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Abstract

This note discusses two semantics for a logic of group announcements and verifies
that the two have the appropriate relation. The first semantics is the hyperset semantics
of Gerbrandy [4, 5] and Gerbrandy and Groeneveld [6]. The second is the Kripke model
semantics of Baltag, Moss and Solecki [2]. The relation between the two semantics was
noted without proof in [2]. A proof does appear in Gerbrandy [5]. The presentation
here is more algebraic in that it uses coalgebras and final coalgebra maps to give the
semantics of [4, 5, 6], and the equivalence of the two semantics is shown without
bisimulation.
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1 Introduction

This note is concerned with two semantics for the logic of group-level up-
dates. Such logics were first proposed by Plaza [8], and independently in Ger-
brandy [4, 5] and Gerbrandy and Groeneveld [6]. The idea is to start with
multi-agent modal logic and add propositional operators having to do with
conscious announcement of propositions to groups of agents.

Syntax We fix a set AtProp of atomic propositions and a set A of agents.
Then the usual multi-modal logic L over AtProp and A is generated in the
following way:

sentences ϕ p ∈ AtProp | ¬ϕ | ϕ ∧ ψ | 2Aϕ (A ∈ A)

We extend L to the language L(2∗) by adding the common knowledge operators
2∗
B, for all non-empty B ⊆ A; to L([ ]) by adding the binary announcement

operators [ϕ]Bψ for all non-empty B ⊆ A, and to L([ ],2∗) by adding both
constructs.

The key construct is the announcement operation, taking two propositions
ϕ and ψ, and also a set B of agents, and returning the proposition [ϕ]Bψ. The
intended meaning of this is if we take the group B and announce ϕ to this group
in such a way that everyone in B is aware of the announcement and everyone
outside of B is ignorant of it, then ψ holds. Of course, at this point we have
not given a formal semantics. But this is the idea.

Our point This note does not discuss the uses of this logic and related vari-
ations. What we are interested in here are two semantics. The first semantics
proposed uses hypersets, or non-wellfounded sets (see Aczel [1]). The second
uses Kripke models. This second semantics is more general as we shall explain
below. We will reverse the historical development and discuss the Kripke model
semantics first because it requires less background to understand.

An example of an announcement To see what the subject is about, con-
sider the case of a set A of three agents, say A, B, and C; two atomic sentences,
p and q, and a Kripke model with four worlds w, x, y, and z depicted below. We
have written out the accessibility relations in tabular form. In other notation,
we have w →A w, w →A x, x →C z, w |= p, etc. We have some standard
semantic facts, such as w |= ¬2Bp (in w, B does not know p, since p is false in
y), and w |= 2A¬2Bp, etc.

Now suppose someone comes to each world v ∈ W where p holds, takes
A and B off to the side, and tells them (together) that indeed, p holds there.
We want to update the worlds so that A and B’s accessibility relations only
include worlds where p is true. On the other hand, C was excluded from the
announcement (and in fact at this point, we want to assume that C did not
even know about it.) So C’s accessibility relation should not change. We
want to represent the updated version v′ in a way that captures the epistemic
alternatives available to each of the agents. Our proposal is that the worlds
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w

p A : w, x
q B : w, y, z

C : w, y

x

p A : w, x
¬q B : x

C : x, z

y

¬p A : y, z
q B : w, y, z

C : w, y

z

p A : y, z
¬q B : w, y, z

C : x, z

Figure 1: The Kripke model W

below represent the updated versions of the corresponding worlds above. Note
first that in the updated worlds, we have kept C’s accessibility relations the
way they were, since C was not party to the communication.

w′

p A : w′, x′

q B : w′, z′

C : w, y

x′

p A : w′, x′

¬q B : x′

C : x, z

z′

p A : z′

¬q B : w′, z′

C : x, z

Figure 2: The updated model W ′ adds worlds w′, x′, and z′ to W

Further, consider the update of w, and focus on the worlds accessible to B.
Before the update, B used to think that w, y, and z were possible. It should be
clear why there is no trace of y in the worlds accessible to B after the update
of w. So we need to update w to some new world; this is why w′ is needed.
And w′ should have the same propositional content, since announcements do
not change facts. The main question might be: why in w′ do A’s accessibility
relations point to w′ and x′ (and not w and x)? And why do B’s point to w′

and z′ (and not w and z)? The reason is that announcing p to A and B should
mean that not only do A and B think ¬p is impossible, but also that ¬p should
be impossible from all the worlds they think possible, etc.

The main justification for our proposal on how to model actions comes
from looking at semantic facts that hold in the updated worlds. For example,
〈W ′, w′〉 |= 2∗

{A,B}p. That is, in W ′ at the world in w′, it is common knowledge
among A and B that p holds. (We use the standard modeling of common
knowledge via infinite iteration.) On the other hand, one can check that the
updates do not change any knowledge facts for C: for all v ∈W , 〈W,v〉 |= 2Cϕ
iff 〈W ′, v′〉 |= 2Cϕ. Both of these consequences seem right.

These considerations lead to what we call the Kripke model semantics for
L([ ]). We interpret our languages on an arbitrary 〈W,w〉, where W is a multi-
agent Kripke model with accessibilities →A for each A ∈ A, and w is a world
of W . (We call such 〈W,w〉 model-world pairs.) However, to do this, we need
to define 〈W,w〉 |= ϕ in terms of semantic facts about model-world pairs 〈V, v〉,
where V differs from W . (This contrasts with the standard semantics of modal
logic where W alone suffices.) Here are the main clauses in the definition:
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〈W,w〉 |= p if w |= p in W in the usual way
〈W,w〉 |= 2Aϕ if for all v ∈W such that w →A v, 〈W,v〉 |= ϕ
〈W,w〉 |= 2∗

Bϕ if 〈W,w〉 |= 2A1 · · ·2Anϕ for all sequences 〈A1, . . . , An〉
from B∗, including the empty sequence

〈W,w〉 |= [ψ]Bϕ if 〈W ⊕ψ,B W, new(w)〉 |= ϕ,
where W ⊕ψ,B W and new are defined below

The worlds of W ⊕ψ,BW are the elements of the disjoint sum W +W . (We
take W +W to be a set such as ({0} ×W ) ∪ ({1} ×W ).) We indicate the left
injection of W into W + W (the function taking w to 〈0, w〉) by new, and the
right injection by old. We make this into a Kripke model W ⊕ψ,BW as follows,
using the structure of W :

new(v) →A new(u) if v →A u, A ∈ B, and u |= ψ
new(v) →A old(u) if v →A u and A /∈ B
old(v) →A new(u) never holds

old(v) →A old(u) if v →A u
new(v) |= p if v |= p
old(v) |= p if v |= p

This completes the definition of W ⊕ψ,BW . So we have specified the semantics
of our languages.

Once again, the idea is that 〈W,w〉 |= [ψ]Bϕ means that after all of the
agents A ∈ B learn ψ via a public announcement in the world w, ϕ holds.
The effect of this announcement in the semantics is that agents A ∈ B should
discard all worlds where ψ fails; they are no longer “possible worlds.” For
A /∈ B, there is no effect of the announcement. Here is how this gets formalized
in our two copies: The left copy is the updated copy and the right side is the
“old world.” It is clear that the right copy is isomorphic to the original W since
no arrows depart from it. In the left copy, the agents not in B are not aware
of the update, and so all of their possibilities are in the old world. But agents
in B are restricted: if A ∈ B, and v →A u, then new(u) is not a successor of
new(v) in W ⊕ψ,B W iff u 6|=A ψ.

2 The hyperset update

The main point of this note is to compare the Kripke model update which we
just studied with another one which we introduce now. This is the semantics
via hypersets studied in Gerbrandy [4, 5] and in Gerbrandy and Groeneveld [6].
However, we are not going to work with the original formulations, since they
involved some machinery from Barwise and Moss [3], especially the Corecursion
Theorem. To understand the Corecursion Theorem from first principles would
take some work, since it critically uses a set theory based on urelements. This
would be new for practically everyone. It seems to me that it might be easier
for some, and perhaps most, people who have an interest in these matters to
see a different development.

So another goal of this paper is to give a new formulation of the hyperset
semantics based on ideas coming from coalgebra. I believe that the importance
of coalgebras for the study of transition systems is due to Aczel [1] (the same
book which introduced non-wellfounded sets to a wide audience); of course
there may be earlier references that I do not know of. There is some overhead
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to either view: one either has to learn some non-standard set theory (especially
involving urelements), or some basic definitions from category theory. Part of
the purpose of this note is to put down enough details so that someone familiar
with the definitions of category and functor could understand our reformulation.
A related purpose is to show that in order to work with the hyperset update, it
is not really necessary to invoke even the concept of a bisimulation(!). One can
get all of the needed results out of final coalgebra maps and their properties.

Here are a series of general definitions and remarks, in preparation for our
formulation of the hyperset update:

Some general points of notation For any sets A and B, A + B denotes
the disjoint union of A and B. The exact definition of this set is irrelevant, but
it brings along injections of A and B into it. We will write these as newA+B :
A → A + B and oldA+B : B → A + B. We usually drop the subscripts.
(It is more common to name these by something like inl and inr. We name
them “old” and “new” to fit better with the metaphor of updating worlds.) If
f : A → C and g : B → C, then 〈f, g〉 : A + B → C is the unique map such
that f = 〈f, g〉 ◦ new and g = 〈f, g〉 ◦ old. Also, if f : A → B and g : C → D,
then f + g : A+ C → B +D is 〈newB+D ◦ f, oldB+D ◦ g〉.

Re-packaging multi-modal Kripke structures as coalgebras A Kripke
model W can be re-packaged as a coalgebra for the following functor F on sets
or classes a and functions f : a→ b:

F (a) = P(AtProp)×A → P(a)
F (f) = 〈S,α〉 7→ 〈S, f [α(A)]〉

An F -coalgebra is a pair 〈A, e〉, where A is a set or class and e : A → F (A).
We drop the F since it is the only functor in the paper. To see that coalgebras
correspond to Kripke structures, in one direction we take a model W to 〈W,f〉,
where

f(w) = 〈AtProp(w), A 7→ {v : w →A v}〉
Here AtProp(w) is the set of atomic propositions true at w in W . In the other
direction, a coalgebra 〈E, e〉 gives a Kripke model: the worlds are the elements
x ∈ E; the atomic propositions true at x are the elements of π1(e(x)), and
x→A y iff y ∈ (π2(e(x))(A).

Continuing the correspondence, a morphism of coalgebras 〈A, e〉 and 〈B, f〉
is a map k : A → B so that f ◦ k = F (k) ◦ e. Modulo re-packaging, this is a
p-morphism of Kripke models.

A final coalgebra is a coalgebra 〈C, c〉 such that for all 〈A, e〉 there is a unique
coalgebra morphism k : C → e. The map k is called the final coalgebra map for
〈A, e〉. Concerning the functor F of this paper, there exists a final coalgebra
〈C, c〉. Assuming the Antifoundation Axiom, we can take C to be the greatest
fixed point of F , considered as a monotone operator on sets. AFA also allows
us to assume that c is the identity on C. To compare the two approaches, we
therefore assume AFA and the consequences just noted.
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A fact worth noting is that if we have a morphism k : A→ B as above, and
if the final coalgebra maps are f : A→ C and g : B → C, then f = k ◦ g. To
see this, one checks that k◦g is a morphism of coalgebras. So by the uniqueness
part of finality, it must be identical to f .

Returning to hyperset update This is the map g = gψ,B defined on C in
a few steps as follows: First, one considers f : C → C + C given by

f(c) = 〈π1(c),
A ∈ B 7→ {new(b) : b ∈ π2(c)(A) & b |=C ψ}
A /∈ B 7→ {old(b) : b ∈ π2(c)(A)}

〉

Next, let q : C → F (C + C) be Fold ◦ c. (Recall that c : C → F (C) is
the identity.) Then 〈f, q〉 : C + C → F (C + C) is a coalgebra. Notice that
Fold ◦ c = q = 〈f, q〉 ◦ old, so old : C → C + C is a coalgebra morphism from
〈C, c〉 to 〈C + C, 〈f, q〉〉. The final coalgebra map for c is of course idC . Let
s : C+C → C be the final coalgebra map. We define the final coalgebra update
g to be s ◦ new. Note that the notation does not mention ψ and B, but to
remind ourselves of them we could write gψ,B.

Remark In order to connect this more closely to the original formulations, it
is probably useful to note the following result:

Proposition 2.1 For any set or class A and any map k : A→ F (A+C) there
is a unique h : A→ C such that c ◦ h = F (〈h, idC〉).

In fact, h is obtained by the same kind of construction which we used in
defining g above: considering a bigger coalgebra and using its final coalgebra
map. Proposition 2.1 is from [7]. That paper also contains other results along
these lines and some applications.

Now, Proposition 2.1 is closely related to the ideas behind the original for-
mulations from [4, 5, 6]. The idea is that we take A = C and k = f . That is,
we take an element c of C and return the pair consisting of the atomic proposi-
tions true at c, and also a function. That function takes an agent A /∈ B to set
contains either elements of C accessible via A (the “old worlds” accessible from
a by →A), and these worlds are especially tagged as such. The function also
takes A ∈ B to the set of elements of C accessible via A which are modified by
this very operation; again, these worlds are tagged as “new” so that they aren’t
confused with the old ones. The circularity in this formulation is a central ide-
ological feature of the approach, and we won’t discuss the reasons for it here.
But we will mention that work on hypersets and coalgebras can clarify circular
characterizations of this kind.
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The model-world update Re-packaging W ⊕ψ,B W from earlier gives a
coalgebra k : W +W → F (W +W ). In more detail,

k(new(w)) = 〈 AtProp(w),
A ∈ B 7→ {new(v) : w→A v & v |=W ψ}
A /∈ B 7→ {old(v) : w →A v}

〉
k(old(w)) = 〈 AtProp(w), A 7→ {old(v) : w →A v}

〉
We let dW+W : W +W → C be the final coalgebra map.

Proposition 2.2 Assume that ψ is preserved under final coalgebra maps. Then

dW+W ◦ new = gψ,B ◦ dW .

This is the central result of this note. It is based on the following claim:

Claim dW + dW is a coalgebra morphism from 〈W +W,k〉 to 〈C +C, 〈f, q〉〉.
This is the heart of the proof, we will go into the details. Consider some

old(w) ∈W +W . Applying k gives 〈AtProp(w), A 7→ {old(v) : w →A v}〉. Now
applying F (dw + dw) to this gives

〈AtProp(w), A 7→ {old(dw((v)) : w →A v}〉.
Going the other way, (dW + dW )(old(w)) = oldC(dW (w)). Then applying 〈f, q〉
to this gives q(dW (w)) = Fold ◦ c(dW (w)). Now

c(dW (w)) = dW (w) = 〈AtProp(dW (w)), A 7→ {dW (v) : w →A v}〉,
so that

Fold ◦ c(dW (w)) = 〈AtProp(dW (w)), A 7→ {old(dW (v)) : w →A v}〉.
Our proof in this case is completed by noticing that AtProp(w) = AtProp(dW (w)).
And this holds because coalgebra morphisms preserve the AtProp function, in
view of the way such morphisms work.

The remaining case is some new(w) ∈W+W . Now (F (dW+dW ))(k(new(w)))
is

〈 AtProp(w),
A ∈ B 7→ {new(dW (v)) : w→A v & v |=W ψ}
A /∈ B 7→ {old(dW (v)) : w →A v}

〉
And also 〈f, q〉(dW + dW (new(w)) = f(dW (w)). And

f(dW (w)) = 〈π1(dW (w)),
A ∈ B 7→ {new(b) : b ∈ π2(dW (w))(A) & b |=C ψ}
A /∈ B 7→ {old(b) : b ∈ π2(dW (w))(A)}

〉
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These two expressions are equal: this involves tracing through our definitions.
It is exactly here that we use the assumption that ψ is preserved under final
coalgebra maps.

So now we verified the claim that dW + dW is a coalgebra morphism from
〈W + W,k〉 to 〈C + C, 〈f, q〉〉. Recall that s is the final coalgebra map for
W + W . It follows that dW+W = s ◦ (dW + dW ) = (g ◦ dW ) + dW . Hence
dW+W ◦ new = g ◦ dW . This completes the proof of Proposition 2.2.

Proposition 2.3 Every ϕ is preserved under final coalgebra maps.

Proof By induction on ϕ. The only interesting step is when we assume that
both ψ and ϕ are preserved under final coalgebra maps, and prove the same
thing for [ψ]ϕ. Note that for all 〈W,w〉,

w |=W [ψ]ϕ iff new(w) |=W⊕ψ,BW ϕ
iff ((dW + dW ) ◦ new)(w) |=C ϕ ind. hyp. on ϕ
iff (gψ,B ◦ dW )(w) |=C ϕ ind. hyp. on ψ and Prop. 2.2
iff dW (w) |=C [ψ]ϕ

a
It follows that for all ψ and B, dW+W ◦ new = gψ,B ◦ dW . This is the sense

in which the two semantics for updates agree.

Conclusion The modest point of this note has been to give a coalgebraic
formulation of the hyperset semantics, and to prove the equivalence of that
semantics with the Kripke semantics. For more on both semantics, and on the
area of announcement logics as a whole, one should see the papers [2, 4, 5, 6, 8].
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