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Abstract

The property of strong neighbourhood completeness was introduced in the first part
of this paper. By modifying the ultrabouqet construction, we prove this property for all
Kripke-complete normal K4-logics and for a large class of Kripke-complete polymodal
logics (called ‘acyclic). On the other hand, we present a simple counterexample of a
polymodal logic with the f.m.p. which is not strongly neighbourhood complete.
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1 Introduction

This paper is a continuation of [8], but a happy occasion on which it has been
written – Johan Van Benthem’s 50th birthday – suggests us to look at the
topic from a more general viewpoint. Indeed, it is closely related to Correspon-
dence Theory, a large area in modal logic discovered 25 years ago, mainly in
the works of Johan Van Benthem. The original problems studied by Correspon-
dence Theory were definability of first-order properties and classes of frames by
modal formulas , cf. the introduction to [2]. But nowadays we could under-
stand Correspondence Theory in a broader sense, as studying questions of the
following two kinds:

• What features of classical first-order formulas (theories) are modal?

• What features of modal formulas (logics) are first-order and what are high-
order?

Questions of the first type are considered in the recent book [1]. This paper
refers to the second type; it studies a modal logic analogue of compactness.

The strong neighbourhood completeness property we are interested in, was
proved in [8] for all Kripke-complete intermediate logics and for many modal
logics above K4. Here we prove that Kripke-completeness implies strong neigh-
bourhood completeness for all extensions of K4 and for all ‘acyclic’ polymodal
logics. On the other hand, we construct a simple counterexample for this im-
plication in the polymodal case.

The terminology and notations from part I are retained here with little vari-
ations. Now we consider n-modal formulas built up from the set of proposition
letters PL = {p1, · · · , pm, · · ·}, and the connectives ¬, ∧, 21, · · · ,2n; the con-
nectives ⊃, ∨, ⊥, 3i are derived1 The set of all n-modal formulas is denoted by
MFn.

As usual, the minimal n-modal logic Kn is the smallest set of n-modal
formulas, containing all classical tautologies, the axioms:

2i(p ⊃ q) ⊃ (2ip ⊃ 2iq),

and closed under Substitution, Modus Ponens, and 2i-introduction (for i ≤ n).
A set S ⊆MFn is consistent with respect to a modal logic L (or L-consistent

) if ¬(A1 ∧ · · · ∧An) 6∈ L whenever A1, · · · , An ∈ S.
An n-modal neighbourhood frame is a tuple X = (X,21, · · · ,2n), where

X is a non-empty set, 2i are unary operations on P (X) (the power set of X),
satsfying the identities:

2i(Y ∩ Z) = 2iY ∩2iZ,

2iX = X.

A neighbourhood model over X = (X,21, · · · ,2n) is a pair (X , φ), with a
mapping

1 We use the notations 2 and 3 (without the subscript 1) in the 1-modal case
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φ : PL→ P (X). φ is extended to all modal formulas:

φ(¬A) = X − φ(A), φ(A ∧B) = φ(A) ∩ φ(B), φ(2iA) = 2iφ(A).

A modal formula A is true at a point x of a model (X , φ) if x ∈ φ(A) (notation:
X , φ, x |= A; or just x |= A); it is valid in X (notation: X |= A) if it is true at
any point of any model over X . A set of formulas S is said to be valid in X
(notation: X |= S) if every formula from S is valid. In this case X is said to be
a (neighbourhood) S-frame . A set S is satisfied at a point x of a neighbourhood
model (X , φ) if X , φ, x |= A for any A ∈ S (notation: X , φ, x |= S ); S is satisfied
in X if it is satisfied in some point of some neighbourhood model over X . It is
well-known that every Kripke frame F = (W,R1, · · · , Rn) is associated with a
neighbourhood frame X (F ) = (W,21, · · · ,2n), where 2iY = {x | Ri(x) ⊆ Y };
and thus Kripke semantics is reducible to neighbourhood semantics.

Recall that an n-modal logic L is neighbourhood complete (or N-complete
) if for every n-modal formula A 6∈ L there exists a neighbourhood L-frame in
which A is non-valid. L is neighbourhood complete (or N-complete ) if the same
is true in Kripke semantics.

A class Φ of n-modal Kripke (or neighbourhood) frames determines the
modal logic ML(Φ) = {A ∈MF | ∀F ∈ Φ F |= A}. A logic is K-complete iff it
is determined by some class of Kripke frames; similarly, for N-completeness.

L is strongly neighbourhood (respectively, Kripke-) complete (in brief, S-
N-complete; S-K-complete ) if every L-consistent set of n-modal formulas is
satisfied in some neighbourhood L-frame. 2

Note that every logic determined by an elementary class of frames is always
S-K-complete, so the difference between these properties can be seen only in
the ‘non-elementary area’.

In the most general case we have the following diagram:

S-K-completeness −→ K-completeness
↓ ↓

S-N-completeness −→ N-completeness

It is known that K-completeness does not imply S-K-completeness (cf. [8]
for the references). Also it is true that S-N-completeness does not imply K-
completeness (even for intermediate logics). This follows from [8] and [7]; the
detailed proof will be published elsewhere. In this paper we show that K-
completeness does not imply S-N-completeness in the polymodal case. On the
other hand, we prove that for the monomodal logics containing K4:

S-K-completeness −→ K-completeness −→
S-N-completeness −→ N-completeness

(←−?)

The question whether N-completeness implies S-N-completeness for logics above
K4, remains open. However this implication can be confirmed in many cases
([8], Theorem 5.8).

2In [8] the same definitions were given also for intermediate logics. However the Definition
1.3 in [8] contains a misprint. Actually it should read as follows:

an intermediate logic L is S-N-complete if every L-consistent pair of sets of intuitionistic
formulas is satisfied in some neighbourhood L-frame.
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2 Ultrabouqets of transitive frames.

The main tools used in [8] in strong completeness proofs were ultrabouqets,
the modal logic analogues of ultraproducts. They were defined for transitive
antisymmetric (monomodal) Kripke frames (‘trantises’). Now we will extend
the definition to arbitrary transitive frames.

First, let us recall that, for an ultrafilter U in ω and a statement Φ(n) of
our meta-language, ∀∞n Φ(n) abbreviates {n | Φ(n)} ∈ U . The “generalized
quantifier ∀∞ distributes over all propositional connectives.

Recall also that a cluster in a transitive Kripke frame (W,R) is an equiva-
lence class w.r.t. the relation {(x, y) | xRy∧yRx∨x = y}; an irreflexive cluster
consists of a single irreflexive point.

Consider a countable family of transitive frames Fn = (Xn, Rn), n ∈ ω.
Assume that each Fn contains the least reflexive cluster Cn(and thus, Xn =
R(Cn)). Take an ultrafilter U in ω, and let C =

∏
U Cn be the corresponding

ultraproduct of sets. For every sequence (an)n∈ω , let [an]n∈ω (or, [an] in brief)
be the corresponding element of C (so [an]n∈ω = [bn]n∈ω iff ∀∞n an = bn).
Without any loss of generality we may assume that C ∩ Xn = ∅ for every n.
Now we glue all Fn together, by identifying every Cn with C.

Speaking precisely, let

X−
n = Xn − Cn, X = C ∪

⋃
n

({n} ×X−
n ).

Every a ∈ X−
n can be identified with (n, a) ∈ X; so we can consider X−

n as
a subset of X. Let R be the relation in X such that

(m,x)R(n, y)⇔ m = n & xRny; R(C) = X.

Then obviously, R is transitive.
For any V ⊆ X let

2V = V1 ∪ V0,

where
V1 = {x | x 6∈ C & R(x) ⊆ V },

V0 =

{
{u}, if ∀∞n X−

n ⊆ V and C ⊆ V ;
∅ otherwise.

Similarly to [8], Lemma 2.4 one can show that (X,2) is a neighbourhood K4-
frame.

Definition 2.1 The neighbourhood frame (X,2) defined above is called the ul-
trabouqet of the family (Fn)n∈ω w.r.t. the ultrafilter U and denoted by

∨
U Fn

.

Definition 2.2 In the above context, let ψn be a valuation in Fn = (Xn, Rn),
ψ be a valuation in (X,2) =

∨
U Fn such that for any proposition letter p,

∀n ψ(p) ∩X−
n = ψn(p) ∩X−

n ;

[cn] ∈ ψ(p)⇔ ∀∞n cn ∈ ψn(p).

Then ψ is called the ultrabouqet of the family (ψn)n∈ω and denoted by
∨
U ψn.
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It is easily checked that the family (ψn) uniquely defines ψ.

Lemma 2.3 Let ψn , Fn be the same as in the previous Definition, and let
ψ =

∨
U ψn. Then for any modal formula A,

(1) ∀n ψ(A) ∩X−
n = ψn(A) ∩X−

n ;
(2) [cn] ∈ ψ(A)⇔ ∀∞n cn ∈ ψn(A).

PROOF. By induction, similar to [8], Lemma 2.8. Let us consider the case
A = 2B in (2).

[cn] ∈ ψ(2B)⇔ C ⊆ 2ψ(B)⇔ C ⊆ ψ(B) & ∀∞n X−
n ⊆ ψ(B)

⇔ C ⊆ ψ(B) & ∀∞n X−
n ⊆ ψn(B).

Also
C ⊆ ψ(B)⇔ ∀∞n Cn ⊆ ψn(B).

In fact, assume that C ⊆ ψ(B), but not ∀∞n Cn ⊆ ψn(B). Then ∀∞n Cn 6⊆
ψn(B), and thus there exists a sequence of dn ∈ Cn such that ∀∞n dn 6∈ ψn(B)
(for, take an element in (Cn−ψn(B)) whenever this set is nonempty; otherwise
take an arbitrary element in Cn). By the inductive hypothesis we obtain that
[dn] 6∈ ψ(B), in a contradiction with C ⊆ ψ(B). So we have

[cn] ∈ ψ(2B)⇔ ∀∞n Cn ⊆ ψn(B) & ∀∞n X−
n ⊆ ψn(B)⇔ ∀∞n Cn ⊆ ψn(2B)

⇔ ∀∞n cn ∈ ψn(2B). a

Lemma 2.4 Let A be a modal formula, Fn = (Xn, Rn), n ∈ ω be K4 -frames
validating A. Assume that each Fn contains the least reflexive cluster Cn. Then
A is valid in any ultrabouqet

∨
U Fn.

PROOF. Suppose the contrary, i.e. that ϕ(A) 6= X, for some valuation ϕ in
(X,2) =

∨
U Fn . If X−

n − ϕ(A) 6= ∅ for some n, then the generated subframe
argument shows that A is non-valid in Fn. Thus c1 6∈ ϕ(A) for some c1 ∈ C.
Let p1, · · · , pm be the list of all proposition letters occurring in A, and consider
the following equivalence relation in C:

x ≡0 y ⇔ ∀i ≤ m (x ∈ ϕ(pi)⇔ y ∈ ϕ(pi)).

First let us assume that

(X,2), ϕ, c1 |= ¬p1 ∧ · · · ∧ ¬pm. (1)

Let c1, · · · , ck be the maximal set of non-equivalent points in C (w.r.t ≡0).
Consider the valuation ψ in X, such that for every q ∈ PL

x ∈ ψ(q)⇔ x ∈ ϕ(q), if x ∈ (X − C) ∪ {c1, · · · , ck};

x 6∈ ψ(q), if x ∈ C − {c1, · · · , ck}.
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For every ci choose a sequence (cin)n∈ω , such that ci = [cin]n∈ω , and take the
valuations ψn in Fn such that for every q

ψn(q) ∩ Cn = {cin | ci ∈ ϕ(q)}, ψn(q) ∩X−
n = ψ(q) ∩X−

n .

Then we have:
[an] ∈ ψ(q)⇔ ∀∞n an ∈ ψn(q). (2)

In fact, by the definition of ψ, ψn and the properties of ∀∞,

∀∞n an ∈ ψn(q)⇔ ∀∞n (an = c1n & c1 ∈ ψ(q) ∨ · · · ∨ an = ckn & ck ∈ ψ(q))

⇔ ∀∞n (an = c1n & c1 ∈ ψ(q)) ∨ · · · ∨ ∀∞n (an = ckn & ck ∈ ψ(q))

⇔ ∃i ≤ k([an] = ci & ci ∈ ψ(q))⇔ [an] ∈ ψ(q).

c1 6∈ ψ(A)⇒ ∀∞n Fn 6|=A. (3)

For, ψ =
∨
U ψn by (1), and thus c1 6∈ ψ(A) implies ∀∞n c1n 6∈ ψn(A) by Lemma

2.3.
c1 6∈ ψ(A). (4)

To verify this, we show by induction that for any formula E in p1, · · · , pm

∀i ≤ k (ci ∈ ψ(E)⇔ ci ∈ ϕ(E)). (5)

Only the case E = 2B is non-trivial. We have

ci ∈ ψ(2B)⇔ C ⊆ ψ(B) & ∀∞n X−
n ⊆ ψ(B)⇔ C ⊆ ψ(B) & ∀∞n X−

n ⊆ ϕ(B),

due to the definition of ϕ . Now it suffices to prove

C ⊆ ψ(B)⇔ C ⊆ ϕ(B). (6)

(⇒ ) Let C ⊆ ψ(B). Then c1, · · · , ck ∈ ϕ(B) by (5), and also d ∈ ϕ(B) for
every d ∈ C − {c1, · · · , ck}. For, by the choice of c1, · · · , ck , we have d ≡0 ci
for some i, and an easy inductive argument shows that (w.r.t. the valuation ϕ
) the same formulas in p1, · · · , pm are true in d, ci .

(⇐) Let C ⊆ ϕ(B). Then c1, · · · , ck ∈ ψ(B) by (5), and again, d ∈ ψ(B)
for every d ∈ C−{c1, · · · , ck}. In fact, d 6∈ ψ(pj) for j ≤ m, and thus (w.r.t the
valuation ψ and formulas in p1, · · · , pm), d is equivalent to c1 .

This completes the proof of (6) and (5). Now c1 6∈ ϕ(A) implies (4), and
from (4) , (3) we get ∀∞n Fn 6|=A, which contradicts the assumption of the
Lemma. Therefore (1) is impossible.

Now instead of (1), let us assume that

(X,2), ϕ, c1 |= ¬p′1 ∧ · · · ∧ ¬p′m,
where each p′j is either pj or ¬pj. Take the valuation ϕ′, such that for every
j ≤ m,
ϕ′(pj) = ϕ(p′j); then obviously, ϕ′(p′j) = ϕ(pj); and hence

ϕ(A(p1, · · · , pm)) = ϕ′(A(p′1, · · · , p′m)).

Now we have that A′ = A(p′1, · · · , p′m) is valid in every Fn , and also

c1 6∈ ϕ′(A′); (X,2), ϕ′, c1 |= ¬p1 ∧ · · · ∧ ¬pm,

and so the previous argument leads us to a contradiction again. Therefore
ϕ(A) = X. a
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3 From K-completeness to S-N-completeness

Theorem 3.1
Every K-complete monomodal logic containing K4 is S-N-complete.

PROOF. Similar to [8], Theorem 3.3. Suppose L = ML(Φ) for a class Φ
of transitive 1-modal Kripke frames. Consider an L-consistent countable set
of formulas S = {An | n ∈ ω} , then every formula Bn =

∧n
i=0Ai is L-

consistent, and thus there exists a frame Fn ∈ Φ and a valuation φn , such that
Fn, φn, xn |= Bn . Obviously, (Bn ⊃ Bm) ∈ K4 if m ≤ n. Now there are two
cases.

(i) The set {n | xn is reflexive } is infinite.
Let {n1, n1, · · · , } be the increasing enumeration of this set; then nk ≥ k.

Also let yk = xnk
, and let (Xk, ψk) be the submodel of (Fnk

, φnk
) generated by

yk. By the properties of generated subframes, we have
Xk |= L and Xk, ψk, yk |= Bnk

; hence Xk, ψk, yk |= Bk(because nk ≥ k).
Take some non-principal ultrafilter U in ω, and consider the ultrabouqet

X =
∨
U Xn . Then X |= L, by Lemma 2.4.

On the other hand, take the valuation ψ =
∨
U ψn . Since we haveXn, ψn, yn |=

Cn , it follows that (for any k)

∀n ≥ k yn ∈ ψn(Ak),

and thus
∀∞n yn ∈ ψn(Ak),

because U is non-principal. Then by Lemma 2.3, [yn] ∈ ψ(Ak), and therefore
X,ψ, [yn] |= S.

(ii) The set {n | xn is reflexive} is finite. Then the set {n | xn is irreflexive}
is infinite, and we may use the same argument as in the proof of Theorem 3.3
from [8]. a
Definition 3.2 A cycle of length m > 1 in a Kripke frame F = (W,R1, · · · , Rl)
is a sequence of distinct points x1, · · · , xm such that x1Rx2R · · ·Rxm−1RxmRx1,
where R = R1 ∪ · · · ∪Rl. A Kripke frame without cycles is called acyclic .

Definition 3.3 A reflexifity type of a point x in a Kripke frame
F = (W,R1, · · · , Rl) is the set rt(x) = {i | xRix}.

Definition 3.4 For every n ∈ ω, let Fn = (Xn, Rn1, · · · , Rnl) be an acyclic
generated frame with a root xn, and assume that all the xn are of the same
reflexivity type. The bouqet of the frames Fn is the frame (X,R1, · · · , Rl),
where

X = {u} ∪
⋃
n

({n} ×X−
n ), X−

n = Xn − {xn}, u 6∈
⋃
n

Xn,

(m,x)Ri(n, y)⇔ m = n & xRniy; uRi(n, y)⇔ xnRniy; rt(u) = rt(x1).

As usual, X−
n is identified with ({n} ×X−

n ).
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For an ultrafilter U in ω, we define the ultrabouqet
∨
U Fn as the neighbour-

hood frame (X,21, · · · ,2l), where

2jV = V 0
j ∪ V 1

j ,

V 1
j = {x | x 6= u & Rj(x) ⊆ V },

V 0
j =

{
{u}, if ∀∞n Rnj(xn)− {xn} ⊆ V ( and also u ∈ V if uRju)
∅ otherwise.

Definition 3.5 Let Fn be the same as in the previous Definition, and for every
n, let ψn be a valuation in Fn. We define the valuation ψ =

∨
U ψn in

∨
U Fn

such that for any proposition letter p,

∀n ψ(p) ∩X−
n = ψn(p) ∩X−

n ;

u ∈ ψ(p)⇔ ∀∞n xn ∈ ψn(p).

The following two lemmas are quite similar to the case considered in [8]:

Lemma 3.6 Let ψ =
∨
U ψn. Then for any l-modal formula A,

(1) ∀n ψ(A) ∩X−
n = ψn(A) ∩X−

n ;
(2) u ∈ ψ(A)⇔ ∀∞n xn ∈ ψn(A).

Lemma 3.7 In the assumptions of Definition 3.5, let A be an l-modal formula
which is valid in every Fn. Then A is valid in any ultrabouqet

∨
U Fn.

Theorem 3.8 Every modal logic determined by a class of acyclic Kripke frames
is S-N-complete.

PROOF. Similar to Theorem 3.3 from [8] and to Theorem 3.1 above. Suppose
L = ML(Φ) for a class Φ of acyclic Kripke frames. Consider an L-consistent
countable set of formulas S = {An | n ∈ ω}. For Bn =

∧n
i=0Ai there exists

a frame Fn ∈ Φ and a valuation φn , such that Fn, φn, xn |= Bn . Then some
reflexivity type is represented by infinitely many of xn. Let n1, n2, · · · be the
increasing enumeration of these numbers n, and let (Xk, ψk) be the submodel
of (Fnk

, φnk
) generated by yk = xnk

. For a non-principal ultrafilter U in ω,
consider the ultrabouqet X =

∨
U Xn and the valuation ψ =

∨
U ψn. Then

X |= L, by Lemma 3.7, and X,ψ, u |= S by Lemma 3.6. a
Corollary 3.9 Every uniform logic (in the sense of [5]) containing D is S-N-
complete.

PROOF. The normal form construction from [5] (cf. also [3]) shows that every
uniform logic above D is determined by a class of finite acyclic frames. a

In particular, the famous logic M = K+23p ⊃ 32p which is “very second-
order” in Kripke semantics [2], becomes better in neighbourhood semantics.
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4 S-N-incompleteness

Now let us construct a rather natural bimodal logic which is K-complete, but
S-N-incomplete. Consider the formula AGrz = ¬(p∧2(p ⊃ 3(¬p∧3p)). Then
Grz = S4 + AGrz is the well-known Grzegorczyk’s logic , determined by the
class of all finite partial orders [3].

Definition 4.1 Let GrzU be Grzegorczyk’s logic with the universal modality.
It is defined as the logic with modal operators 2, ∀, and the following postulates:

(1) postulates of Grz for 2;
(2) postulates of S5 for ∀ ;
(3) ∀p ⊃ 2p.

Theorem 4.2 GrzU has the f.m.p (and therefore is K-complete).

PROOF. Take a generated submodelM = (W,R1, R2, ϕ) of the canonical model
refuting a given formula A. Due to the axioms (2) and (3), the relation R2 is
universal. Then we extract a finite submodel of M refuting A by a standrad
filtration argument in the same way as it is done for Grz. a

To show that GrzU is S-N-incomplete we use the well-known K. Fines frame
FF from [4]. The whole argument is close to Sec. 2 of [7], so we do not give it
in full detail here.

Definition 4.3 By induction we define the formulas βn, γn :

β0 = 2p, γ0 = 2¬p, β1 = ¬p ∧3β0 ∧ ¬3γ0, γ1 = p ∧ ¬3β0 ∧3γ0,

βn+1 = 3βn ∧3γn−1 ∧ ¬3γn, βn+1 = 3γn ∧3βn−1 ∧ ¬3βn (for n ≥ 1).

Let αn = 3βn+1 ∧3γn+1 ∧ ¬3γn+2 ∧ ¬3βn+2, εn = 3αn ∧3βn+2,

lprθn = εn+1 ∧ ¬3αn, δn = εn ⊃ 3θn.

Let S = {ε0} ∪ {∀δn | n ∈ ω}.

Definition 4.4 Let FF = (W,≤), where W =
⋃

n{an, bn, cn, dn}, ≤ is the least
partial order in W , such that

bn+1 ≤ bn, cn−1; cn+1 ≤ cn, bn−1; an ≤ bn+1, cn+1; dn ≤ an, dn+1.

Let FFn be the restriction of FF to the set Vn = W − {dm | m > n}.

Lemma 4.5 The set S is GrzU-consistent.

PROOF. We will show that every set Sn = {ε0} ∪ {∀δm | m ≤ n} is GrzU-
consistent. Since every ascending chain in FFn is finite, the logic GrzU is valid
in FFn with ∀ interpreted as the universal truth. So it is sufficient to show that
Sn is satisfied in some Kripke model over FFn. Take the valuation ϕ in Vn,
such that ϕ(p) = {b0, c1}. Then by induction on k it follows that ϕ(βk) =
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{bk}, ϕ(γk) = {ck}. This implies ϕ(αk) = {ak}, and thus d0 ∈ ϕ(ε0). Also
ϕ(δm) = Vn. For, x ∈ ϕ(εm) implies x ≤ am, x ≤ bm+2, and thus x ≤ dm. But
dm+1 ≤ am+1, bm+3, cm+3; dm+1 6≤ am; therefore dm+1 ∈ ϕ(θm), x ∈ ϕ(3θm).
So we obtain that the formulas ∀δm are true in (FFn, ϕ) whenever m ≤ n, and
thus (FFn, ϕ), d0 |= Sn. a
Lemma 4.6 S is not satisfied in any neghbourhood frame validating GrzU.

PROOF. Suppose the contrary, and let X be a neighbourhood GrzU-frame
satisfying S. Due to the postulates (2), (3) of GrzU, X is isomorphic to a
disjoint union of topological spaces Xi , such that 2 is interpreted in Xi as the
interior operator, and ∀ as the universal truth. So without any loss of generality,
we may assume that X is one of those Xi .

Then ϕ(ε0) 6= ∅, ϕ(∀δn) = X, for some valuation ϕ in X . Let X0 =
ϕ(ε0), Xn = ϕ(θn) for n > 0. Then Xn ⊆ ϕ(εn+1) ⊆ 3Wn+1 (since by our
assumption ϕ(δn+1) = X). Also Xn ∩ Xn+1 = ∅, since Xn ⊆ ϕ(εn+1) ⊆
ϕ(3αn+1), Xn+1 ⊆ ϕ(εn+1)− ϕ(3αn+1).

Now it follows that AGrz is refuted in X . In fact, let Y be a subspace of X
on the set Y =

⋃
n∈ω Xn. For y ∈ Y , let µ(y) = min{n | y ∈ Xn}.

Let η(y) be µ(y) modulo 2. Then η is an interior mappping from Y onto
the set {0, 1} with the weakest topology (i.e. onto the neighbourhood frame of
a two-element cluster). To prove this, it is sufficient to show that the subsets
Y0 = η−1(0), Y1 = η−1(1) are dense in Y. For the latter, we check by induction
on n, that

∀n∀x ∈ Y (µ(x) = n⇒ x ∈ 3Y0 ∩3Y1).

In fact, assume this for every k < n, and let µ(x) = n; then x ∈ Xn ⊆ 3Xn+1.
Let V be any neighbourhood of x; take a point y ∈ Xn+1 ∩ V . Assume that
n is even. Then x ∈ Y0, V ∩ Y0 6= ∅. Since Xn ∩ Xn+1 = ∅, we have either
µ(y) = n+1 ( and thus, y ∈ Y1 ∩V ), or µ(y) = n+1 (and thus y ∈ 3Y1 by the
inductive hypothesis, and again Y1 ∩ V 6= ∅). The case when n is odd is quite
similar. Since η is interior and the formula AGrz is refuted in the two-element
cluster, it is refuted in Y. Therefore it is refuted also in X , because the validity
of AGrz is preserved by any (not necessarily open) subspace. a
Theorem 4.7 The logic GrzU is S-N-incomplete.

PROOF. From 4.4. and 4.5. a

5 Conclusion

The results obtained in this paper show the crucial difference between the neigh-
bourhood and Kripke semantics. In fact, it turns out that in neighbourhood
semantics, modal logics enjoy the compactness property in numerous cases, and
thus they acquire features of classical first order theories. On the other hand,
in Kripke semantics modal logics are known to behave like second order theo-
ries, because such properties as compactness, Löwenheim – Skolem etc. fail too
often.
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Another important point is the difference between the transitive and the
general case. Although the counterexample in Section 4 is bimodal, it is very
likely to be reformulated as monomodal, by using Thomason’s translations [9],
[10], [6]. But it in the transitive case such counterexamples are impossible, due
to Theorem 3.1. This leads us again to an old question:

Does there exist a Thomason-style translation from polymodal logics (and
consequently, from classical second-order logic[11]) to monomodal K4-logics?

A common opinion among modal logicians has been that this question has
an answer ‘yes’. However the previous observations seem to point at the answer
‘no’.
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