of D. The intuitive meaning of a context
X ⊆ D is

all elements in X can be perceived together by the speaker.

We will now define these notions and investigate their effects.
Let M = (D, I) be a first order model. Suppose f : D × D −→ R

+
0 is a

function associating with every pair of elements in the model a value, which we
think of as the distance between the elements. We can then define δ(x, y) ⇐⇒
f(x, y) ≤ d for some fixed positive d. If we assume that f(x, x) = 0, then δ
satisfies
δ1 (∀x ∈ D) : δ(x, x)
δ2 (∀xy ∈ D) : (δ(x, y) → δ(y, x)).

We call a relation δ ⊆ D ×D satisfying these two requirements a tolerance on
D.

Let C be a collection of subsets ofD. Let C satisfy the following two conditions:
C1 all singleton sets belong to C
C2 C is closed under subsets.

If in addition C satisfies the following packed dense condition,
CPD if for all x, y ∈ X, {x, y} ∈ C , then also X ∈ C ,

we call C a context set. Tolerances and context sets are closely related.

Fact 3.5 (i) If δ is a tolerance on D, then the set C defined by

X ∈ C iff for all x, y ∈ X, δxy,

satisfies C1, C2 and CPD .
(ii) If C ⊆ P(D) satisfies C1, then δ defined by

δxy iff there exists a set X ∈ C such that {x, y} ⊆ X,

defines a tolerance on D.
(iii) Tolerances and context sets are inter definable by the above definitions.
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We now relate tolerances and context sets to sets of admissible assignments.

Definition 3.6 Let (D, I) be a model, and let δ be a tolerance and C a context
set on (D, I). We define two sets of admissible assignments Vδ and VC as the
smallest subsets of ωD satisfying

s ∈ Vδ iff (∀i, j) : δ(s(i), s(j))
s ∈ VC iff {s(i) | i ∈ ω} ∈ C ,

respectively.

The following fact is immediate by Fact 3.5.

Fact 3.7 Let (D, I) be a model, and let δ be a tolerance and C a context set
on (D, I). Then Vδ = VC .

Until now we have given only minimal requirements on the notions of context
sets and tolerances. With our intended interpretation it makes sense to make
them language–dependent as well (cf., the clues provided in Section 2).

The following extra conditions make sense in a language with constants.
¿From the perspective of a distance function, it says that the distance between
any element and a named element is arbitrarily small.
δ3 (∀x ∈ D) : δ(x, I(m)) for all constants m
C3 (∀x ∈ D) : {x, I(m)} ∈ C for all constants m.

A further restriction on δ (and hence C ) is to ask that the distance between
two elements which stand together in a primitive relation is arbitrarily small.
This would lead to the following extra conditions on δ and C :
δ4 (∀x, y ∈ D) : if (∃z1 . . . zk(x = zi ∧ y = zj ∧ (z1, . . . , zk) ∈ I(R)

for some R, i, j, then δ(x, y).
C4 (∀x, y ∈ D) : if (∃z1 . . . zk(x = zi ∧ y = zj ∧ (z1, . . . , zk) ∈ I(R)

for some R, i, j, then {x, y} ∈ C .

We now look at the effect of the extra restrictions about constants and
primitive relations on the logic. The condition δ3 does have an effect (of course
only in languages with constants in the signature), while δ4 does not.

Fact 3.8 There exists a sentence which can be falsified on a model with a set
of admissible assignments Vδ defined by a tolerance δ, but which holds on all
models where Vδ is defined by a tolerance satisfying δ3.

Proof. Consider the first order tautology

[∀x∃yRxy ∧ ∀xyz((Rxy ∧Ryz) → Sxz)] → ∃xySxy.

The counter model has the natural numbers as its domain, R is interpreted as
successor, S = ∅ and δ is generated by the successor relation (that is δ(x, y) iff
x = y or Rxy or Ryx holds). Clearly δ is a tolerance and the consequent fails on
this model. To see that the antecedent holds, observe that for no assignment
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s ∈ Vδ, the range of s contains more than two elements. Thus the second
conjunct in the antecedent cannot be falsified.

On the other hand, consider any model M where Vδ is defined from a tol-
erance satisfying δ3. Assume the antecedent holds in M. Let a be the element
named by some constant a. Then by the first conjunct, there exists a b ∈ D
such that Rab. Let s be the assignment sending every variable to b. Then
M |=V ∃yRby[s], whence there exists a c such that Rbc and δ(b, c) holds. But
by δ3, also δ(a, b) and δ(b, c). But then {a, b, c} ∈ Vδ, whence by the truth of
the second conjunct of the antecedent, Sac must hold. qed

For sentences, condition δ4 does not lead to extra validities.

Fact 3.9 For every sentence ϕ,

|={δ1,δ2,δ3} ϕ if and only if |={δ1,δ2,δ3,δ4} ϕ.

The same holds when we disregard condition δ3.

Proof. From left to right is obvious. For the other direction, assume M |=V ϕ
where V is defined from a tolerance not satisfying δ4. Change the valuation
of the relation symbols such that δ4 holds as well, by deleting any tuple ā
containing elements ai, aj which are not δ–related from the interpretation of
every relation symbol. Call this model M′. But then still M′ |=V ϕ, since to
determine the truth of a sentence at an assignment in Vδ one only needs to
consider assignments in Vδ. qed

Summing up. We have given several ways of defining relativised semantics.
Now it is time to make a choice. In a language without constants this would be
easy: we only allow admissible assignments defined from a tolerance δ. Then,
just because it is handy, we can ask for condition δ4 as well, since it does
not alter the logic anyway. With constants in the language we should make a
decision about δ3. Since it seems a natural condition and it makes the logic
stronger, we have chosen to include that as well. So from now on we only use
relativised models where the set of admissible assignments is defined from a
tolerance δ satisfying δ3 and δ4 (or equivalently, from a context set C which
satisfies C3 and C4). ¿From now on a tolerance means a tolerance satisfying
δ3 and δ4.

Definition 3.10 Let M = (D, I) be a model, and δ ⊆ D ×D. The relation δ
is called a tolerance if it satisfies δ1, δ2, δ3 and δ4.

3.3 Bisimulations

Explicit relativisations. Let M = (D, I) be a model and C ⊂ P(D) a
context set on it. Recall that the intuitive meaning of C was as follows:

X ∈ C if and only if all elements in X can be perceived together by the
speaker.
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The language does not have explicit means to state that two elements are per-
ceived together. So we could add constants δij for every i, j ∈ ω, and provide
them with the following meaning. For any s ∈ ωD,

M |= δij [s] if and only if {s(i), s(j)} ∈ C . (5)

Following Tarski, we call an operation logical if it’s truth is preserved under
automorphisms. Clearly δij is not a logical constant. But intuitively it should
not be one in this sense. δij indicates that the elements denoted by s(i) and
s(j) are part of a group of elements which can be perceived together. Arbitrary
automorphisms can destroy this intuitive meaning of δij . On the other hand,
the truth of δij is preserved under automorphisms which respect C .

Fact 3.11 Let M = (D, I) be a model and C ⊂ P(D) a context set on it. Let
g be an automorphism of M such that for any set X ⊆ D, X ∈ C if and only
if {g(x) | x ∈ X} ∈ C . Then for any s ∈ ωD,

M |= δij [s] if and only if M |= δij [g(s)].

Note that δij is true on every s ∈ VC , so on admissible assignments it is equiv-
alent to >. In particular the following equivalence holds.

M |=VC
∃v̄ϕ[s] if and only if M |=VC

∃v̄(
∧
{δij | vi, vj ∈ FV (ϕ)} ∧ ϕ)[s].

What we just did is to make the implicit relativisation to admissible assignments
in the meaning definition of the quantifiers explicit in the object language. This
provides us with a translation to ordinary first order logic as follows.

Define recursively the following translation function (·)δ from first order for-
mulas to first order formulas. (·)δ does nothing to atomic formulas, it commutes
with the booleans and

(∃v̄ϕ)δ = ∃v̄(
∧
{δ(vi, vj) | vi, vj ∈ FV (ϕ)} ∧ ϕδ).

Here δ is just a binary predicate. As expected we have,

Fact 3.12 Let M = (D, I) be a model and δ a tolerance on it. Then for every
formula ϕ, for all s ∈ Vδ,

M |=Vδ
ϕ[s] if and only if (D, I, δ) |= ϕδ[s].

Here δ is defined as the set

{(x, y) ∈ D ×D | x, y stand in the tolerance relation δ},

and forms the interpretation of the binary predicate δ.
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Bisimulations and packed sets. Let (D, I) be a model and δ a tolerance
on it. We call a set X ⊆ D δ–packed if δ(x, y) holds for all x, y ∈ X. Then
Vδ —the set of admissible assignments defined from δ— is just the set of all
sequences whose elements form a δ–packed subset ofD. Using this we can define
the appropriate notion of bisimulation for this logic. Note that the definition
is very close to the one for the guarded fragment in [2].

Two pieces of notation come handy: define for s ∈ ωD,

R(s) = {s(i) | i ∈ ω}.

Also for g a function from D to D′, and s ∈ ωD, define

g(s) = that sequence in ωD′ such that for all i, g(s)(i) = g(i).

Definition 3.13 (Bisimulation) Let M = (D, I) and N = (D′, I ′) be two
models for the same signature. Let δM and δN be tolerances on them respec-
tively. A family F of finite partial isomorphisms between D to D′ is called a
δ–bisimulation if F satisfies the following conditions:

• if f ∈ F and g ⊆ f , then also g ∈ F
• (totality)

– for every δ–packed set X ⊆ D, there exists an f ∈ F whose domain is
X

– similar for δ–packed subsets of D′

• (forth) if f ∈ F and dom(f) ⊆ X for some δ–packed set X, then there
exists a g ∈ F which extends f and whose domain is X

• (back) a similar condition in the other direction.

Note that bisimulations are always non–empty, by totality and the fact that
every singleton set is δ–packed. Of course we have the following

Fact 3.14 For every ϕ, for every M,N, for every δ–bisimulation F between
them, for every f ∈ F , and for every assignment s such that R(s) = dom(f),

M |=V ϕ[s] if and only if N |=V ϕ[f(s)].

Proof. The proof is by induction on formulas. We only consider the case for
the existential quantifier. So let M |=V ∃v̄ϕ[s] and f ∈ F with dom(f) = R(s).
The case when ∃v̄ϕ is a sentence is easy and left to the reader (use totality).
So suppose otherwise. Then there exists a t ∈ Vδ such that t ≡∂FV (∃v̄ϕ) s and
M |=V ϕ[t]. Let s′ be such that R(s′) = {s(i) | vi ∈ FV (∃v̄ϕ)}. Then by
locality also M |=V ∃v̄ϕ[s′]. Since F is closed under subsets, also f�R(s′) ∈ F .
From t ≡∂FV (∃v̄ϕ) s it follows that R(s′) ⊆ R(t). Whence by forth, there exists a
g ⊇ f�R(s′) with dom(g) = R(t). Thus by induction hypothesis, N |=V ϕ[g(t)].
But g ⊇ f�s′ implies f�R(s′)(s′) ≡∂FV (∃v̄ϕ) g(t). Thus N |=V ∃v̄ϕ[f�R(s′)(s′)],
whence by locality N |=V ∃v̄ϕ[f(s)]. qed
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4 Packed fragment

In this section, we look for sentences whose truth in a model is unaffected by
adding or deleting a tolerance. The syntactic characterisation of this fragment
forms a slight generalisation of van Benthem’s loosely guarded fragment. We
first define the fragment. We work in a standard first order language with
equality with one restriction: terms are variables or constant symbols.

We say that a formula ϕ packs a set of variables {x1, . . . , xk} if ϕ is a
conjunction of formulas of the form ti = tj or R(t1, . . . , tn) or ∃ȳR(t1, . . . , tn)
such that for every xi 6= xj, there is a conjunct in ϕ in which xi and xj both
occur free.

In the definition of the packed fragment we use generalised quantifiers
∀x̄(ϕ,ψ) where x̄ = x1, x2, . . . , xn is a sequence of variables. The meaning
of this quantifier is nothing but the meaning of ∀x1 . . . ∀xn(ϕ → ψ) in first
order logic.

A generalised quantifier ∀x̄(ϕ,ψ) is called packed if ϕ packs all free variables
of ψ. We call ϕ the guard of ∀x̄(ϕ,ψ). Note that if ψ contains only one free
variable, then the first argument of the universal quantifier can be anything:
packedness only speaks about pairs of variables.

The packed fragment is defined as follows: a packed formula is constructed
from atoms using the booleans and packed universal quantification ∀x̄(ϕ,ψ),
where ψ must be a packed formula.

It will be useful to define two more fragments. A packed existential quan-
tification is nothing but ¬∀v̄(ϕ,¬ψ), where ∀v̄(ϕ,¬ψ) is a packed universal
quantification (i.e., it is of the form ∃v̄(ϕ ∧ ψ), where ϕ packs all free variables
of ψ).

The ∀–packed fragment is defined as follows: formulas are constructed from
atoms and their negations using ∧,∨,∃ and packed universal quantification
∀x̄(ϕ,ψ), where ψ must be a ∀–packed formula. The ∃–packed fragment is
defined dually: so we may use unpacked ∀, but only packed ∃.

The three fragments are of course closely related

Fact 4.1 A first order sentence ϕ is equivalent to a packed sentence if and only
if it is equivalent to a ∀– and a ∃–packed sentence.

We will now related the packed fragment to relativised semantics. One direction
is obvious, and observed in [8].

Fact 4.2 The translation (·)δ goes to the packed fragment.

Just as all first order sentences are invariant for δ–bisimulations when they
are interpreted relativised to a set of admissible assignments, all packed sen-
tences are invariant for δ–bisimulations when they are classically interpreted.

Definition 4.3 A sentence ϕ is invariant for δ–bisimulations if for all models
M, N, for all tolerances δM, δN, and for all δ–bisimulations F : M 'F N,

M |= ϕ if and only if N |= ϕ.

13



Fact 4.4 All packed sentences are invariant for δ–bisimulations.

Proof. Let M,N be models, δM, δN tolerances and F : M 'F N a δ–
bisimulation. We show by induction that for every packed formula ϕ, for every
f ∈ F , and for every assignment s such that R(s) = dom(f),

M |= ϕ[s] if and only if N |= ϕ[f(s)].

Then the result follows by the non–emptyness of δ–bisimulations.
The inductive proof goes through for the atomic cases because the functions

in F are partial isomorphisms. The boolean cases are trivial. For packed
existential quantification we reason as follows. Let us call an assignment s small
for ϕ if (∀x 6∈ FV (ϕ))(∃y ∈ FV (ϕ)) : s(x) = s(y). Suppose M |= ∃x̄(ϕ,ψ)[s].
By locality we may assume that s is small for ∃x̄(ϕ,ψ). Then there exists a
t ≡x̄ s such that M |= ϕ ∧ ψ[t]. Again we may assume that t is small for
ϕ ∧ ψ. Since ϕ packs all free variables of ψ, the set R(t) is packed by δM.
Moreover R(s) ⊆ R(t) because both are small. But then by forth, there exists
a g ∈ F extending f whose domain is R(t). Thus by inductive hypothesis
N |= ϕ ∧ ψ[g(t)], and finally N |= ∃x̄(ϕ,ψ)[f(s)], since g extends f . qed

Facts 3.12 and 4.2 show that on any model M, and any relativisation defined
by a tolerance δ, the question whether M |=V ϕ[s] is equivalent to the question
whether the packed formula ϕδ is classically satisfied in M at s. The other
direction was shown in [5], to give an alternative proof of the decidability of
the loosely guarded fragment. The following fact is a generalisation of that
result. It reduces the question of first order satisfiability of ∀–packed formulas
to that of relativised satisfiability. We present the fact and its proof here since
the construction used in the proof is typical for the packed fragment, and will
later be used to give a semantic characterisation of it.

Fact 4.5 Every ∀–packed formula is classically satisfiable iff it is satisfiable on
a relativised model.

Proof. ¿From left to right is obvious, just take the tolerance to be the universal
relation. For the other direction, let M = (D, I) be a model, δ a tolerance on
D and suppose M |=Vδ

ϕ. We prove by induction for every s ∈ Vδ, for every
formula ψ,

(∗) M |=Vδ
ψ[s] ⇒ M |= ψ[s],

from which the result follows.
For literals and formulas of the form ∃x̄(R(t1, . . . tk)) (∗) holds in both direc-
tions. For ∧,∨ and ∃, the proof is trivial.

For the universally quantified formulas, suppose M 6|= ∀v̄(ϕ,ψ)[s]. Then
there exists a t ≡v̄ s such that M |= ϕ[t] but M 6|= ψ[t]. By locality we may
assume that R(t) = {t(i) | vi ∈ FV (ϕ→ ψ)}. Since ϕ packs all free variables of
ψ, R(t) is δ–packed (since we assume condition δ4), so t ∈ Vδ. Then M |=Vδ

ϕ[t],
since (∗) holds in both directions for all conjuncts of ϕ. An application of the
induction hypothesis leads to M 6|=Vδ

ψ[t]. Whence M 6|=Vδ
∀v̄(ϕ,ψ)[s], because

s ≡∂FV (∀v̄(ϕ,ψ)) t holds as a consequence of s ≡v̄ t. qed
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Because he satisfaction problem for first order formulas on relativised models
is decidable [5], we obtain

Corollary 4.6 The satisfaction problem for ∀–packed formulas is decidable.

The reader familiar with modal logic might recognise a basic construction from
modal logic. If we view the elements of Vδ as worlds, then essentially we added
worlds to the model. The reverse action would correspond roughly to the gen-
erated submodel construction from modal logic. Reading the last proof dually,
it shows that ∃–packed sentences are preserved under adding a tolerance and
interpreting sentences in a relativised manner. Formally,

Definition 4.7 Let M = (D, I) be a model, and δ any tolerance on D. We say
that a first order sentence ϕ is preserved under δ–relativisation if M |= ϕ in the
classical sense only if M |=Vδ

ϕ. A sentence ϕ is invariant for δ–relativisation
if M |= ϕ in the classical sense if and only if M |=Vδ

ϕ.

The last proof showed the following preservation result.

Fact 4.8 The ∃–packed fragment is preserved under δ–relativisation.

The converse of this preservation result does not hold. In fact this is to be
desired since

Fact 4.9 The validity problem for the first order fragment preserved under
δ–relativisation is undecidable.

Proof. Consider arrow logic interpreted on relativised pair–frames, and ex-
pand it with a coordinate wise difference operator D1, with the following mean-
ing, interpreted on a model with relativised domain V :

M |= D1ϕ(x, y) iff there exists a (x, z) ∈ V and z 6= y and M |= ϕ(x, z).

This logic is introduced in [5] and shown to be undecidable. It is easy to check
that the range of the translation of this logic to first order logic is preserved
under δ–relativisation. qed

Corollary 4.10 The ∃–packed fragment does not capture all first order sen-
tences preserved under δ–relativisation.

Proof. An ∃–packed sentence is valid iff its negation (which is equivalent
to a ∀–packed sentence is not satisfiable. By Fact 4.5 and the fact that the
satisfaction problem for relativised semantics is decidable, the validity problem
for ∃–packed sentences is decidable. This contradicts Fact 4.9. qed

We come to the central result of this paper: a semantic characterisation of
the packed fragment in terms of relativised semantics.
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Theorem 4.11 Let ϕ be a first order sentence. The following are equivalent.
(i) ϕ is equivalent to a packed sentence.
(ii) ϕ is invariant for δ–bisimulation.
(iii) ϕ is invariant for δ–relativisation.

Proof. From (i) to (ii) was shown in Fact 4.4. From (ii) to (iii) is immediate
since every model δ–bisimulates with itself for every tolerance defined on it. For
the proof of (iii) implies (i), we use a “diagram–chasing” argument well–known
from van Benthem’s work (see e.g., [7, 8]).

Let ϕ be a sentence which is invariant under δ–relativisation. Define PF (ϕ)
as the set of all packed sentences (in the same signature as ϕ) which classically
follow from ϕ. We will show that PF (ϕ) |= ϕ, from which the result follows
by compactness. If PF (ϕ) is inconsistent, there is nothing to prove. So let
M = (M, I) be a model for PF (ϕ), in the signature of ϕ. We will show that
M |= ϕ. Consider the complete packed theory PF (M) of M, together with
ϕ. This set of sentences is finitely satisfiable by a simple argument. Thus by
compactness it has some model N = (N, I ′). Again we can equate the signature
of N with the signature of ϕ.

Now take ω–saturated extensions M+ and N+, respectively. Let δM (δN)
be the smallest tolerance which can be defined on M+ (N+). Since M and N

have the same finite signature, on the extensions δ can be defined as a finite
disjunction of terms of the form

ti = tj, R(t1, . . . , tn), and ∃v̄R(v̄, vi, vj). (6)

Since packed formulas are invariant under δ–relativisation, and ϕ as well, we
have

M+ |=VδM
PF (ϕ) and N+ |=VδN

PF (M) ∪ {ϕ}.
We call finite δ–packed sets X ⊆M+, Y ⊆ N+ δ–relativised equivalent if there
exists a bijection f : X −→ Y , and for some s ∈ ωM+, such that R(s) = X,
we have

for all formulas ϕ, M+ |=VδM
ϕ[s] ⇐⇒ N+ |=VδN

ϕ[f(s)]. (7)

Claim 1 The relation of δ–relativised equivalence is a δ–bisimulation between
the models M+ and N+, with tolerances δM and δN, respectively.

Proof of Claim. Obviously, the relation is closed under subsets. The proof
that it is total needs some extra argumentation. First observe that by Fact 3.12,
(7) is equivalent to

for all formulas ϕ, M+ |= ϕδ [s] ⇐⇒ N |=+ ϕδ[f(s)], (8)

where (·)δ is the translation function defined just above Fact 3.12. But since δ is
the smallest tolerance, for every two variables vi, vj , δ(vi, vj) is equivalent with
a disjunction of formulas of the form given in (6). But then, using distributivity
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of ∨ over ∧ and of ∨ over ∃v̄, every formula ϕδ can be equivalently written as
a packed formula in the ϕ-signature. Whence (8) is equivalent to

for all packed formulas ϕ, M+ |= ϕ[s] ⇐⇒ N+ |= ϕ[f(s)]. (9)

But now the standard argument can be applied. Let X ⊆ M+ be some finite
δ–packed set, with |X| = n. Let s ∈ ωM+ be such that R(s) = X. Let PF (s)
be the set of packed formulas true at s in M+. Then for every finite subset Ψ
of PF (s), M+ |= ∃v1 . . . vn(ϕ,

∧
Ψ), where ϕ describes how X is packed. Note

that this is a packed sentence. So it also holds in M, whence also in N+. But
then, by ω–saturation, PF (s) is satisfied in N+ at some t. Then R(t) is the
required witness.

The other direction of totality uses a symmetric argument. The back and
forth clauses are now proved similarly, again exploiting the fact that the models
are saturated. J

Now we are almost finished. Since N+ |=VδN
ϕ, by Fact 3.14, M+ |=VδM

ϕ,
whence since ϕ is invariant for δ–relativisation, also M+ |= ϕ. Whence, since
M is an elementary submodel of M, M |= ϕ, as required. qed

5 Conclusion

Theorem 4.11 provides us with a semantic characterisation of the packed frag-
ment. Moreover it indicates a strong connection between the packed fragment
and relativised semantics. The packed fragment forms precisely the set of first
order sentences for which it does not matter whether they are interpreted clas-
sically or relativised on a model.

Another perspective on the packed fragment is obtained by analogy with
modal logic. In describing the difference between first order logic and modal
logic, modal logicians often first come up with the fact that truth is determined
locally in modal logic. What is meant is that truth of a modal formula at
some state s only depends on the states which are finitely accessible from s. In
other words, truth at s is invariant for adding or deleting states which are not
accessible from s. Put differently, modal formulas are invariant under generated
submodels.

Relativisation implements this modal “local evaluation” in first order logic
by relativising the meaning of the quantifiers to admissible assignments. In
modal terminology: in a model (D, I), every assignment s ∈ ωD is accessible to
every other assignment t ∈ ωD; relativisation restricts the number of accessible
assignments to the admissible ones, and thus localises first order logic. ¿From
this perspective, Theorem 4.11 tells us that the packed fragment is the “local”
fragment of first order logic. Whence, if we are willing to equate local with
modal, it states that the packed fragment is the true modal fragment of first
order logic.
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and M. Masuch, editors, Arrow Logic and Multimodal Logics, Studies in
Logic, Language and Information, pages 221–247. CSLI Publications, Stan-
ford, 1995.

[7] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.

[8] J. van Benthem. Exploring Logical Dynamics. Studies in Logic, Language
and Information. CSLI Publications, Stanford, 1996.

[9] D. Westerstahl. Determiners and context sets. In J. van Benthem and A. ter
Meulen, editors, Generalized Quantifiers and Natural Language, pages 45–
71. Foris, Dordrecht, 1985.

18


	Introduction
	Relativisation interpreted as a sceptical information processing strategy
	Relativised semantics for first order logic
	Admissible assignments
	Different relativisations
	Bisimulations

	Packed fragment
	Conclusion

