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Abstract

Craig interpolation theorem (which holds for intuitionistic logic) implies that the
derivability of X,X’-¿Y’ implies existence of an interpolant I in the common language
of X and X’-¿Y’ such that both X-¿I and I,X’-¿Y’ are derivable. For classical logic this
extends to X,X’-¿Y,Y’, but for intuitionistic logic there are counterexamples. There is
a version true for intuitionistic propositional (but not for predicate) logic, and more
complicated version for the predicate case.

Contents

1 Introduction 2

2 A Symmetric Interpolation Theorem 2

3 An Interpolation Theorem for Multiple Succedent Sequents 7

4 Kripke-style System 9
4.1 System KInt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Analytic Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



1 Introduction

Craig interpolation theorem (which holds for intuitionistic logic) implies that
the derivability of Γ,Γ′ ⇒ ∆′ implies existence of a Craig interpolant I in the
common language of Γ and Γ′ ⇒ ∆′ such that both Γ ⇒ I and I,Γ′ ⇒ ∆′ are
derivable. For classical logic this extends to the partition Γ; Γ′ ⇒ ∆;∆′, i.e.
there is an interpolant I satisfying Γ ⇒ ∆, I and I,Γ′ ⇒ ∆′. For intuitionistic
logic there are counterexamples. Indeed for the partition ;C ⇒ C; the inter-
polant I should satisfy ⇒ C, I and I, C ⇒. By the disjunction property one of
C, I should be derivable: a contradiction.

Nevertheless some interpolation properties for disjunction are true also in
the intuitionistic case. We present here is a multi-succedent version of inter-
polation true for intuitionistic propositional (but not for predicate) logic, and
more complicated version for the predicate case. Kripke-style formulation in
terms of sequents indexed by possible worlds is considered in the last section.
A result similar to symmetric interpolation was established by L. Maksimova
in [11].

One of the motivations for the present work comes from the study of inter-
polation in the (superintuitionistic) logic of constant domains.

LE denotes below the language of the expression (formula, sequent etc.) E.
Recall that a sequent A1, . . . , An ⇒ B1, . . . , Bm is interpreted as &iAi → ∨jBj .
≡ will denote syntactical identity of expressions. We write Γ ` ∆ to indicate
that the sequent Γ ⇒ ∆ is intuitionistically derivable.

The results of the first three sections were obtained when the author visited
the Institute for Logic, Language and Information of the University of Amster-
dam in the framework of Spinoza project headed by Johan van Benthem.

2 A Symmetric Interpolation Theorem

Definition 1 Let v1, . . . , vp be distinct propositional variables and

T1;T2; . . . ;Tk k ≥ 2 (1)

be sequents with distinct antecedent and succedent terms all among v1, . . . , vp,
for example

v2, v3 ⇒ v1, v4; ⇒ v2; ⇒ v3; v1 ⇒; v4 ⇒ (2)

We say that (1) is balanced iff it is classically inconsistent.

Note 1. By the completeness of the resolution rule (1) is balanced iff the empty
sequent ⇒ is derivable from (1) by a series of cuts

cut
Γ ⇒ ∆, A A,Σ ⇒ Π

Γ ∪ Σ ⇒ ∆ ∪Π

where identical terms in Γ,Σ and ∆,Π are contracted. Note that cut is intu-
itionistically valid.

Example. (2) is balanced; the empty sequent is obtained by four cuts suc-
cessively eliminating variables vi in arbitrary order.
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Definition 2 If S ≡ Γ ⇒ ∆, S′ ≡ Γ′ ⇒ ∆′ then (following [4]) SS′ ≡
Γ,Γ′ ⇒ ∆,∆′.

Classically SS′ corresponds to S ∨ S′.

Definition 3 Let S, S′ be arbitrary sequents, I1, . . . , Ip be formulas, v1, . . . , vp

be distinct new propositional variables, and (1) be a list of sequents composed
from v1, . . . , vp. We say that

(I1, . . . , Ip;T1; . . . ;Tp) (3)

is an interpolant for S, S′ iff all predicate symbols of I1, . . . , Ip are common to
S and S′, the list T1; . . . ;Tk is balanced and there is an m (1 ≤ m < k) such
that all sequents

ST ∗
1 , . . . , ST ∗

m, S′T ∗
m+1, . . . , S

′T ∗
k (4)

are derivable, where T ∗ = T [v1/I1, . . . , vp/Ip]

Lemma 1 (a) If there is an interpolant for S, S′ then SS′ is derivable.
(b) From an interpolant for E ⇒, ⇒ F one can (easily) construct a Craig

interpolant for E → F and vice versa

Proof . (a) Use cuts to resolve all components of T ∗
i from (4).

(b) Assume that

E ⇒ T ∗
1 , . . . , E ⇒ T ∗

m, T ∗
m+1 ⇒ F, . . . , T ∗

k ⇒ F (5)

are derivable, and define
I ≡ T ∗

1 & . . . &T ∗
m

where sequents are converted into formulas. The set T ∗
1 , . . . , T ∗

m is obviously
interderivable with I. In particular,

E ⇒ I (6)

is derivable. To derive
I ⇒ F (7)

note that T1, . . . , Tk is balanced, and hence by Note 1 there is a deduction of
the empty sequent ⇒ from T ∗

1 , . . . , T ∗
k by cut rule . Replacing T ∗

m+1, . . . , T
∗
k

in this deduction by T ∗
m+1 ⇒ F, . . . , T ∗

k ⇒ F and using derivability of these
sequents (cf (5)) one gets a deduction of ⇒ F from T ∗

1 , . . . , T ∗
m , i.e. from ⇒ I

as required.
The formula I may contain some variables x free in E but not in F , and

some variables y free in F but not in E. In this case (6,7) imply that the
formula ∃x∀yI (or ∀y∃xI ) is a Craig interpolant for E → F . 2

Theorem 1 If SS′ is derivable and does not contain negative ∃-quantifiers,
then there is an interpolant for SS′.
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Proof . We use induction on a cutfree derivation of SS′ which we write as

Γ; Γ′ ⇒ ∆;∆′

in the multiple succedent version of the intuitionistic predicate logic. Consider
possible cases.

Axiom Γ, C,Γ′ ⇒ ∆, C,∆′.
If both C’s are in S or both are in S′ or the first C is in S and the second C

is in S′, then an interpolant is constructed in the standard way, which formally
means that (3) in these three cases takes the form:

(⊥;⇒ v1; v1 ⇒) (>;⇒ v1; v1 ⇒) (C;⇒ v1; v1 ⇒) (8)

In the following we usually write down only sequent (4), i.e in our three cases

(S ⇒ ⊥;⊥ ⇒ S′), (S ⇒ >;> ⇒ S′) (S ⇒ C;C ⇒ S′)

instead of (8).
In the remaining subcase of the axiom case (which was the reason for intro-

duction of the whole machinery of composite interpolants) when the first C is
in S′ and the second C is in S, the interpolant (4) is C ⇒ S, S′ ⇒ C), i.e. (3)
is (C; v1 ⇒;⇒ v1).

Axiom Γ,⊥,Γ′ ⇒ ∆,∆′ is treated in the standard way.
Now consider cases depending of the last rule used in the derivation of SS′.

By the IH (induction hypothesis) there are interpolants for each of the premises.
Let us write the T -part (T1, . . . , Tk) of an interpolant in the form (T,T′) where
T = T1, . . . , Tm, T′ = Tm+1, . . . , Tk and m is determined by (4), i.e. T,T′

are the parts of the interpolant related to S, S′.
Rule →⇒ (implication antecedent). By IH there are interpolants

(I;T,T′); (J; U,U′)

for premises of the rule. Renaming variables vi if necessary assume that (T,T′)
and (U,U′) have no variables in common.

Case 1. The principal formula (A → B) of the inference belomgs to S.Then
the interpolant for the conclusion will be

(I,J;T ∨U;T′ ∪U′)

where T ∨U ≡ {TU : T ∈ T, U ∈ U}. The result is balanced:

&(T ∨U)&&(T′ ∪U′) ⇒ (&T&T′) ∨ (&U&U′)

and both disjuncts to the right of ⇒ are contradictory by IH. To check other
properties of the interpolant, look at the figure:

S(⇒ A)S′ S(B ⇒)S′

S(A → B ⇒)S′
S(⇒ A)T S′T′ S(B ⇒)U S′U′

S(A → B ⇒)(T ∨U) S′(T′ ∪U′)

Case 2. (A → B) ∈ S′). Then the interpolant for the conclusion is

(I,J;T ∪U;T′ ∨U′)
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Rule ⇒→ (implication succedent). Use the Craig interpolant. If for example
(A → B) ∈ S, then

Γ, A,Γ′ ⇒ B

Γ,Γ′ ⇒ ∆, A → B,∆′
Γ′ ⇒ I

exists by IH
I,Γ, A ⇒ B

I,Γ ⇒ ∆, A → B

Rule & ⇒. The interpolant is preserved. If for example (A&B) ∈ S, then

S(A,B ⇒)S′

S, (A&B ⇒)S′
S(A,B ⇒)T

S, (A&B ⇒)T
S′T′

Rule ⇒ & is treated exactly like →⇒:

S(⇒ A)S′ S(⇒ B)S′

S(⇒ A&B)S′
S(⇒ A)T S′T′ S(⇒ B)U S′U′

S(⇒ A&B)(T ∨U) S′(T′ ∪U′)

Rule ∨ ⇒ is treated symmetrically:

S(A ⇒)S′ S(B ⇒)S′

S(A ∨B ⇒)S′
S(A ⇒)T S′T′ S(B ⇒)U S′U′

S(A ∨B ⇒)(T ∨U) S′(T′ ∪U′)

Rule ⇒ ∨. Interpolant is just preserved, as in the case of & ⇒.
Rules ∀ ⇒,⇒ ∃. Like & ⇒:

S(A[t] ⇒)S′

S, (∀xA ⇒)S′
S(A[t] ⇒)T
S, (∀xA ⇒)T

S′T′

Rule ⇒ ∀. Take the Craig interpolant as for ⇒→:

Γ,Γ′ ⇒ A[b]
Γ,Γ′ ⇒ ∆,∀xA,∆′

Γ′ ⇒ I

exists by IH
I,Γ ⇒ A[b]

I,Γ ⇒ ∆,∀xA

Rule ∃ ⇒ is excluded by the statement of the Theorem. 2

In fact one can specialize interpolating formulas.

Lemma 2 If there is an interpolant for the sequents S, S′ then there is an
interpolant (3) where none of Ij is a conjunction or disjunction.

Proof . Write (3) as
(I;T;T′)

If say I1 = K&L, substitute v1/(v1&w) with a new variable w. More precisely,
replace the list v1, v2, . . . , vp, by v1, w, v2 . . . , vp, replace the list (I1, I2, . . . , Ip)
by (K,L, I2, . . . , Ip), replace each of the sequents Ti ≡ v1,Γ ⇒ ∆ by v1, w,Γ ⇒
∆ and each of the sequents Tj ≡ Γ ⇒ ∆, v1 by the pair Γ ⇒ ∆, v1, Γ ⇒ ∆, w.
The result of the substitution

(I1;T1;T′
1)

is again an interpolant for S, S′ since the following equivalences are derivable:

&T1 ↔ &T[v1/v1&w], &T′
1 ↔ &T′[v1/v1&w]

5



&T[v1/K&L, v2/I2, . . . , vp/Ip] ↔ &T1[v1/K,w/L, v2/I2, . . . , vp/Ip]

&T′[v1/K&L, v2/I2, . . . , vp/Ip] ↔ &T′
1[v1/K,w/L, v2/I2, . . . , vp/Ip]

Indeed, inconsistency of conjunction of the T -part and derivability of the se-
quents (4) is preserved.

In the case of disjunction, I1 = K ∨ L, substitute v1/(v1 ∨ w) for a new
variable w. 2

Let us prove that the restriction in the previous theorem is necessary: there
is no interpolant for

S ≡ ∃x(Px&(Qx → r) ⇒ r; S′ ≡ ∀x(Px → Qx ∨ r′) ⇒ r′ (9)

i.e. for the partition ∃x(Px&(Qx → r));∀x(Px → Qx ∨ r′) ⇒ r; r′ or

E;A ⇒ r; r′

for short. We prove there is no interpolant even for the partition

E,K; K,A ⇒ r; r′ where K ≡ Pc&Qc

Assume there is an interpolant I;T;T′, and hence

(E,K ⇒ r)T∗, (K,A ⇒ r′)T′∗, TT′ ` ∅ (10)

are derivable. The last of these relations implies that at least one of the sequents
in T,T′ is positive. Since it is obvious that there is no interpolant with I in
>,⊥, it is sufficient to reduce the situation to that case.

Case 1. At least one of sequents in T′ is positive, say Tm ≡⇒ v1, . . . , vn.
Then A ` I1 ∨ . . . ∨ In ∨ r′ in the standard one-succedent version of the intu-
itionistic predicate logic.

If the last rule in the derivation (up to admissible permutation of inferences)
is ∨-succedent, then A,K ` Ij for some j, since A,K ⇒ r′ is not even classically
valid. Substituting r′/> one has K ` Ij. Since K is an antecedent term in both
parts of the partition, Ij can be replaced by >, as required. Indeed, from (10)
one has

(E,K ` r)T̃, (A,K ` r′)T̃′, T,T′ ` ∅
where T̃ ≡ T [v1/I1, . . . , vi/>, . . . , vp/Ip], i.e. with Ij replaced by >.

Otherwise (up to elimination of redundancies) the last steps of the derivation
of A ⇒ I1 ∨ . . . ∨ In ∨ r′ analyze A and K by the antecedent rules:

A,Γ, (Pa → Qa ∨ r′) ⇒ Pa

A,Γ, Qa ⇒ G A,Γ, r′ ⇒ G

A,Γ, Qa ∨ r′ ⇒ G

A,Γ, (Pa → Qa ∨ r′) ⇒ G
. . .

A,K ⇒ G

where Γ ≡ Pc,Qc, (Pa1 → Qa1 ∨ r′), . . . , (Pal → Qal ∨ r′). If a 6≡ c then
setting r′ = > in the leftmost upper sequent, we see that it is not classically
valid. If a ≡ c then the uppermost ∨-antecedent rule is redundant, since the
side formula Qa is already contained in Γ.

Case 2. One of the sequents in T is positive, say T1 ≡⇒ v1, . . . , vn. Then
` E ` I1 ∨ . . . ∨ In ∨ r. By the disjunction property (Harrop theorem) E ` r
(which is false) or E ` Ij for some j. Substituting r′/> one has K ⇒ Ij and
again Ij can be replaced by >.
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3 An Interpolation Theorem for Multiple Succedent
Sequents

In this section we present a property of multiple-succedent sequents which im-
plies Craig interpolation and admits a proof by induction on a derivation in
multiple-succedent version of the intuitionistic predicate logic (cf. [1],[2]). Let
us remind that the rules of this version coincide with corresponding classical
rules with two exceptions

Γ ⇒ A[b]
Γ ⇒ ∆,∀xA

Γ, A ⇒ B

Γ ⇒ ∆, A → B

The definition below is motivated as follows. The standard proof of Craig inter-
polation theorem (cf. [12]) is done by induction on derivation in one-succedent
formulation say LJ of the intuitionistic predicate calculus. At this moment
there seems to be no hope to find a formulation working for multiple-succedent
system say LJm. At the same time, any derivation in LJm is naturally divided
into parts ending in one-succedent sequents (for which usual Craig interpolation
is meaningful). Among these one-succedent sequents there are premises of the
rules for →,∀-succedent. Multiple formulas in the succedent arise (if the rules
are viewed bottom-up) as the results of →-antecedent inferences like

Γ ⇒ G,A Γ, B ⇒ G

Γ, A → B ⇒ G

If one could revert all such inferences, it would be possible to rely on Craig
interpolants. We define a property S ∈ In for sequents

S ≡ Γ; Γ′ ⇒ A1, . . . , An;∆′ (11)

or rather for partition of S into Γ ⇒ A1, . . . , An and Γ′ ⇒ ∆′. Notation A[k,n]

stands for Ak, . . . , An and A[k,n]−i stands for A[k,i−1], A[i+1,n].

Definition 4

Γ; Γ′ ⇒ ∆′ ∈ I0 iff there is an I ∈ LΓ ∩ LΓ′,∆′ such that Γ ` I and I,Γ′ ` ∆′

For n > 0
Γ; Γ′ ⇒ A[1,n];∆

′ ∈ In

iff for every i (1 ≤ i ≤ n) and for every formula B ∈ LΓ,A[1,n]
such that

Γ, B,Γ′ ` A[1,n]−i,∆′ one has

Γ, Ai → B; Γ′ ⇒ A[1,n]−i;∆
′ ∈ In−1

Theorem 2 If Γ; Γ′ ` A[1,n];∆′ then Γ; Γ′ ⇒ A[1,n];∆′ ∈ In

In particular, if Γ; Γ′ ` ∆′ then there exists a Craig interpolant I : Γ `
I, I,Γ′ ⇒ ∆′

Let us prove an extension of the Theorem 2.
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Theorem 3 Let a derivation d be given ending in the following series of con-
tractions and →-antecedent rules traceable to (A → B)[1,n] in the final sequent
(up to a permutation of [1, n]).

d+
2 d2 Γ, B2, (A → B)[3,n]; Γ

′ ⇒ A1,∆′

d+
1 Γ, (A → B)[2,n]; Γ

′ ⇒ A1;∆′ d1 Γ, B1, (A → B)[2,n]; Γ
′ ⇒ ∆′

d Γ, (A → B)[1,n]; Γ
′ ⇒ ∆′

where d+
2 is

d0 Γ; Γ′ ⇒ A[1,n];∆
′ dn Γ, Bn; Γ′ ⇒ A[1,n−1];∆

′

d+
n Γ, (An → Bn); Γ′ ⇒ A[1,n−1];∆

′
. . .

d+
2 Γ, (A → B)[3,n]; Γ

′ ⇒ A1, A2;∆′

Then
Γ, (A → B)[1,n]; Γ

′ ⇒ ∆′ ∈ I0

Proof . We assume that all principal formulas in axioms are atomic and use
induction on (‖d0‖,Σi‖di‖, n), i.e. on

α(d+) ≡ ω2‖d0‖+ ωΣi‖di‖+ n

where ‖d‖ is the total number of rules in d.
Induction base for ‖d0‖: the sequent Γ; Γ′ ⇒ A[1,n];∆′ is an axiom. The case

when the antecedent contains ⊥ is obvious. Assume that the antecedent and
succedent share an atomic formula C. If both occurences of C are in Γ′ ⇒ ∆′

then the interpolant I is >. If one C is in Γ and the other is in ∆′ then I = C.
It remains to consider the situation when the antecedent occurence of C is

in Γ,Γ′, and the second C is Ai.
Case 1. i = 1. Let I1 be an interpolant for d1, i.e. for the sequent

Γ, B1, (A → B)[2,n]; Γ′ ⇒ ∆′. Then if C ∈ Γ, set I ≡ I1. If C ∈ Γ′, then
set I ≡ (C → I1).

Case 2. i > 1. Take i = n to simplify notation, and consider a new
derivation:

S1

d̃+
n = dn Γ, Bn; Γ′ ⇒ A[1,n−1];∆

′

. . .
d̃+
1 S2

d̃1 Γ, B1, (A → B)[2,n−1], Bn; Γ′ ⇒ ∆′

d̃ Γ, (A → B)[1,n−1], Bn; Γ′ ⇒ ∆′

Γ, (A → B)[1,n−1], C → Bn; Γ′ ⇒ ∆′

Here

S1 ≡ Γ, (A → B)[1,n−1]; Γ
′ ⇒ C;∆′, S2 ≡ Γ, (A → B)[2,n−1], Bn; Γ′ ⇒ A1;∆′

and d̃ denotes the result of replacing all predecessors of (C → Bn) in d by Bn

and deleting corresponding →-antecedent inferences. Note that α(d̃) < α(d)
since at least one such inference is eliminated, and hence IH is applicable to d̃.
Now use case 1.
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In the inductition step for ‖d0‖ consider cases depending of the last rule R
in d0.

Case 3. The principal formula of R is in Γ,Γ′,∆′ and R is not →-antecedent
with principal formula in Γ. Then R can be permuted to become the last rule,
and IH will be applicable to its premises. Now the interpolant for the conclusion
is obtained from interpolants for the premises in the standard way.

Case 4. R is →-antecedent with the principal formula in Γ:

d−0 Γ; Γ′ ⇒ A[0,n];∆
′ Γ, B0; Γ′ ⇒ A[1,n];∆

′

d0 Γ, A0 → B0; Γ′ ⇒ A[1,n];∆
′

Here ‖d−0 ‖ < ‖d0‖, and IH is applicable.
Case 5. The principal formula of R is one of Ai, say A1.
Case 5.1. A1 ≡ ∀xA, i.e. there exist I1, I2 such that:

R
Γ,Γ′ ⇒ A[b]

Γ,Γ′ ⇒ ∀xA,A[2,n],∆
′

Γ′ ` I1, I1,Γ ` A[b]
Γ, (A → B)[2,n], B1 ` I2 I2,Γ′ ` ∆′

Hence ∀xI1[b/x] → I2 is an interpolant for the conclusion of R:

Γ, (A → B)[2,n],∀xA → B1,∀xI1[b/x] ` I2

Γ, (A → B)[2,n],∀xA → B1 ` ∀xI1[b/x] → I2

Γ′ ` ∀xI1[b/x],∆′ I2,Γ′ ` ∆′

∀xI1[b/x] → I2,Γ′ ` ∆′

Case 5.2. A1 ≡ C → D. Similar to the previous case. The interpolant is
I1 → I2.

Case 5.3. A1 ≡ ∃xA. Use IH and the implication ∃xA → B1 ` A[t] → B1.
Case 5.4. A1 ≡ B ∨C. Use IH and the implication: (B ∨C → B1) ` (B →

B1)&(C → B1)
Case 5.5. A1 ≡ B&C. Use IH and the implication (B&C) → B1 ≡ B →

(C → B1) 2

4 Kripke-style System

As pointed out in the introduction, one of the motivations for this work was
a formulation suitable for a version first stated in [6] (and independently by
[7]). This version derives tableaux, i.e. sequents consisting of indexed formulas
σA, where the index σ is a finite sequence of natural numbers and A is a
formula. Indices are interpreted as possible worlds with accessibility relation
Rσσ′ ≡ (σ′ = σ ∗ τ) for some τ . Kripke defined a translation of tableaux into
formulas, but it is not clear how to use it for our purposes, since this translation
intermixes the parts of the tableau traceable to the premise and the conclusion
of the original interpolation problem.

A formulation similar to Theorem 2 can be obtained using the transforma-
tion of tableau derivations into sequent derivations described below. It is still
not clear how to obtain more perspicuous interpolation theorem for tableaux.
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4.1 System KInt

Let us recall the typical rules of tableau formulation as presented in [8] (and
in [9] for the modal case). In most cases we group all formulas with one and
the same index σ together and write a tableau in the form U ;σS, where S is a
sequent, U is the remaining part of the tableau.

Axioms: U ;σ A,Γ → ∆, A
Inference rules

(& ⇒)
U ;σA,B,Γ ⇒ ∆

U ;σ(A&B),Γ ⇒ ∆
U ;σΓ ⇒ ∆, A U ;σΓ ⇒ ∆, B

U ;σΓ ⇒ ∆, (A&B)
(& ⇒)

(→⇒)
U ;σΓ ⇒ ∆, A U ;σB,Γ ⇒ ∆,

U ;σA → B,Γ ⇒ ∆
U ;σΓ ⇒ ∆; (σ ∗ i)A,Γ ⇒ B

U ;σΓ ⇒ ∆, A → B
(⇒→)

(transfer)
U ;σA,Γ ⇒ ∆; (σ ∗ i)A,Γ′ ⇒ ∆′

U ;σA,Γ ⇒ ∆; (σ ∗ i)Γ′ ⇒ ∆′

Lemma 3 If the transfer rule is not used in a derivation d of a tableau

d : σ1S1; . . . ;σnSn

then d can be pruned to a derivation of a sequent σiSi in the multiple-succedent
sequent system LJm.

Proof . Use induction on d. 2

Definition 5 The rules ⇒→,⇒ ∀ which give rise to new indices are called
non-invertible, all other rules are invertible

An invertible inference with the principal sequent σS is normal if there is
no index τ with Rστ in the same tableau.

Lemma 4 If all invertible inferences in a derivation d are normal then d can
be pruned to a derivation in LJm

Proof . We use induction on d. Induction base is obvious, consider induction
step. For a tableau T and a sequent σΓ → ∆ occurring in T let σ̃ ≡ Γ≤σ → ∆,
where Γ≤σ is the union of antecedents of all sequents τS′ occuring in T with
Rτσ.

We prove that d can be pruned to a derivation of a sequent of the form σ̃
where σ is one of the maximal indices in the last tableau T of d (i.e. there is no
τ in T with Rστ). In other words, we add implicitly applications of the transfer
rule. Consider cases depending on the last rule R of d. By IH every premise of
R can be pruned to one of its components If at least one of these components
(in the case of a two-premise rule) is not principal in the conclusion, then the
conclusion is pruned to the same component. Otherwise, T is pruned to its
principal component wich is derived by the rule R (except transfer rule which
disappears). 2
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Lemma 5 Every derivation in KInt can be transformed (by permuting invert-
ible inferences down) into a derivation of the same tableau where all invertible
inferences are normal.

Proof . Routine (cf. [4]), long.

4.2 Analytic Cut

A cut-inference
Γ ⇒ ∆, A A,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π

is analytic if A is a subformula of the conclusion. Note that the standard proof
of the intepolation theorem by induction on a Gentzen-type derivation still goes
through in the presence of the analytic cut. In the intuitionistic case ∆ should
be empty. A method to transform tableau formulations of modal logics into a
sequent formulation with analytic cut is presented in [10].
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