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Abstract

Algorithms of a social nature are extremely important and we are very dependent
on certain “data structures” like names and social security numbers, on courts and on
the postal system, and on various other social structures which enable us to perform
activities like calling someone (you need her name for that), suing someone, or sending
someone a bill. Unlike the situation in the theory of computation the existence of
an algorithm for a real life situation always implies that the problem is feasibly solv-
able. Perhaps the closest to the unsolvability of the halting problem are Arrow’s [1]
impossibility theorems for voting. In this paper we analyze a rather mundane problem
the problem of sorting socks after they have come out of the dryer and give several
polynomial time algorithms
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1 Introduction

Since Knuth [6] first wrote about toilet paper usage, a tradition has begun
that theoretical computer scientists need not confine themselves to the analy-
sis of computer algorithms but may also consider more mundane algorithmic
situations.

Actually, such situations are not all that uncommon. We have many such
algorithms, cooking recipes for example, or algorithms for knitting a sweater
or for toilet training a puppy. But there is very little by way of a theory of
such algorithms. The whole territory of ordinary life algorithms is relatively
unexplored from a theoretical point of view. Thus when problems from ordinary
life do arise which are capable of an exact mathematical treatment, then it is
pleasant to consider them.

Algorithms of a social nature are extremely important and we are very
dependent on certain “data structures” like names and social security numbers,
on courts and on the postal system, and on various other social structures
which enable us to perform activities like calling someone (you need her name
for that), suing someone, or sending someone a bill. Unlike the situation in
the theory of computation the existence of an algorithm for a real life situation
always implies that the problem is feasibly solvable. Perhaps the closest to the
unsolvability of the halting problem are Arrow’s [1] impossibility theorems for
voting.

Wittgenstein’s language games [10] are a way of understanding certain philo-
sophical puzzles through an investigation of such algorithmic issues embedded
in the structure of society. See [9] for a fairly precise analogy between program-
ming languages and natural language which exploits this sort of insight.

However, the issue before us right now is not a life and death matter for
anyone and we look at it partly for amusement, partly also to illustrate the use
of mathematical techniques in one more ordinary life problem.

In Knuth’s puzzle, people sitting down in a stall in a public toilet face two
rolls of toilet paper. Suppose that each person randomly selects k sheets from
one of the two rolls of toilet paper. Knuth wants to know, when one of the two
rolls becomes empty, how many sheets will still remain (on the average) on the
non-empty roll.

Our own puzzle is ‘cleaner’ in that it does not rely on a public toilet but
on a laundry room. In our puzzle, Ravi owns several pairs of socks and other
clothes, and does his laundry sporadically. It may happen when he does his
wash that he has in the washtub up to twenty five pairs of socks, along with
other non-sock apparel. Ravi wears only dark gray or dark blue or black socks,
each of various shades, and of course they are in matched pairs when he puts
them in. After all they were in matched pairs when he wore them!

Alas, they are no longer this way when they come out of the wash and are
then dried. What he now has is fifty individual socks, and not twenty five pairs.
He now has to match them up using visual inspection, and this is where he runs
into trouble. The trouble is that socks which are not precisely similar in color
may still appear to the naked eye to match. Unfortunately, the binary relation
of color indiscriminability is not transitive. It is possible for the following to
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hapen.
Say that socks s and s′ are close enough in color so they look the same to

Ravi even though their color is not exactly the same. Similarly for socks s′

and s′′. However, due to the fact that color indiscriminability is intransitive
[2, 7], it may happen that socks s and s′′ do not match. Thus suppose that he
originally had three pairs {s, s}, {s′, s′} and {s′′, s′′} and foolishly matched one
of the two s′ socks with an s and the other s′ sock with an s′′. He will now be
left with socks s and s′′ and these will no longer match!

Well, what is backtracking for? All he has to do is to toss the six socks (if
that is all he had) into a pile and start over. Sooner or later he will get it.

But this is not quite so easy if he has, as we said, fifty socks and not merely
six. There are 50!/(25! × 225) ways of matching (or mismatching) 50 socks
into 25 pairs and this number is far too great. Is Ravi facing an NP-complete
problem? Should he just throw the socks away and go buy twenty five brand
new pairs rather than spend the rest of his life sorting?

To deal with this problem in a precise way we need to formulate a mathe-
matical problem which is equivalent to the sock sorting problem.

2 Problem Formulation:

Construct a graph G where every vertex vi corresponds to a sock si, 1 ≤ i ≤ n,
where n is the total number of socks. Introduce an edge vivj if socks vi and vj

are indistinguishable to the naked eye. Call this the indistinguishability graph.
In the sock sorting problem, the task is to find a subgraph G′ of G whose vertex
set is the same as that of G and the degree of every vertex is exactly one. Sock
sorting (SS) is a special case of the perfect matching problem [3], in the sense
that in an instance of the SS problem, the total number of vertices is always
even and the degree of every vertex is odd. The perfect matching problem can
be solved exactly in polynomial time, specifically in O(n5/2) time [4]. However,
the algorithm is not at all straightforward.

So Ravi can indeed sort his socks in polynomial time, though apparently
not in linear time and the algorithm is not one that he can easily remember
unless he is a theoretical computer scientist. Is there then a simple linear time
algorithm which is easy to remember and which will give him, say, twenty pairs
of matched socks, the rest to be tossed into a dustbin? What is the situation
with a general n?

3 The naive (greedy) algorithm:

In the naive algorithm Ravi picks up one sock and tries to find a match among
the unsorted socks. If he finds one, then the two constitute a pair. He puts
them aside, and picks up another sock. If he does not find a match, he throws
away the sock he had picked up, and starts with another sock.

Clearly the naive algorithm runs in O(n2) time. For each sock that he
picks up, there will be at most n comparisons and there are n socks, so O(n2)
comparisons in all. Also there is little storage requirement. At any time, there
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is (a) the sock s which is being paired at the moment, (b) the socks which have
already been compared with s, and found not to match, (c) the socks which
have yet to be compared to s, and finally (d) the socks which have already been
paired. But altogether they occupy the same space which the original socks
did.

However, the cost is that some socks will be lost. How many? It is easy
to see first of all that if the socks come from at most d different shades, then
at most d socks can be lost. Furthermore if the d shades are all non-matching
then no socks can be lost at all.

To see what can happen here, suppose that he has socks of color dark gray,
charcoal gray, black, dark blue, and midnight blue. Suppose a charcoal gray
sock will match either a black sock or a dark gray sock. Other than that, no
matches occur with other colors. Then at most 2 socks can be lost, regardless
of the number n of socks. This is because at most one sock of each shade will
remain unmatched, and neither a charcoal gray sock nor a blue sock can be one
of these. For if a charcoal gray sock remained unmatched, there would also be
another unmatched sock which was charcoal gray or dark gray or black. But a
left over charcoal gray sock would match all three. Furthermore no blue socks
will remain unmatched. So at most two socks, one black and one dark gray,
could remain unmatched.

More generally, if d is the total number of shades, and d′ is the size of the
largest set of shades no two of which match (i.e. of the largest maximal anti-
clique of the indistinguishability graph), then d′ ≤ d and at most d′ socks can
remain unmatched. Also, if indistinguishability is an equivalence relation (as
happens e.g. when d ≤ 2) then no socks can remain unmatched and otherwise
at most d−1. Finally, in such a case, with fixed d′, the naive algorithm will run
on the average in time linear in n, even though the worst case will be O(n2).

What if we do not have any bound other than n/2 on the number of shades?
Even in this case we claim that at most a third of the socks can be lost. For
suppose that we denote the original mate of a sock s by s−, whence s−− = s.
We also define s= to be the new mate1 (if any) of sock s. The function − is
total but = may, and usually will be, a partial function.

Now if sock s is thrown away, it means that s− is (and has in fact already
been) matched with some sock t (= s−=). It could not have been thrown away,
for s was available to be matched with it. Moreover, t− must also have already
been matched, otherwise it would have been available to be matched with s. So
t= must exist. Proceeding this way we get a chain of socks (s, s−, t, t−...) ending
with some other 2 unmatched sock, say u. The chain is obtained by alternately
applying the functions − and =. It is easy to see that if we had started this
chain of reasoning with u instead of s, we would have got the same chain in
reverse, ending up with s.

Let X(s) be the set of (matched) socks between s and u, i.e. the socks
{s−, ..., u−}. Then X(s) = X(u). Moreover, X(s) has an even number of
elements and we just saw why it cannot be only two. Thus X(s) has at least four

1Thus s−= is a little like the second husband of one’s first wife.
2It is not hard to show that it cannot be s.
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elements. Moreover, if v is some other thrown sock, then X(v) is disjoint from
X(s). This is because the chains starting from s and v are both deterministic.
If these chains overlap, they must both end up with u. In that case the chain
beginning with u would travel backwards, ending up in both s and v, thereby
forcing v to equal s. 3 Thus we see that for each sock s which is thrown away,
there are at least four matched socks X(s), and each set X(s) is used only twice.
This shows that the number of matched socks is at least twice the number of
thrown socks, i.e. the number of thrown socks is at most 1/3 the total number
of socks.

Our original example with six socks and three shades shows that this is
the best possible in general for the naive algorithm and in fact we can create
such a situation with an arbitrary number of shades. Suppose we have shades
{d0, ..., dm} such that the shade d0 matches all shades and none of the other
shades match each other. Also we have m socks of shade d0 and two socks each
of shade di for i > 0. Now if we happen to match the m socks of shade d0, each
with one sock of the shades di for i > 0, then when this is done, one sock each
of shade di for i > 0 will be left over and nothing could be done with those.
Thus to make sure that we match more than 2/3 of the socks will require a
more sophisticated algorithm.

4 An O(n2) Algorithm Losing No Socks

: The greedy algorithm requires no extra space in the laundry room. Suppose
Ravi does have space either in the laundry room or elsewhere, can he then do
better? In particular can he pair up all his socks (unless the washing machine
ate some)?

The following three algorithms, having progressively better running times,
are all based on a straightforward yet crucial observation that a sock and its
pair must “behave” identically. This assumes that a sock and its pair wash
identically or indistinguishably. We capture this property in a a binary n-
vector vi, associated with each sock si as follows: the jth entry of the vector
is 1 if sock si is indistinguishable from sock sj and 0 otherwise. The ith entry
of vi is always 1. The vectors for a sock and its pair must be identical. We
simply need to detect identical vectors to obtain the class of socks with identical
“behavior”. This class must necessarily have an even number of socks and a
sock from this class can be paired with any other sock from this class without
creating a problem in the future.

It takes O(n2) time to compute all the vectors since every sock must be
compared with every other sock. (The binary relation of indistinguishability,
which must be specified to the algorithm somehow, could be given in the form
of these vectors in the first place, in which case we would spend n2 time merely
reading the vectors in.)

Finding identical vectors is harder. A simple-minded approach would be
3It is possible of course that when the chains from s and v met, they were going in opposite

directions. In that case a variant of our argument will give us v = u rather than v = s. But
v cannot be distinct from both s and u.
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to examine all n(n − 1)/2 pairs, spending time n to compare each pair. This
method would then take O(n3) time.

If we plan ahead however, it might occur to us to first sort the vectors numer-
ically, thinking of them as n-bit integers. Sorting n items requires O(n log n)
comparisons, and each comparison of two n-bit vectors takes time n, for a cost
of O(n2 log n). Once sorted, we can find all identical pairs of vectors by exam-
ining the n− 1 consecutive pairs at a cost of O(n2). So the preparatory sorting
phase dominated the running time here: pairing up the socks went relatively
quickly once they were sorted. The resulting O(n2 log n) algorithm improves
significantly on our simple-minded O(n3) method.

However we can do yet better here by taking advantage of the structure of
this problem. The following method further reduces the time to O(n2).

Ravi constructs an n×n matrix M whose ith row is vi. He uses the following
simple algorithm to partition the vectors where each partition corresponds to
the class of identically “behaving” socks. Based on the first column of the matrix
M , he partitions the rows (or socks) into two sets Sk = {row i|M [i, 1] = k},
k = 0, 1. Next, using the second column, he partitions S0 into S00, S01 defined
as follows S0k = {row i|M [i, 2] = k and i ∈ S0}, k = 0, 1. Similarly S1 can be
partitioned into sets S10, S11. He proceeds this way until all the columns have
been considered. The maximum number of partitions is n/2 since a sock and
its pair must “behave” identically. For any pair of rows i and j in the same
partition, vi = vj holds and the corresponding socks can be arbitrarily paired
with any other element from the partition. This sorting or partitioning into
identical vectors takes O(n2) time.

So, if Ravi does have some space to spare, he can have all his socks matched
perfectly using the same order of time as the naive greedy algorithm.

The question still remains if there is a simple algorithm which matches all
socks, or failing that, one which matches more than two thirds of the socks
regardless of the number of shades? We leave the reader to ponder this issue.
Meanwhile, we can only repeat Henry Ford’s advice: Buy socks of any color
you like, as long as they are black!
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