
Parsing as Sequential Construction of Logical Forms

Wilfried Meyer Viol

Abstract

In this paper we give a formal description of the parsing model that underlies the
treatment of Long Distance Dependencies, Topic and Focus, Ellipsis and Quantification
in, amongst others, the papers [1996],[1997],
[1999a],[1998],[1999b]. In this model, a natural language string consists of a sequence
of ‘instructions packages’ to construct some term in a formal representation language,
the logical form of the string in question. Parsing, then, is the process of executing
these packages in a left to right order.

Contents

1 Terms as Decorated Trees 2

2 Goal-Directedness 7

3 Actions 10

4 The Parsing Process 12

5 Conclusion 14

1

Introduction

In this paper we will give a formal description of the parsing model that under-
lies the treatment of Long Distance Dependencies, Topic and Focus, Ellipsis and
Quantification in, amongst others, the papers [1996],[1997],[1999a],[1998],[1999b].
Although the intuition behind the model is quite natural, nevertheless, it seems
not to have been explored to any extent. The main idea is to view a natural lan-
guage string s = w1w2 . . . wn as projecting a sequence of ‘instructions packages’
to construct some term T in a formal representation language, this term being
the supposed interpretation or logical form of the string in question. Parsing,
then, is the process of executing these packages in a left to right order:

PARSE(s) = (〈w1,T1〉, . . . 〈wn,Tn〉),

where each Ti+1 is a partial logical form, the result of executing wi on form Ti,
T1 is the result of processing w1 on a starting form T0 and, provided s is gram-
matical, Tn is a complete logical form. The model we are going to introduce to
formalize this process is shamelessly eclectic.
— The partial logical forms constitute the domain PT of a partially ordered
Kripke frame M = 〈PT,≤〉 on which the standard logical connectives and op-
erators are given an intuitionistic interpretation.
— The partial logical forms in this frame are themselves represented as par-
tial decorated binary trees T and the partial order ≤ reflects tree growth.
On these trees the modal operators of the Logic of Finite Trees are inter-
preted. So the structure up to this point is an intuitionistic multi-modal frame
M = 〈P,≤,≺i〉i∈I and represents the space of partial logical forms.
— The parsing process is now a goal-directed movement through this space to-
wards the set LoFo ⊂ PT of complete Logical Forms. This goal-directedness
will be represented by a requirement function R which adds to every node
of a partial tree a (finite) set of requirements that have to be fulfilled (so, if
T ∈ LoFo and n is a node in T , then R(n) = ∅). Addition of a requirement
function gives the structure M = 〈P,≤,≺i, R〉.
— Finally, the words the words w1, . . . , wn of a string natural language s and
the general principles of that language will be represented as incremental ac-
tions which map partial logical forms to enriched ones. That is, on top of the
intuitionistic modal frame with requirements, we now add a PDL like struc-
ture1 of actions A such that w1, . . . , wn ∈ A. This gives our final structure
M = 〈PT,≤,≺i, R,A〉.

1 Terms as Decorated Trees

In order to handle partiality of logical forms in a flexible way, we represent
the elements of each Di as decorated finite partial trees. Logical forms are
built up by one or more ways of putting together basic semantic entities.

1PDL stands for Propositional Dynamic Logic.

2

[0[0] [1[1] [1 [0][1]]]
︸ ︷︷ ︸

Tree

{00:john, 011:λxλyread(x)(y), 0111:λP (someP), 0110:(x,bookx)}
︸ ︷︷ ︸

Decorations

.

Figure 1: A Term as a decorated tree

Each of these modes of combination can be associated with a product type-
constructor. A term in a language appropriate for these type-constructors can
be represented as a finite binary branching tree, where every binary branching
〈b1, b2〉 reflects the presence of a subterm O(b1, b2) for some operator binary
O. As an example, let APL be the operation of function application in a typed
lambda calculus. The sentence John read a book, represented by the formula
read(john, some(x,book(x))), can be seen as resulting from the unreduced
lambda term

APL(APL(λxλyread(y)(x), APL(λP (someP), (x,bookx)), john)

by β-reduction. In Figure 1. we have represented this term as a binary tree
structure with an associated set of node decorations. (Here ‘[0’ means argument-
and ‘[1’ function-daughter of the APL operator.) By representing terms in this
way, we can address term structure and term content separately. In particu-
lar, we can represent partially specified trees that are, moreover, only partly
decorated.
Such decorated tree structures have to be constructed in the course of a parse
through an NL string. In order to deal with the partial logical forms arising
during a parse we consider T -structures,

Definition 1 (T -Structures) A T -structure is a quintuple of the form T = 〈T,≺0

,≺1,≺↓,≺∗〉 where T is a non-empty domain of tree nodes and ≺i,for i ∈ I = {0, 1, ↓
, ∗}, is a (possibly empty) binary relation on T .
The set BT consists of those T -structures which are ordered as binary trees, where ≺0 is
the right-daughter and ≺1 the left-daughter relation, ≺↓ is the immediate dominance
relation (≺↓=≺0 ∪ ≺1), and ≺∗ is the dominance relation, i.e., the reflexive and
transitive closure of ≺↓.

Definition 2 (Partial Trees) A function f is a Tr-morphism from T -structure
T in T -structure T ′ if it maps T in T ′ such that for all n,m ∈ T , for all i ∈ I:
n ≺i m ⇒ f(n) ≺i f(m). The set PT , of partial trees, consists of all T -structures T
such that there is a Tr-morphism mapping T to an element of BT , i.e., a binary tree.

In a full-blown binary tree, n ≺∗ m implies that there is a sequence of immediate
dominance steps relating n to m, but in a partial tree this does not need to be
the case. The under-specified tree relations (≺↓ and in particular ≺∗), play an
essential role in constructing the term while traversing the string in a left to
right fashion: we cannot always decide on the spot where specifically a certain
subterm has to function in the eventual term. Given the string A book John
read, we do not yet know what to do with A book at the start of the sentence.

3

[0[0] [∗ [0],[1]]. . .]
︸ ︷︷ ︸

Tree

{00 : John, 0 ∗ 1 : λP (someP), 0 ∗ 0 : (x, bookx)}
︸ ︷︷ ︸

Decorations

.

Figure 2: A Partial Term as a partial decorated tree

After having parsed A book john the partial logical form constructed is shown in
Figure 2, which gives a partial tree model with an under-specified tree relation.
This under-specified relation constrains the set of completions to those binary
trees which have this relation witnessed by an immediate dominance sequence.

Partial trees are constructed in stages and node by node and we need a pointer
to identify the nodes at which action is to take place, that is, our representations
of partial logical forms consist of pairs 〈T , n〉, which we will write as T n, a
partial tree T together with a pointer indicating some node n ∈ T .

Definition 3 (Structure of Pointed Partial Trees) Let PPT = {T n | T ∈
PT, n ∈ T } be the set of pointed partial trees. We set T n ≺i T ′n′ if T = T ′ and
n ≺i n

′, and T n ≤ T ′, n′ if there is a Tr-morphism f : T 7→ T ′ such that f(n) = n′.
The frame of Pointed Partial Tree structures can now be defined as

PPT = 〈PPT,≺i,≤〉i∈{0,1,↓,∗}.

Along ≤, a pair n,m ∈ T such that n ≺∗ m may be mapped by Tr-morphism
f to a pair such that f(n) ≺↓ f(m) and later, by some Tr-morphism g, to a
fully specified relation g(f(n)) ≺0 g(f(m)).

The Language DU

On Pointed Partial Tree Structures we can interpret the Language of Finite
Trees, LFT (see [1]), a propositional modal language with the modalities 〈0〉φ
(“φ holds on the first daughter”), 〈1〉φ (“φ holds on the second daughter”), 〈↓〉φ
(“φ holds on some daughter”), 〈∗〉φ (“φ holds here or somewhere below”), 〈L〉φ
(“φ holds on a linked node”), their converses 〈i−1〉, and their universal variants
[i], [i−1], for i ∈ {0, 1, ↓, ∗}. In the tree of Figure 1, for instance we have the
following

— 〈0〉Fo(John) and 〈1〉〈1〉λxλyread(x)(y) hold at the top node 0.
— 〈↓−1〉〈∗〉Fo(x,bookx)) holds at node 00 decorated by Fo(John).

where the atomic formulas are designed to describe Declarative Units decorat-
ing binary (linked) tree structures. Declarative units are pairs consisting of a
sequence of labels followed by a content formula. We have seen examples of
content formulas in the denotations john, (x,Bookx) and λxλyread(x)(y).
The types e, t and e → t from these examples are instances of labels. The
descriptions of declarative units determine the atomic vocabulary. So, our lan-
guage has monadic predicates La1, . . . Lan, Fo, standing for n label dimensions
and a formula dimension and individual constants from DLa1 , . . . DLan ,DFo re-
spectively, denoting values on these dimensions. The atomic propositions of the
language then have the form Lai(t) or Fo(t) where t is either an element of the

4

appropriate domain DLai , DFo, or it is a meta variable. A declarative unit can
then be completely represented by a finite set of atomic propositions.

{La1(l1), . . . Lan(ln), Fo(Ψ)},

and a partial declarative unit, an object naturally arising in the course of a
parse, is merely a subset of a description of a declarative unit.

The language, DU , we have settled on to describe partial Declarative units
and their developments towards logical forms, includes the tree modalities from
LFT, the standard Boolean constants and connectives and existential and uni-
versal quantifiers ranging over the set of label and formula values.

Definition 4 (The Representation Language DU) A proposition A of the
language DU has one of the following shapes:

A ::= > | ⊥ | La1(l1) | . . . | Lan(ln) | Fo(φ) | Eq(t1, t2) | A ∧A | A ∨A |
| A→ A | ∃xA | ∀xA | 〈#〉A | [#]A

for VAR= {x,x1,x2, . . . ,y, . . .} a denumerable set of individual variables, MV a de-
numerable set of meta variables, predicate values li ∈ DLai ∪ VAR ∪MV , for each i:
1 ≤ i ≤ n, φ a logical form in DFo ∪ Var ∪MV , t1, t2 ∈ DLai ∪ DFo ∪ V AR ∪MV
and # a modality i or i−1 for i ∈ {0, 1, ↓, ∗}. The quantifier variables are rendered
in boldface to distinguish them from the variable bound by quantifiers in the domain
DFo, i.e., variables occurring in the logical forms under construction.

As is standard, this language is interpreted over Pointed Partial Trees by means
of Valuation functions V .

Definition 5 (Pointed Partial Tree Models) A Pointed Partial Tree Model
M is a pair M = 〈PPT , V 〉 consisting of a Pointed Partial Tree Structure PPT and
a valuation V assigning finite sets of atomic formulas to elements T n ∈ PPT , and
satisfying the following principle

T n ≤ T ′n′ ⇒ V (T n) ⊆ V (T ′n′).

This principle guarantees that once an atomic proposition has been established
at some node in a partial tree, this proposition will remain to hold there
throughout all future developments of that tree. These pointed partial tree
will now be used to represent (unreduced) partial lambda terms as in Figures
1 and 2.

Definition 6 (Truth Definition for DU) Given a Pointed Partial Tree Model
M = 〈PPT , V, 〉, a set D =

⋃
i≤nDLai ∪DFo of label and formula values, a set MV

of meta variables, t1, t2 ∈ D ∪MV we say that pointed tree T n ∈ PPT of M satisfies
formula φ, with the notation

T n |=M φ,

if

5

φ is atomic and φ ∈ V (T n)
φ 6= ⊥
φ = >
φ = Eq(t1, t2) and t1 = t2
φ = ψ ∧ χ and T n |=M ψ & T n |=M χ
φ = ψ ∨ χ and T |=M ψ or T n |=M χ
φ = ψ → χ and for all T ′n′ : T n ≤ T ′n′,

if T ′n′ |=M ψ then T ′n′ |=M χ
φ = ∃xψ and there is a t ∈ D : T n |=M ψ[t/x]
φ = ∀xψ and for all T ′n′ : T n ≤ T ′n′ and all t ∈ D

T ′n′ |=M ψ[t/x]

if i ∈ {0, 1, ↓, ∗} and

φ = 〈i〉ψ and ∃T ′n′ ∈ PPT : T n ≺i T ′n′ and T ′n′ |=M ψ
φ = 〈i−1〉ψ and ∃T ′n′ ∈ PPT : T ′n′ ≺i T n and T ′n′ |=M ψ
φ = [i]ψ and for all T ′n′ : T n ≤ T ′n′ and all T ′′n′′ ∈ PPT

if T ′n′ ≺i T ′′n′′ then T ′′n′′ |=M ψ
φ = [i−1]ψ and for all T ′n′ : T n ≤ T ′n′ and all T ′′n′′ ∈ PPT

if T ′′n′′ ≺i T ′n′ then T ′′n′′ |=M ψ

As usual, we can introduce negation by the definition

¬φ ≡df φ→ ⊥.

The operators and modalities with universal force (‘ →′, ‘∀′, ‘[#]′) quantify not
only over (nodes of the) current (partial) decorated trees, but over possible de-
velopments of the current structure. For instance, the top node of the current
decorated partial tree need not be the root node of the eventual tree. Given
that we have a falsum ⊥ (satisfied by no node) and verum > (satisfied by all
nodes) in our language we can ‘close off’ the top node by T n |=M [↓−1] ⊥. This
closing off is an operation that can take place on a tree the moment all words
of the NL string have been processed: the node that happens to be the top one
at that moment is turned into a root node. At the other end of the tree we
can declare bottom nodes to be terminal nodes by annotating them with [↓]⊥.
This is a task of the lexical entries associated with the words: a word closes off
a branch downwards.

By definition we have persistence of atomic DU -formulas. By the form of the
Truth definition, this can be lifted to the whole of DU . So, if φ is a DU -formula,
T n |=M φ and T n ≤ T ′n′, then T ′n′ |=M φ.

It may be illuminating to view some typical interactions between the tree modal-
ities and connectives, like implication, with universal force. In a model M we
can have T n |=M 〈∗〉φ without there being a sequence T n ≺↓ . . . ≺↓ T n′ such
that T n′ |=M φ. In a partial tree the relation ≺∗ between two nodes entails only
that the path between them can always be completed to a fully specified one.
So, on Pointed Partial Tree Models the basic logic of finite trees holds ‘under
double negation’: if φ is an LFT theorem, i.e., |=LFT φ, then T n |=M ¬¬φ for
every model M .

The meta variables can be distinguished from the proper values by the fact that
only for a proper value li ∈ DLai we have the satisfaction of ∃xLai(x). ∃xψ

6

holds at a node if ψ[t/x] holds there for some t ∈ D. That is, a meta variable
U won’t do as this is not an element of D. We want the existential quantifier
to be able express that some label or feature predicate has a proper value.
Apart from the LFT principles we will have to introduce axioms regulating the
behaviour of the Fo and Ty predicates on the trees. For instance, a node may
be annotated by at most one type. This requires a principle of the form

∀x∀y(Ty(x) ∧ Ty(y) → ¬Eq(x,y)).

Furthermore, the Fo and Ty values at the daughters of some node have to be
related to the values on those predicates at the node itself

∀x∀y(〈0〉Ty(x) ∧ 〈1〉Ty(x → y) → Ty(y)).

2 Goal-Directedness

Within the domain PPT of a partial tree model M = 〈PPT , V 〉, we can iden-
tify the set LoFo consisting of the decorated partial trees that correspond to
(unreduced) terms of the typed lambda calculus. Grammatical strings, the
words of which project actions mapping one pointed partial tree to a next one,
must create elements of this subset of PPT . In all elements of LoFo, the root
node, for instance, will be annotated by a lambda term of type t. Thus, in any
partial stage, that root node will have a requirement that it be annotated by a
lambda-term of type t, a sub-node of the root that it be annotated by a term
of type e, and so on.2 All nodes are introduced with requirements. Require-
ments form an essential feature of the tree - they determine a set of ‘successful’
extensions of a given (partial) tree, namely those in which all requirements are
satisfied. Consequently, our basic data structures are tree structures, the nodes
of which consist of (partial) declarative units paired with finite sets of require-
ments.
To model these requirements we add a requirement function R to the model
assigning a finite number of (arbitrary) DU -formulas to elements T n. These
formulas represent a finite number of requirements on that node (as opposed to
the facts at that node assigned by V). Figure 3 represents a decorated partial
tree resulting from having parsed John read. This tree includes a node with a
requirement for an object of type e (this node-plus-requirement is introduced,
“sub-categorized for”, by the verb read).

Definition 7 (Models with Requirements) A Pointed Partial Tree Model with
requirements is a tuple M = 〈M,R〉, where M = 〈PPT , V 〉 is a Pointed Partial Tree
Model and R is a function assigning finite sets of DU formulas to elements of PPT and
satisfying the following constraint:

T n ≤ T ′n′ ⇒ R(T n) ⊆ (Th(T ′n′) ∪R(T ′n′)),
2 This use of requirements on the development of a tree node has some resemblance to

the familiar concept of ‘sub-categorisation’, as a node decorated by the labelled formula
Ty(e → (e → t))), F o(read) within a tree may have a mother node which is decorated
with a requirement 〈1〉Ty(e) (that is, a requirement for an internal argument for ‘read’).

7

[0 [0], [1[0], [1]]]︸ ︷︷ ︸
Tree

{00 : John, 011 : λxλyread(x)(y), 010 : ?Ty(e)}
︸ ︷︷ ︸

Decorations

Figure 3: Partial decorated tree with requirements

where Th(T n) = {φ ∈ DU | T n |=M φ}. The successful developments, that is, the
developments in which all requirements are satisfied, of a pointed partial tree T n we
collect in the set LoFo(T n) of (supposed) Logical Forms into which T n can develop.

LoFo(T n) = {T ′n′ ∈ PPT | T n ≤ T ′n′ : R(T ′n′) = ∅}.

Unlike the valuation functions, a requirement function is not restricted to
atomic propositions; we are free to require any (finite number of) DU-formula(s)
at some tree node. Along the growth relation ≤ requirements may disappear,
but only by becoming facts. For instance, we have

[a ?Ty(e)] ≤ [a Fo(φ), T y(e), ?Ty(e)] ≤ [a Fo(φ), T y(e)].

But also, (for U a meta variable),

[a Fo(U), ?∃xFo(x), ?Ty(e)] ≤ [a Fo(U), Fo(John), T y(e)].

Having introduced the concept of a requirement over Pointed Partial Tree Mod-
els we will exploit it by introducing some constants to the language DU which
address the status of the requirements.

Definition 8 (Truth Definition for Requirements) Given a Pointed Partial
Tree Model with requirements, M = 〈M,R〉, we say that pointed tree T n ofM satisfies
formula φ, with the notation

T n |=M φ,

if
φ ∈ DU and T n |=M φ,
φ =?ψ and ψ ∈ R(T n)
φ =?∅ and R(T n) = ∅
φ = Fψ and ∃T ′n′ ∈ LoFo(T n) : T ′n′ |=M ψ
φ = Gψ and ∀T ′n′ ∈ LoFo(T n) : T ′n′ |=M ψ

A requirement ?φ holds if the formula φ occurs on the the requirement list
of that node, and ?∅ is a constant which holds at a node if it has an empty
requirement list. Proposition Fψ holds at node T n if there is at least one
development of T n to (a node in) a logical form where ψ holds, and Gψ holds
at node T n if ψ holds at all developments of T n to logical forms.
A tree node T n has requirements that can be satisfied iff F> holds at T n. This
allows us to define a conditional: φ→gr ψ ≡d (F> ∧ φ) → ψ. This conditional
expresses invariances shared only by successful developments.
If the procedure that leads from Axiom to an element of LoFo is sound, then
the final tree represents, is isomorphic to, an unreduced term in the language
of our logical forms.

8

The uses of requirements

Consider all terms of the typed lambda calculus we use to formulate our logi-
cal forms, the representations of the formal meanings of the natural Language
strings under consideration. The elements of this set are our target structures
the NL strings have to construct. We represent these terms as trees by their
applicative structure (that is, a subterm (λxφ,ψ) is represented as a binary
branching point with λxφ annotating the function - and ψ the argument daugh-
ter). At the nodes of these representations we hang empty sets. These empty
sets represent empty sets of requirements. This we now turn into the set LoFo
of some Pointed Partial Tree Model M, by adding all partial versions that can
be extended to elements of the LoFo. Now, in order to guarantee that the set
LoFo, defined in terms of fulfilled requirements, and the set of representations
of terms in our typed lambda calculus coincide, every abstraction of such a term
to a partial object has to be compensated by the introduction of a requirement.
Starting, for instance, from the term read(John, (a, x,bookx)) we can create
a partial term by abstraction over John. This abstraction is not a term of our
typed lambda calculus, so it should not belong to LoFo. By definition, this
means that there must be some unfulfilled requirement associated with it. But
this does not have to be a requirement for exactly ‘John’. It may (and, in fact,
will) be merely a requirement for type e. So here is where the invariances of
the process come in.

Given a specific feature of the logical forms we are interested in, the first ques-
tion is now always: can we devise a system of requirement introduction such
that the fulfillment of all requirements annotating a given tree corresponds ex-
actly to a completing this tree to a term of our typed Lambda Calculus with
the desired feature?. We will give an example of a requirement strategy to
the effect that the set LoFo coincides with the set of a binary tree structures.
That is, no under-specified tree relations of the form ≺∗ or ≺↓ are left in LoFo
that are not the reflexive transitive closure of the immediate dominance rela-
tion or the union of argument and function daughter relation, respectively. The
idea is to introduce a Tree Node label, a monadic predicate ‘Tn’ with values in
DTn = {a · x, x | a ∈ A,x ∈ {0, 1, L}∗}. That is, a value of this predicate is a
finite sequence of elements of {0, 1, L} possibly preceded by a constant from a
set A. When trees are constructed in the parsing process, in general it is not
known whether a description that starts off as a top node will remain so (and
thus be the root node of the eventual tree. This is why we introduce a new node
invariably with ‘address” a ∈ A, satisfying a formula Tn(a), a is a constant not
yet occurring in the construction. In interaction with the tree modalities vari-
ous constellations are expressible. So, given the formula Tn(a), expressing the
location of a node description in the tree under construction, we can fix

Tn(a0) ↔ 〈0−1〉Tn(a),

Tn(a1) ↔ 〈1−1〉Tn(a),3

and we can fix the root node of a tree as follows,
3We will also need Tn(aL) ↔ 〈L−1〉Tn(a) when we consider Linked Trees.

9

Tn(0) ↔ [↓−1]⊥.
(Significantly, we do not ‘internalize’ the under-specified modalities 〈∗〉 and 〈↓〉
as values of the Tn predicate.) The Tree Node formula Tn(0) holds at a node if
it is a top node and remains so throughout all developments. (Note the use of
the ‘falsum’ - “At every node above the current one ⊥ holds.” As ⊥ is satisfied
by no node at all (Definition 6) this means that there are no nodes above the
current one.)
Now when we introduce a tree node with an under-specified relation to the
source node, as we do in Figure 5, we add the requirement for ∃xTn(x) to the
node with under-specified address:

[a ?Ty(t)], a
[a ?Ty(t), [∗ ?Ty(e), ?∃xTn(x)]]

The point is that this requirement can only be satisfied when the node it dec-
orates is merged with one that has a fully specified relation to the top node of
the tree: only in that case will there be a t ∈ DTn such that Tn(t) holds at
the node. So if, starting from the Axiom, we introduce tree nodes with under-
specified tree only if they are accompanied by requirements for values on the Tn
predicate, then in all elements of LoFo that we can reach all underspecification
with respect to tree relations will have been resolved.

As a second example, an analogous mechanism allows us to introduce meta
variables or placeholder values projected by pronominals with the requirement
that they have to be substituted by a proper value in order for the term to be
complete.

[a ?Ty(e)]
[a Fo(U), T y(e), ?∃xFo(x)]

An object of type e has been supplied, but a new, weaker, requirement has
taken its place. Only a development that supplies a concrete value for the meta
variable U in Fo(U) can end up in LoFo.

3 Actions

In a final enrichment we now extend the Pointed Partial Tree models with
requirements by a set A of actions. An action α is an element of A ⊆ PPTPPT ,
that is, actions are functions over PPT. An action α may map a Pointed Partial
Tree to a number of other such trees. The actions we will introduce are fitted
to the Pointed Partial Tree Models in that they are incremental in the sense
that T ′n′ = α(T n) entails that either T n ≤ T ′n′ or T = T ′. So an incremental
action is either some construction or a pointer movement. The actions are put
together from basic or atomic actions. The basic actions consist of: creation
of new nodes relative to old ones; decoration of nodes, moving to nodes, and
substitution at nodes. These action may now be combined to complex ones by,
essentially, the PDL operations.4

4PDL is Propositional Dynamic Logic.

10

Definition 9 (Actions) For M a Pointed Partial Tree Model with Requirements,
is i or i−1 for i ∈ {0, 1, , ↓, ∗, L}, φ either an atomic DU formula or of the form ?ψ
for arbitrary ψ ∈ DU , the set A of actions contains the following elements:

Basic Actions

1. 1 = {〈T n, T n〉 | T n ∈M},
AB = ∅.
These represent the halting action and the Abort action respectively.

2. make(#). This action creates a node T ′n′ such T ′ = T ∪ {n′} and that T ′n ≺#

T ′n′.
3. go(#). Here go(T n) = (T ′n′) implies T n ≺# T ′n′.
4. put(φ). Here, put(φ)(T n) = T ′n′ implies that T = T ′ except that V (T ′n′) =

V (T n) ∪ {φ} if φ is atomic and R(T ′n′) = R(T n) ∪ {ψ} if φ =?ψ.

Complex Actions We can put actions together by executing one after the other
(sequential composition ‘;’) and doing that any finite number of times (finite iteration
‘∗’), or by indeterministically choosing between them (indeterministic choice ‘+’).

5. if α, α′ are actions, then so are α;α′, α+ α′, α∗.

Finally, we can put actions together in a conditional IF THEN ELSE statement.

7. If Σ is a set of formulas all free variables of which occur in x and α, α′ are actions
then 〈Σ(x), α, α′〉 is a conditional action with the definition:

〈Σ(x), α, α′〉 =

{〈T n, T ′n′〉 ∈ α[t/x] | t ∈ (D ∪MV)∗, T |=M Σ[t/x]}∪
{〈T n, T ′n′〉 ∈ α′ | ¬∃t ∈ (D ∪MV)∗, T n |=M Σ[t/x}.

That is, if Σ holds at T n, for some substitution of t for variable x, then action
α is executed where in the body of this action the variable x is also replaced
by t. If Σ does nor hold at T n for any substitution for x, then action α′ is
executed.5 For instance we can define actions which transport features from
one node (e.g. a ‘head’) to another.

• 〈{Fo(x)}, go(〈0〉); put(Fo(x)), AB〉 maps the value of the Fo feature at
the current node, if there is such a value, to the Fo feature at the left
daughter, otherwise it aborts.

We may also define an action that enables pointer movement to the closest
clausal node:

• gofirst(?Ty(t)) = 〈{?Ty(t)}, 1, go(〈↓−1〉)〉∗; 〈{?Ty(t)}, 1, AB〉.
The action gofirst(X) moves the pointer upwards to the first higher node
with annotation X, i.c. the requirement Ty(t), and then stops.

The actions projected by the words of a language are conditional statements
like

• John = IF {?Ty(e)}
THEN put(Fo(john), T y(e), [↓]⊥)
ELSE AB

5 The PDL tests do not suffice over this propositional logic because we want the ability to
formulate IF THEN ELSE statements and only in the context of excluded middle can these
be defined in terms of the PDL test.

11

The word test whether the pointed node requires an object of type e. If so,
then it places the Formula John there and closes off the node downwards.
We have two ‘pure’ classes of actions. Complex constructions (that is, compo-
sitions of actions without the go action) induce complex tree growth. Complex
movements on the other hand (the family of go(〈#i〉) instructions closed under
the given operations) represent pointer strategies. In general, for instance, in
case of actions projected by words, the actions are a mixture of these classes.

4 The Parsing Process

The object of the parsing process is to construct a binary tree structure the top
node of which is decorated by a formula of type t while using all information
in an NL string. The minimal element in the model M, the starting point of
every parse6 is the Axiom

Axiom: [a ?Ty(t)], a.

The Axiom is the Pointed Partial Tree Model consisting of a single node (thus
the location of the pointer), the putative top node, with empty valuation func-
tion and requirement for an object of type t.

In the course of a parse starting from the Axiom the description of a tree is
created. A parse ends essentially after the last word of an NL string has been
processed. A successful parse of a grammatical NL string must result in a logical
form, that is, a Pointed Binary Tree in the set LoFo of M. That is, it must end
with a Tree where all nodes are associated with an empty list of requirements.

Goal [a, . . . , T y(t)], [a0. . .], [a1. . .] . . .], a ∈ LoFo.
If the procedure that leads from Axiom to an element of LoFo is sound, then
the final tree represents, is isomorphic to, an unreduced term in the language
of our logical forms. Now, this (representation of an) unreduced lambda term
may be normalized in ways depending on a variety of labels collected on the
tree during the parse.

Figure 4 shows the structures arising in the course of parsing “John read a
book”. Notice that each new structure is a development under the ≤ relation.

The course from Axiom to Goal must be licensed by the natural language
under consideration within the context of some language external, pragmatic,
mechanisms. That is, with a natural language L there are associated three sets
of actions.
— A set C of Computational rules. These are actions which bring out in-
formation contained in the current Tree and make hypotheses about structure.
— A set L Lexical actions. These actions map one Tree to a next one adding
information in the process. The elements of L are projected by the Natural
Language words. Lexical transition are defined as conditional actions of the IF

6of an NL string in isolation, i.e., without a context.

12

[a ?Ty(t)], a Axiom

⇒C [a [0 ?Ty(e)], [1 ?Ty(e→ t)]], a0 ↓
⇒L [a [0 , Fo(John), T y(e)], [1]], a1 John

⇒L [a [0], [1 [1 Fo(λxλyread(x)(y)), T y(e→ (e→ t))], [0 ?Ty(e)]]], a10 read

⇒LC [a[0], [1[1], [0 Fo((a, x,bookx), T y(e)]]], a10 a book

⇒C [a [0 [1 Fo(λyread)(a, x,bookx)(y), T y(e→ t), [1], [0]]], a1 ↓
⇒C [a read(a, x,bookx)(John), T y(t), [0], [1 [1][0]]], a ∈ LoFo

Figure 4: Pointed Partial Tree Models arising in the course of parsing “John read a
book.” At every transition only the new aspects are highlighted.

THEN ELSE variety. A lexical transitions tests IF the some finite set of formu-
las (the condition) holds at the Node Description where the pointer is located
— this may include the presence (or absence) of labels at that node, modal
statements about decorations located at Descriptions related to the pointed
one and it may also involve requirements. If the condition holds there, THEN
a (sequence of) action(s) is undertaken resulting in a new Tree Description,
ELSE (i.e., the condition does not hold) a second action is undertaken, usually
an ‘abort’ action.
— A set P of Pragmatic actions. These add information to a Tree Descrip-
tion which is neither contained in the natural language string, nor follows from
language specific principles. These are actions of two sorts, (i) substitution pro-
cesses which “enrich” aspects of the tree structure description as it is projected,
primarily by processes of substitution replacing some lexical

A configuration is now a pair
(T n, s)

of a Pointed Partial Tree T n and a string s of lexical actions, i.e., s ∈ L∗. The
basic rewrite relation of our parsing model is the binary relation on configura-
tions,

(T n, s) ⇒LCP (T ′n′, s′)

defined by, either s = αs′ for α ∈ L and α(T n) = T ′n′, or s = s′ and there is
some rule ρ ∈ C ∪ P such that ρ(T n) = T ′n′.
As usual we let ⇒∗ be the reflexive and transitive closure of ⇒.

Definition 10 (Grammatical Strings) The set of grammatical strings, given
C, L and P , can be defined as:

L(L,C, P) = {s ∈ L∗ | ∃T n ∈ Goal : (AXIOM, s) ⇒∗
LCP (T n, e)}.

A natural language must be able to project any logical form in our representation
language. That is, language L(C,L, P) is expressively adequate (EA) if for every T n ∈
Goal there is a s ∈ L∗: (AXIOM, s) ⇒∗

LCP (T n, e).

The progress from Axiom to Goal is non-deterministic: at every state of the
parse the word currently under consideration can generally be assigned more
than one structural role in the Tree Description. That is, the path from Axiom
to Goal is one through a space of alternative parse courses. For instance, an

13

[a ?Ty(t)], a Axiom

⇒C [a ?Ty(t), [∗ ?Ty(e)]], a∗ ↓
⇒LC [a ?Ty(t), [∗ (a, x,bookx), T y(e)]], a a book

⇒C [a [0 ?Ty(e)], [1], [∗]], a0 ↓
⇒L [a [0 , Fo(John), T y(e)], [1 ?Ty(e→ t)], [∗]], a1 John

⇒L [a [0], [1 [1 Fo(λxλyread(x)(y)), T y(e→ (e→ t))], [0 ?Ty(e)]][∗]], a10 read

⇒C [a[0], [1[1], [0 Fo(a, x,bookx), T y(e)]]], a10 ∗ := 10

⇒C [a [0 [1 Fo(λyread)(a, x,bookx)(y), T y(e→ t), [1], [0]]], a1 ↓
⇒C [a read(a, x,bookx)(John), T y(t), [0], [1 [1][0]]], a ∈ LoFo

Figure 5: Pointed Partial Tree Models arising in the course of parsing “A book John
read.” At every transition only the new aspects are highlighted.

NP heading an NL string may end up as subject John read a book, it may be a
fronted object, A book John read, or it may be a topic constituent, (As for) a
book John read it. The first two possibilities are worked out in Figures 4 and 5
respectively.
Notice that parse of “John read a book” and “A book John read” end with
the same logical form, but this form is reached starting from the Axiom along
different routes. Thus the Axiom must be able to access a (finite!) number
of alternative partial Tree Descriptions to accommodate the first NP of the
sentence.

5 Conclusion

In papers and books cited in the references (especially the forthcoming [1999b])
applications of this model are found involving a wide variety of linguistic phe-
nomena in a number of languages. Of course, the main difference between the
approach to parsing suggested by the model in this paper and the more famil-
iar approaches based on a Montagovian framework is the absence of a syntactic
algebra and thus of a homomorphic relation between syntactic and semantic
structure. A natural language string is seen as a sequence of PDL programs
and any syntactic structure in this sequence derives from processing constraints:
a word occurring in an NL string leaves the parser with a given partially con-
structed logical form together with a pointer; the syntactic correctness of a
subsequent word then comes down to whether or not the current logical form
satisfies the condition of that word.

References

[1994] P. Blackburn & W. Meyer Viol 1994, Linguistics, logic and finite trees,
Bulletin of IGPL.

[1996] Kempson, R., W Meyer Viol and D. Gabbay: Language Understand-
ing: a Procedural Perspective, in C. Retore (ed.), Logical Aspects of Com-

14

putational Linguistics, First International Conference, LACL 1996,228–247.
Lecture Notes in Computer Science Vol 1328, Springer Verlag.

[1997] Meyer Viol, W., R. Kibble, R. Kempson and D. Gabbay (1997) ‘Indef-
inites as Epsilon Terms: A Labelled Deduction Account,’ in H. Bunt and
R. Muskens (eds.) Computing Meaning: Current Issues in Computational
Semantics. Kluwer Academic Publishers. Dordrecht and Boston.

[1999a] Kempson, R., W Meyer Viol and D. Gabbay, VP-ellipsis: towards a
dynamic structural account. In S. Lappin, E. Benmamoun, 1999, Fragments:
studies in ellipsis and gapping, OUP.

[1998] [5] Kempson, R., and Meyer Viol, W., Topic and Focus Structures:
the Dynamics of Tree Growth, in Proceedings of the 4d Formal Grammar
Conference, Saarbruecken, 1998.

[1999b] Kempson, R. Meyer-Viol, W. and Gabbay, D. Dynamic Syntax. Black-
well’s, Oxford, 1999.

15

	Terms as Decorated Trees
	Goal-Directedness
	Actions
	The Parsing Process
	Conclusion

