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Abstract

The aim of this paper is to show on a toy example that the mosaic method can
serve as an alternative to standard modal logical techniques in the realm of products
of modal logics.
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1 Introduction

The aim of this paper is to show that the mosaic method can serve as an
alternative to standard modal logical techniques in the realm of products of
modal logics.

The results below about the binary product S52 of the modal logic S5 are
not new. My hope is that a systematic presentation of an application of the
mosaic method to a product of modal logics may convince some innocent souls
that using the mosaic technique might be fun. For the more experienced reader:

Isn’t it amazing how smoothly the mosaic method works for S52?

For the even more experienced reader:

Can we use (a variant of) the mosaic method to prove the decidability
of K42 (provided it is decidable)?

First let us recall the definition of S52. The language consists of the propo-
sitional connectives ∧ and ¬ and the modalities 3 and 3. A frame is of the
form U ×V for some sets U and V , called the base sets. A model M is a frame
U × V together with an evaluation k : P → P(U × V ) of the propositional
variables. Truth is defined in the usual way — the non-propositional cases are:

(u, v) 
 3ϕ[k] ⇐⇒ (w, v) 
 ϕ[k] for some (w, v) ∈ U × V
(u, v) 
 3ϕ[k] ⇐⇒ (u,w) 
 ϕ[k] for some (u,w) ∈ U × V.

We will use the standard abbreviations, e.g., 2 for ¬3¬.
In the next section, we will define mosaics and saturated sets of mosaics. In

section 3, a key lemma is proved, stating that the existence of a model is equiv-
alent to the existence of a saturated set of mosaics. We will use the standard
mosaic idea: mosaics serve as basic building blocks, and the saturation condi-
tions guarantee that we can glue mosaics together to form a model. Applying
this lemma, we get easy proofs for the completeness and complexity of S52.

2 Mosaic

We start with the basic definitions.

Definition 2.1 Let W ⊆ U × V for some sets U and V , and let Ξ be a set of
formulas that is closed under subformulas. Let (W,λ) be a structure labelled
by subsets of Ξ, i.e., λ : W → P(Ξ).

We say that (W,λ) is a coherent labelled structure (a CLS) if the
following conditions hold: for every u, v,w and ϕ,ψ,

1. ¬ϕ ∈ λ(u, v) ⇐⇒ ϕ /∈ λ(u, v),

2. ϕ ∧ ψ ∈ λ(u, v) ⇐⇒ ϕ,ψ ∈ λ(u, v),

3. ϕ ∈ λ(u, v) ⇒ 3ϕ ∈ λ(w, v),

4. ϕ ∈ λ(u, v) ⇒ 3ϕ ∈ λ(u,w),

5. 3ϕ ∈ λ(u, v) ⇐⇒ 3ϕ ∈ λ(w, v),

6. 3ϕ ∈ λ(u, v) ⇐⇒ 3ϕ ∈ λ(u,w),
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provided that the relevant pairs are in W and the formulas are in Ξ.
By a defect of a labelled structure (W,λ) we mean a pair ((u, v), ϕ) such

that (u, v) ∈W , ϕ ∈ λ(u, v) and either

• ϕ is 3ψ and ψ /∈ λ(w, v) for every (w, v) ∈W , or

• ϕ is 3ψ and ψ /∈ λ(u,w) for every (u,w) ∈W .

It turns out that in the case of S52 it is enough to consider rather small CLSs
that can serve as basic building blocks.

Definition 2.2 By a mosaic we mean a coherently labelled structure (W,λ)
such that |W | = 1.

Usually we will denote mosaics by their labels: if W = {(u, v)}, then we will
identify the mosaic (W,λ) by the formula set λ(u, v).

Since CLSs can contain defects, we need conditions that guarantee that
defects can be “cured” by gluing mosaics to each other.

Definition 2.3 Let M be a set of mosaics and X be a set of formulas. We say
that M is a saturated set of mosaics for X (an X-SSM) if the following
hold:

1. there is µ ∈M such that X ⊆ µ,

2. given a mosaic µ ∈ M and a formula 3ϕ ∈ µ, there is a mosaic µ′ ∈ M
such that ϕ ∈ µ′ and ({(0, 0), (1, 0)}, λ) with λ(0, 0) = µ and λ(1, 0) = µ′

is a CLS,

3. given a mosaic µ ∈ M and a formula 3ϕ ∈ µ, there is a mosaic µ′ ∈ M
such that ϕ ∈ µ′ and ({(0, 0), (0, 1)}, λ) with λ(0, 0) = µ and λ(0, 1) = µ′

is a CLS,

4. given three mosaics µ, µ′, µ′′ ∈M , such that the structures ({(0, 0), (1, 0)},
λ) with λ(0, 0) = µ and λ(1, 0) = µ′ and ({(0, 0), (0, 1)}, λ) with λ(0, 0) = µ
and λ(0, 1) = µ′′ are CLSs, there is a mosaic ν ∈M such that

({(0, 0), (1, 0), (0, 1), (1, 1)}, λ)

with λ(0, 0) = µ, λ(1, 0) = µ′, λ(0, 1) = µ′′ and λ(1, 1) = ν is a CLS; cf.
Figure 1.

If X is a singleton set {ξ}, we will speak of ξ-SSM (instead of {ξ}-SSM).

3 The key lemma

In this section we show that the existence of a model is equivalent to the exis-
tence of a saturated set of mosaics.

Lemma 3.1 A formula set X is satisfiable iff there exists an X-SSM.
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Figure 1: Saturation condition 4

Proof: First assume that X is satisfiable, say M = (U × V, k) satisfies X at
(u, v): (u, v) 
 ξ[k] for all ξ ∈ X. Let Ξ be the smallest set of formulas that is
closed under subformulas and Ξ ⊇ X. For every (x, y) ∈ U × V , we let

µ(x, y) = {ϕ ∈ Ξ : (x, y) 
 ϕ[k]}.

It is straightforward to check that every µ(x, y) is a CLS, and thus a mosaic.
The set

M = {µ(x, y) : (x, y) ∈ U × V }
is a saturated set of mosaics for X: every defect can be “cured”, since each
mosaic is part of the same model and we took each µ(x, y) ((x, y) ∈ U×V ); given
µ, µ′ = µ(u, v) and µ′′ = µ(u′, v′) satisfying the hypothesis of the saturation
condition 4, we can find the mosaic ν = µ(u, v′) to meet the requirements of
the condition.

For the other direction assume that M is an X-SSM (using some label set Ξ ⊇
X). We have to define a model that satisfies X; by a step-by-step construction
we build a labelled structure on ω×ω that does not contain any defect, thus it
can be easily turned into a model for X.1

Let us enumerate all the possible defects:

P = {((n,m), ϕ) : (n,m) ∈ ω × ω, ϕ a diamond formula}.

0th step: Let µX ∈ M be such that X ⊆ µX . We let W0 = (W0, λ0) where
W0 = {(0, 0)} and λ0(0, 0) = µX . Clearly W0 is a coherent square.
Successor step: Let us assume that, in the nth step, a coherent rectangle
Wn = (Wn, λn) has been defined with Wn = hn× vn for some natural numbers
hn and vn. Further, we assume that Wn is a union of elements of M : for every
(x, y) ∈ W , µ(x, y) = λn(x, y) is an element of M . Let ((k, l), ϕ) be the first
element of P that is an actual defect of the CLS Wn. Wlog we can assume that
ϕ has the form 3ψ — vertical defects can be treated similarly.

We let Wn+1 = (hn + 1) × vn and define λn+1 as follows. For (x, y) ∈ Wn,
we let λn+1(x, y) = λn(x, y).

1We denote the set of natural numbers by ω. For any natural number n, we assume that
n is the set of natural numbers smaller than n. Thus 0 = ∅ and k + 1 = {0, . . . , k}.
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Figure 2: Squarifying Wn+1

By the induction hypothesis, µ = µ(k, l) ∈ M . Thus, by saturation condi-
tion 2, there is a mosaic µ′ ∈ M such that ψ ∈ µ′ and ({(0, 0), (1, 0)}, λ) with
λ(0, 0) = µ and λ(1, 0) = µ′ is a CLS. We let λn+1(hn, l) = µ′. It remains to
define the labels for the pairs (hn, y) with y ∈ vn r {l}. Fix such a y and con-
sider the pair (k, y). By the induction hypothesis, µ′′ = λn(k, y) is an element
of M . Since Wn is a CLS, and by the choice of µ′, we have that the three mo-
saics µ, µ′, µ′′ satisfy the hypothesis of the saturation condition 4. Then we can
find a mosaic ν ∈M such that ({(0, 0), (0, 1), (1, 0), (1, 1)}, λ) with λ(0, 0) = µ,
λ(1, 0) = µ′, λ(0, 1) = µ′′ and λ(1, 1) = ν is a CLS. We define λn+1(hn, y) = ν.
See Figure 2.

It is easy to check that Wn+1 is indeed a coherent rectangle. Further, the
possible defect ((k, l),3ψ) cannot be an actual defect of any Wm for m > n,
since we “cured” this defect in the n+ 1st step.
Limit step: We let W = (W,λ) where W =

⋃
n∈ω Wn and λ(x, y) = λi(x, y)

with i ∈ ω such that (x, y) ∈ Wi (note that λ(x, y) is independent from the
choice of i). Clearly W is a CLS and it does not contain any defect.
We are ready to define the model M = (W, k). For any atom p occurring in
Ξ, let k(p) = {(u, v) ∈ W : p ∈ λ(u, v)}. Now, an easy induction on formulas
shows the truth lemma: for every ϕ ∈ Ξ and (u, v) ∈W ,

ϕ ∈ λ(u, v) ⇐⇒ (u, v) 
 ϕ[k].

Hence M satisfies X: (0, 0) 
 ξ[k] for each ξ ∈ X.

4 Completeness

In this section, we fix the labelling set Ξ to be the set of all formulas (in a
countable language).

The idea of a mosaic-based completeness proof is to show that the set of max-
imal consistent sets (MCSs) is a saturated set of mosaics. Then, by Lemma 3.1,
for every consistent set of formulas X, we can find a model satisfying X.

It turns out that in the case of S52, the “obvious” axioms are enough to
give a complete inference system. We propose the following axioms:

1. axioms for propositional logic
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2. S5-axiomatization for 3:
ϕ→ 3ϕ

ϕ→ 23ϕ

33ϕ→ 3ϕ

3. S5-axiomatization for 3

4. 32ϕ→ 23ϕ.

We have the usual derivation rules: modus ponens, universal generalization and
substitution. Checking soundness of the inference system is left to the reader.

Given MCSs Γ and Φ, we define

ΓHΦ ⇐⇒ {ψ : 2ψ ∈ Γ} = {ψ : 2ψ ∈ Φ}
ΓV Φ ⇐⇒ {ψ : 2ψ ∈ Γ} = {ψ : 2ψ ∈ Φ}.

Lemma 4.1 Let X be a consistent set of formulas. Then there exists an X-
SSM.

Proof: We show that the set of all MCSs form a saturated set of mosaics. Since
X can be extended to a MCS, this gives us an X-SSM.

Obviously every MCS satisfies the coherency conditions. Saturation condi-
tions 2 and 3 follow by standard S5-consideration.

Now assume ΓVΨ and ΓHΦ. We have to show the existence of a MCS ∆
such that ΨH∆ and ΦV∆. We define

∆′ = {ψ : 2ψ ∈ Ψ} ∪ {ϕ : 2ϕ ∈ Φ}.

We claim that ∆′ is consistent. Let 2ψ1, . . . ,2ψn ∈ Ψ and 2ϕ1, . . . ,2ϕm ∈ Φ.
We abbreviate ψ1 ∧ . . . ∧ ψn as ψ and ϕ1 ∧ . . . ∧ ϕm as ϕ. Note that we have
2ψ ∈ Ψ and 2ϕ ∈ Φ. Then, by ΓHΦ, 32ϕ ∈ Γ. By the Church–Rosser
axiom 4, 23ϕ ∈ Γ. Recall that 2ψ ∈ Ψ and that ΓVΨ. Hence 2ψ ∧3ϕ ∈ Ψ.
Thus ψ ∧ ϕ must be consistent (by S5). Now, let ∆ be a MCS extending ∆′.
Clearly ∆ meets the requirements.

5 Complexity

In this section, we show how to get decidability and optimal complexity upper
bound.

Let ξ be the formula that we want to decide if it is satisfiable. We let Ξ be
the set of subformulas of ξ. By Lemma 3.1, it is enough to decide the existence
of a ξ-SSM.

Lemma 5.1 Determining the existence of a ξ-SSM is decidable.

Proof: By the usual argument: (i) enumerate the (finite) set of all mosaics la-
belled using the set of subformulas of ξ, (ii) check if one of the subsets containing
a ξ-mosaic satisfies the saturation conditions.
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We note that the above decision procedure in fact gives us an optimal upper
bound for the complexity of the logic. Indeed, given a formula ξ, there are
roughly |ξ| many subformulas. Hence there are at most 2|ξ| mosaics, and a
mosaic consists of polynomially many formulas. Thus a potential ξ-SSM can be
given as an input of exponential complexity. Checking if every member is in fact
a mosaic (i.e., if satisfies the coherency conditions) and whether the saturation
conditions are met can be done in polynomial time (in terms of the complexity
of the input). Thus we have a non-deterministic exponential time algorithm for
deciding if there exists a ξ-SSM — S52 is at most nexptime hard.

We also note that our logic has the finite base property, i.e., every non-
valid formula can be refuted in a model with finite bases. The step-by-step
construction given above yields an infinite model. However, using larger mosaics
and some combinatorics one can show that all defects can be repaired after
finitely many steps.2 Another way of proving this fact is to use the connection
to first-order logic with two variables and its finite base property.

2See a later version of this paper.
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