
Ωmega – A Mathematical Assistant System

Jörg Siekmann, Michael Kohlhase, Erica Melis
Universität des Saarlandes, Saarbrücken, Germany

Abstract

Classical automated theorem provers can prove non-trivial mathematical theorems in

highly specific settings. However they are generally unable to cope with even moderately

difficult theorems in mainstream mathematics. While there are many reasons for the failure

of the classical search-based paradigm, it is apparent that mathematicians can cope with

long and complex proofs and have strategies to avoid less promising proof paths without

suffering from the exponential search spaces. Consequently, a combination of the power

of automated tools with human-like capabilities seems necessary to prove main-stream

mathematical theorems with the help of a machine. In the following, we shall describe the

prototypical system Ωmega that explores proof planning together with high-level proof

tools. Ωmega is a mixed-initiative system with the ultimate goal of supporting theorem

proving in main-stream mathematics and mathematics education.
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Over time we become trapped in our shared visions of appropriate
ways to tackle problems,and even more trapped by our funding sources
where we must constantly justify ourselves by making incremental
progress. Sometimes it is worthwhile stepping back and taking an
entirely new (or perhaps very old) look at some problems and to think
about solving them in new ways. This takes courage as we may be
leading ourselves into different sorts of solutions that will for many
years have poorer performance than existing solutions. With years of
perseverance we may be able to overcome initial problems with the
new approaches and eventually leapfrog to better performance. Or we
may turn out to be totally wrong. That is where the courage comes
in.

Rodney Brooks, MIT, AAAI-96

1 Introduction

Traditional automated theorem provers (ATP) are essentially black boxes, their
input consists of the theorem to be proved, and (hopefully exactly) those axioms
that are necessary to prove the theorem. Starting from this input and based on
a fixed logic calculus such as resolution [Rob65], the system generates a search
space at the level of this logic calculus. The search through this space is guided by
general, syntactic heuristics, such as unit preference or set-of-support which have
little resemblance to human mathematical reasoning about a proof.

If the system does not find a proof, then the user will adjust the settings of the
ATP that determine the search heuristics and she might tweak the formulation of
the theorem and axioms in the hope to find a proof eventually. In the 80ies, Woody
Bledsoe characterized this kind of ATP in the following way:
Automated theorem proving ... is not the beautiful process we know as mathematics.
This is ‘cover your eyes with blinders and hunt through a cornfield for a diamond-
shaped grain of corn’. [Ble86]

Now, this kind of approach might have worked out successfully as, e.g., the chess
programs, which work essentially on similar principles, have demonstrated: in order
to beat a world champion player in chess a program does not necessarily have to
work on the same principles as the human player. But, alas, after more than forty
years of research and development, automated reasoning systems can sometimes
prove difficults mathematical theorems in highly specific settings – but generally
still fail utterly when it comes to ordinary mainstream mathematics. Now, either
we may need another forty years – or we happen to live in the wrong paradigm and
tackle inappropriate research problems.

Mathematicians prove theorems differently: They follow an intuitive plan rather
than blindly search for a proof and they structure their proof attempts accordingly.
They start with some proof ideas which they refine later on.1

Rather than blindly exploring the whole search space, humans prefer the math-
ematically more promising paths and neglect the others. It seems that this control
is largely knowledge-based. General proof patterns, such as that of the well-known
diagonalization proofs, and reasons to apply a method contribute to the restriction
of the search as well as theory-specific knowledge on how to proceed, say in an
ε-δ-proof [Mel98].

Much of the reasoning in the proof discovery is at the meta level: “If we would
have a certain result the next result may follow and then the next etc. Afterwards
we have to fill in the details, and to check whether the plan really works”, or “Since

1To quote the German mathematician Gerd Faltings who received the field medal for his solution
to Mordell’s Conjecture. When asked how he found the proof he said: “Man hat Erfahrungen,
dass bestimmte Schlüsse unter bestimmten Voraussetzungen funktionieren... Man überlegt sich
also im Groben: Wenn ich das habe, könnte ich das zeigen und das nächste. Hinterher muss man
die Details einfügen und sieht, ob man es auch wirklich so machen kann”. Gerd Faltings 1983
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condition C is not true in general, we need a case split for C ∨ ¬C” etc. Different
from investigations on safe reflections, this meta-reasoning epitomized by Polya’s
work [Pol45] or Hadamard’s “Psychology of Mathematical Invention” is often of
heuristic nature.

General problem solving strategies such as analogy or the use of examples and
counterexamples is employed to guide or restrict the search for a proof. Moreover,
specialized (or theory-specific) mathematical techniques such as calculations and
algebraic simplifications are rather common and restrict the search space by their
algorithmical computation.

Furthermore, humans prove theorems in the context of one or more theories,
i.e., rather than listing all needed axioms prior to the proof, they select an axiom
by need from a large knowledge base. This helps to keep the explored search space
small.

Apart from the proof discovery process, traditional automated theorem proving
systems and human mathematical theorem proving strikingly differ in their result,
namely the final proof and its presentation. While an automated theorem prover,
say OTTER [McC90] outputs a sequence of (hyper)resolution and paramodulation
steps, a typical presentation of a mathematical proof is more abstract and (hierar-
chically) structured.

For this and other reasons we departed from the calssical paradigm of automated
theorem proving many years ago to try new alleys and this paper gives a first account
and survey of our findings since then.

2 The Architecture and Components of Ωmega

Theorem proving in Ωmega can be viewed as an interleaving process of proof plan-
ning, plan execution and the call of external tools such as an ATP or a constraint
solver and finally verification. This process is driven by the partially completed
proof plan which is represented in the Proof Plan Data Structure (PDS), a hier-
archical data structure that represents a (partial) proof at different levels of ab-
straction (called partial proof plans). A PDS is a directed acyclic graph, where the
nodes are labelled by the appropriate wff of the proof plan and justified by (LCF-
style) tactic applications. Conceptually, each such justification represents again a
proof plan (the expansion of the justification) at a lower level of abstraction that is
computed when the tactic is executed2. In Ωmega, we keep the original proof plan
explicitly in an expansion hierarchy. Thus the PDS makes the hierarchical structure
of proof plans explicit and retains it for further applications such as proof expla-
nation, the analogical transfer of plans, or its translation into a natural language
representation.

Once a proof plan is completed, its justifications can successively be expanded to
verify the well-formedness of the ensuing PDS. This verification phase is necessary,
since the correctness of the different components (in particular, that of the external
ones) cannot be guaranteed. When the expansion process is carried out down to
the underlying ND-calculus, the soundness of the overall system relies solely on
the correctness of the verifier and of ND. This provides the basis for the controlled
integration of external reasoning components, where each reasoner’s results have to
be be transformed (on demand) into a sub-PDS.

A PDS can be constructed by automated or mixed-initiative planning or by
pure user interaction using the integrated tools. In particular, new pieces of PDS
can be added by directly calling tactics, by inserting facts from a data base, or

2Thus a proof plan can be recursively expanded, until we have reached a final proof plan, which
can be executed to yield a calculus-level proof, since all nodes are now justified by the inference
rules of a higher-order variant of Gentzen’s calculus of natural deduction (ND).
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by calling an external reasoner (cf. 3) such as an automated theorem prover or a
computer algebra system.

Let us look at a concrete example (which was proposed by Woody Bledsoe
in [Ble90] as a challenge to automated theorem provers) to get an intuition of the
proof planning process in Ωmega. The example is a limit theorem which states
that the limit of the sum of two real functions is equal to the sum of their limits.

Theorem (LIM+):If lim
x→a

f(x) = L1 and lim
x→a

g(x) = L2, then lim
x→a

(f(x)+

g(x)) = L1 + L2.

Similar theorems hold for multiplication, exponentiation, etc. of the limits which
makes this example especially suited for our purposes. Since the limit of a function
at a is defined by

lim
x→a

h(x) = L ⇔ ∀ε(0 < ε → ∃δ(0 < δ ∧ ∀x(x 6= a ∧ |x− a| < δ → |h(x)− L| < ε))),

to prove LIM+ one needs to show that

∀ε(0 < ε → ∃δ(0 < δ ∧ ∀x(x 6= a ∧ |x− a| < δ → |(f(x) + g(x))− (L1 + L2)| < ε)))

holds under the assumptions:

∀ε1(0 < ε1 → ∃δ1(0 < δ1 ∧ ∀x1(x1 6= a ∧ |x1 − a| < δ1 → |f(x1)− L1| < ε1)))
∀ε2(0 < ε2 → ∃δ2(0 < δ2 ∧ ∀x2(x2 6= a ∧ |x2 − a| < δ2 → |g(x2)− L2| < ε2)))

This requires the construction of a real number δ for a given ε, which is why this part
of mathematics is often called ε-δ-proofs. In a mathematical textbook, typically the
following solution is given:

For a given ε choose δ smaller than δ1 and δ2, while δ1 and δ2 are chosen
according to the assumptions for ε1 and ε2 smaller or equal to ε/2. Then
for δ with |x− a| < δ < δ1, δ2 we have

|f(x)+g(x)−(L1 +L2)| ≤ |f(x)−L1|+ |g(x)−L2| < ε1 +ε2 ≤ ε

2
+

ε

2
= ε.

If we want to mimic this way of proving the limit theorem by proof planning,3 we
need several estimation methods. One is called ComplexEstimate (see section 5)
and it uses the triangle inequality to reduce the estimation of the magnitude of a
complex term b to the estimation of simpler ones (where a term b is represented
as a linear combination k · a + l). This decomposition of b can be oracled by a
computer algebra system integrated into the proof planner. For limit theorems that
involve particular functions, such as √ or sin, some rewrite theorems may have
to be retrieved from the mathematical knowledge base in order to simplify and
manipulate the terms involving these functions. For the construction of δ for a
given ε various constraints are collected and propagated by an external constraint
solving system for linear inequalities.

In the rest of the paper, we shall take a closer look at some of Ωmega’s compo-
nents. In the next section, we will present a general architecture for the integration
of external reasoning systems, then we will have a look at the mathematical knowl-
edge base, and finally, the proof planning process as sketched above will be made
more concrete.

3While a proof for (a simplified formalization of) LIM+ has also been found by a special-
ized (hand-crafted) search heuristic in Otter, LIM* and the other variants are way beyond the
capability of traditional systems – that is why Bledsoe posed them as a challenge.
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3 Integration of Mathematical Services

Logical reasoning and symbolic computation capabilities are provided by the first-
order theorem provers bliksem, EQP, Otter, ProTeIn, Spass, WaldMeister

(see [SS97] for references), two higher-order theorem provers TPS [ABI+96] and
LEO [BK98], and the computer algebra systems Maple, MagMa, GAP, and µ
CAS (see [KKS98] for references).

The reasoning modules interact in order to complete open subgoals in the devel-
opment of a proof plan which can be initiated and supervised on-line by the user or
it can be guided by the Ωmega system itself, for instance, during proof planning.
Unfortunately, it is not always clear in advance, which prover is best suited for
the problem at hand. Furthermore, the user could be asked to support the system
with additional knowledge. Thus, Ωmega will call several ‘services’ in parallel in
order to maximize the likelihood of success and minimize the time the user has
to spend waiting for the system. The proprietary proofs found by these systems
are finally transformed into the internal format of the Ωmega system; again, this
transformation process should run in parallel to the ongoing user interaction.

Such an integrated mathematical assistant system and its application, for in-
stance, in program verification [HLS+96], calls for an open and distributed archi-
tecture, where the developer of a deduction system or a mathematical tool upgrades
it to a so-called mathematical service [HC96] by providing it with an interface to a
common mathematical software bus. For the Ωmega system, we have implemented
and experimented with such a network design, where the integrated theorem provers
and mathematical tools are distributed over the Internet, they can be dynamically
added to and subtracted from the coordinated reasoning repertoire of the complete
system. This is achieved via a special software package called MathWeb.

The MathWeb [FK99, FHJ+99] system is an object-oriented tool-box that pro-
vides the functionality for building a society of software agents that render math-
ematical services as mentioned above: i.e., each deduction or computer algebra
system is encapsulated into an agent. The functionality of the software bus func-
tionality is realized in the current implementation by a model quite similar to the
Common Object Request Broker Architecture (CORBA [Sie96]) in which a central
broker agent provides routing and authentication information to the mathemati-
cal services (see [SHS98] for details). The agents are realized in the distributed
programming system called mOZart which is a programming environment for the
highly innovative programming language Oz and which provides the full infras-
tructure for distributed applications. Currently, we have integrated the following
mathematical and reasoning services:

Automated Theorem Provers MathWeb currently features the first-order the-
orem provers bliksem, EQP, Otter, ProTeIn, Spass, WaldMeister

(see [SS97] for references), and the higher-order systems TPS [ABI+96] and
LEO [BK98]. Furthermore, there is a service competitive-atp that calls sets
of ATP concurrently as competing services (this strategy is known to yield
super-linear speedups in practice).

Computer Algebra Systems There are services wrapping the systems Maple,
MagMa, GAP, and µ CAS (see [KKS98] for references). Here, the MathWeb

approach is particularly interesting, since a licensee of commercial software
systems like Maple and MagMa can export the corresponding services to
the deduction community.

Constraint Solvers A general approach of integrating constraint solvers into proof
planning [Mel98a] is realized with the solver LINEQII treating (linear) inequal-
ities.
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Mediators are mathematical services that transform mathematical knowledge from
one format to another. The agent-oriented MathWeb approach allows to
encapsulate the zoo of conversion programs currently available to generally
available mathematical services and avoid thus duplication of efforts.
Proof Transformers are rather substantial mediators that transform between
proof formats. Currently MathWeb features a proof transformation service
from the proof formats of the theorem provers mentioned above [HF96, Mei99]
into the natural deduction calculus.

Knowledge Bases MathWeb currently includes the MBase service, which will
be described in more detail below. MBase is a web-based mathematical knowl-
edge base system that stores mathematical facts like theorems, definitions and
proofs and performs type checking, definition expansion, and semantic search.
It communicates with other mathematical services by mediators and with the
user via the interaction unit OctOpus.

Human Interaction Units are MathWeb services that provide visualization
and control features for user interaction. Currently, MathWeb includes the
LΩUI graphical user interface for interactive theorem provers [SHB+98], the
OctOpus front-end for MBase and the ProVerb proof presentation sys-
tem [HF96], which transforms ND proofs into a more abstract representation
and into natural language.

The MathWeb approach has been a key factor in keeping the system maintain-
able [SHS98, FHJ+99] and the near future will see further modularization and agen-
tification of system components, which will lead to simpler system maintenance and
a more open development model.

4 A Mathematical Knowledge Base System

Ωmega includes a mathematical knowledge base, MBase, for storing, browsing,
and manipulating the factual and control knowledge, necessary for proving a the-
orem. Note that a knowledge base is not only needed as a knowledge repository
for mathematical facts, theorems, and definitions, but also for the integration of
software systems (or agents) via protocols. Indeed, a meaningful communication
between such systems is only feasible if there is a common ontology (knowledge
base) to which systems can relate in their communication. In a sense the common
knowledge base gives the semantics for the integration.

The MBase system is a web-based, distributed knowledge base for mathematics
that is accessible through MathWeb. The current implementation (V.0.1) is still
a first prototype for the internal testing of the design decisions. It consists of
the MBase server, which acts as a MathWeb service and OctOpus (a simple
MBase browser), which acts as a MathWeb client. Other mathematical services
– currently MBase supports connections to the Ωmega system [BCF+97] and to the
induction provers InKa [HS96] and λClam [RSG98] – can access MBase through
a system of mediators which are integrated into MBase.

For this overview we will describe the MBase server and its underlying data
model. Since the system will eventually contain large amounts of data, a file-oriented
library storage mechanism is currently implemented. Systems like Ωmega, λClam,
or Isabelle [Pau94] load all mathematical knowledge in the library that is possibly
relevant to a given problem into their main memory and this would result in a very
inefficient usage of this resource.
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4.1 Architecture of MBase

The general architecture is that of a Relational Data Base Management System
(RDBMS), such as, e.g., Oracle, embedded into a mOZart process (yielding a
MathWeb service). This architecture combines the storage facilities of the RDBMS
with the flexibility of a an interactive and distributed implementation of the con-
current, logic-based programming language Oz [Smo95]. mOZart is a distributed
implementation of Oz whose main strength comes from its network transparency,
i.e., its full support of remote computations in the base language (lexical scoping,
logical variables, objects), and its network awareness, i.e., the full control of the
programmer over network operations, such as the choice between stationary and
mobile objects (called Oz functors).

Most importantly for MBase, mOZart offers a mechanism called pickling,
which allows for a limited form of persistence: Oz objects can be efficiently trans-
formed into a pickled form, which is a binary representation of the (possibly cyclic)
data structure. This can then be stored in a byte-string and efficiently read by the
mOZart application effectively restoring the object. This feature makes it possible
to represent complex objects like logical formulae as Oz data structures,4 manip-
ulate them in the mOZart engine, but at the same time store them as strings in
the RDBMS. The functionality of MBase can be enhanced at run-time by loading
remote functors as “Ozlets” (mOZart functors). For instance, complex data base
queries that can be compiled into mOZart functors by the OctOpus client can be
sent (via the Internet) to the MBase server and applied to the local data e.g. for
specialized searching.

The current implementation (V.01.) of MBase uses the “Gnu database man-
ager”, a simple file-oriented database system, integrated into mOZart. We have
extended this integration by transaction management and logging facilities needed
to ensure consistency of a knowledge base. All of this will be extended after suc-
cessful experimentation to a real RDBMS.

4.2 Logic of MBase

The choice of the logic is not really central to the issues discussed here but it leads to
the problems of the infrastructure (in particular the mediators), which are reflected
in the structure of the MBase system.

Logic formulae in MBase are implemented as Oz data structures and stored as
Oz-pickles in the underlying DBMS. They are then loaded into the Oz engine and
manipulated there. The logical language supported by MBase is a polymorphically
typed record λ-calculus. It is a generalization of the ML-polymorphic λ-calculus
and of the language used in Isabelle and Hashimoto & Ohori’s polymorphic record
calculus [Oho95]. At the moment, this is implemented as an ad-hoc generalization
of [Oho95], but we will soon change to a HM(X)-scheme [SOW97] of polymorphism
with constraints, of which our calculus is an instance.

Records allow for a clean formalization of mathematical structures, such as
groups or fields and the polymorphism is needed to reuse definitions and theorems
in the knowledge base and ensure a modular structure of the theory. Finally the
mechanism of “kinds” adds to the practical expressivity of the polymorphism and
is used in many theorem proving systems (such as λClam, Isabelle, and others).

Finally, the MBase logic supplies the infrastructure for a sorted λ-calculus
(see [Koh94] for the general development of this language. Conceptually, sorts are
unary predicates (corresponding to sets in mathematics) that are treated specially
in the inference procedures (sorted matching and unification). This added structure
leads to a more concise representation and a more guided search. In MBase, we

4The object-oriented, constraint-logic programming features make Oz an ideal choice for that.
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Figure 1: The structure of MBase

provide the infrastructure for a very general sort mechanism, but leave the imple-
mentation of sorted inference procedures to other mathematical services that act
as MBase clients. For clients that cannot manipulate sorted logics, the mediators
built into MBase can relativize the sorts.

4.3 The Database Model

We shall now briefly summarize the primary data base objects of MBase.

Symbols are used as usual for mathematical concepts, such as 1 for the natural
number one, + for addition, = for equality, or group for the property of being
a group. Furthermore, there are symbols for kinds, types and sorts.

Definitions give meanings to symbols in terms of already defined symbols. For
example the number 1 can be defined as the successor of 0 (specified by the
Peano axioms). Addition is usually defined recursively, etc. Definitions are
separated from the symbols they define in MBase, since there can be more
than one (equivalent) definition for a symbol in a mathematical theory.
A second reason for this separation is that constants can be introduced as
symbols without definition.

Facts are axioms, theorems, conjectures, and lemmata. They all have the same
structure as a logical sentence. The differences are largely pragmatic (theorems
are normally more important in some theory than say, a lemma) or proof-
theoretic (conjectures become theorems once there is a proof in the knowledge
base).

Proofs are representations of evidence for the truth of facts. As in the case of
definitions, there can be more than one proof for a given fact. Furthermore,
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it will be, at least initially, infeasible to totally formalize all mathematical
proofs needed for the correctness management of the knowledge base in one
universal proof format. Therefore MBase supports multiple formats for proofs
or evidence such as e.g. a PDS (which is eventually the universal proof for-
mat), various proof scripts (Ωmega replay files, Isabelle proof scripts,. . . ),
references to published proofs, resolution proofs, matrix or tableau proofs, etc.

Proof Objects encapsulate the actual proof. There can be more than one proof
object for a given proof. Informal proofs can be formalized, formal proofs
can be transformed from one format to the other (e.g. from resolution style
to natural deduction style), or can be presented in natural language. All the
time, they represent the same “proof”.

Presentation The presentation objects (see Figure 1) are not logical objects but
they represent the presentation information for symbols in various presenta-
tion formalisms (such as ASCII, MathMl [Ion98], LATEX, HtMl [Rag98],. . . ),
fonts or even natural language. It is a central concern of MBase to separate
content information from presentation information, therefore, we have not in-
cluded the presentation information into the symbol information itself. How-
ever presentation is such a central practical issue of knowledge bases that we
have made the presentation objects primary.

5 Proof Planning in Ωmega

Our ultimate goal is to automate theorem proving as much as possible within the
interactive Ωmega system. The central component of the system towards this end
is the proof planner that treats proof problems as planning problems and integrates
previously described mathematical services.

Proof planning was originally developed as an extension of tactical theorem
proving [GMW79], where a tactic encapsulates a common sequence of calculus-
level proof steps. The application of a tactic is controlled by the user. Now, Alan
Bundy [Bun88] defined planning operators as tactics enhanced by pre- and postcon-
ditions which determine the applicability of such a “mathematical” operator. These
operators are then used for a standard planning process as known from artificial
intelligence. In order to cope with the new search space, a difference-reduction
heuristic was encoded into the operator specifications to guide the search. Such
a guidance works fine for proofs by mathematical induction, where the induction
hypothesis is syntactically similar to the induction conclusion and where the in-
duction conclusion has to be rewritten such that the induction hypothesis can be
applied eventually. In mathematics in general, however, this is just one particular
way/strategy to prove theorems.

Therefore, we extended proof planning to knowledge-based proof planning that
employs

• domain-independent (logical) operators such as CaseSplit, and domain-
dependent operators such as ComplexEstimate,

• domain- and situation-dependent control knowledge, and

• domain-specific external reasoners such as computer algebra systems or con-
straint solvers.

In the following, we describe the main ideas of knowledge-based proof planning.
A planning problem consists of an initial state describing some initial situation

and of goals to be achieved. The planning domain is defined by the operators that
usually represent actions, e.g. of a robot. A partial plan is a partially ordered
set of steps, i.e. of (partially) instantiated operators with additional instantiation
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constraints. A partial plan can be seen as an implicit representation of a set of
sequences (set of potential solutions) consistent with the ordering and instantiation
constraints. A solution of a planning problem, a complete plan, is a fully instanti-
ated linearization of a partial plan that transforms the initial state into a goal state,
i.e., a state in which the goals hold.

The initial state in proof planning is a collection of sequents,5 the proof as-
sumptions, and the goal is the sequent to be proven. The proof planning domain
consists of the operators which are called methods in this domain, of control-rules,
and theory-specific reasoners such as the ones described above.

For example, the method PeanoInduction below has the object-level specifica-
tion ⊕L1, ⊕L2, and 	L3, where ⊕L1 is an abbreviation for the sequent in proof
line L1 in the proof schema. The annotations mean that, e.g., the sequent in L3 is
deleted as a goal and the sequents in L1 and L2 are added as new subgoals.

method: PeanoInduction

premises ⊕L1, ⊕L2

conclusions 	L3

appl.cond sort(n) = Nat

proof schema

L1. ` P (0) (baseCase)
L2. ` P (k) → P (k + 1) (stepCase)
L3. ` ∀n.P (n) (IndAxiom;

L1,L2)

The application conditions (appl.cond) are formulated in a meta-language using
decidable meta-predicates. They specify local and legal conditions for the method’s
application. For instance, in the above PeanoInduction, the application condition
requires that n is a natural number. The slot proof schema provides the information
for the schematic expansion of the method.

The method ComplexEstimate that is needed for many ε-δ-proofs looks as fol-
lows.

method: ComplexEstimate<(a, b, e1, ε)

premises (0), ⊕(1),⊕ (2), ⊕(3)

conclusions 	 L12

appl.cond
∃σ GetSubst(a, b) = σ and
∃k, l CASsplit(aσ, b) = (k, l) and b = k ∗ aσ + l

proof schema

(0). ∆ ` |a| < e1 ()
(1). ∆ ` |k| ≤ M (OPEN)
(2). ` |aσ| < ε/(2 ∗M) (OPEN)
(3). ∆ ` |l| < ε/2 (OPEN)
L0. ` b = b (Ax)
L1. ` b = k ∗ aσ + l (CAS;L0)
L2. ` 0 < M (OPEN)
L12. ∆ ` |b| < ε (fix;L1,L2,(0),(1),

(2),(3))

Planning repeatedly refines a partial plan,i.e., it adds instantiated operators and
constraints and thus restricts its set of potential solutions until a solution can be
picked from its set of potential solutions. Since in proof planning most operators
represent complex inference actions, they have to be expanded in order to obtain a

5A sequent is an object (∆ ` F ), where F is a formula and the hypothesis ∆ is a set of formulae.
It denotes that F is derived from ∆.
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Figure 2: Proof plan data structure with expansions

proof at the calculus-level that can then be proof-checked. Therefore, an additional
operation of the (hierarchical) planner is the expansion of complex operators to
partial (sub)plans.

Control-rules express heuristics for the choice of methods, goals, or instantiations
in the planning process. For example, the following rule case-analysis-intro
expresses the heuristic that if the method Rewrite whose parameter is instantiated
by a rule (C -> R) is not applicable because the formula C is not (trivially) provable,
then a CaseSplit method should be introduced into the plan.

(control-rule case-analysis-intro
(kind method-choice)
(IF (last-method (Rewrite (?C -> ?R))) AND

(failure-condition (trivial ?C)))
(THEN (select (CaseSplit (?C or not ?C)))))

Proof planning methods usually correspond to well known mathematical tricks of
the trade and the decision support for choosing these steps, the control-rules, often
correspond to mathematical intuition about how to prove a theorem in a particular
situation [MS98]. Control-rules are an appropriate means to express meta-level
reasoning that is so common in mathematics and this declaratively represented
control knowledge can express conditions for a decision that depends on the current
planning state, the planning history, failed proof attempts, the current partial proof
plan, the constraint state, the available resources, the user model, the theory in
which to plan, typical models of the theory, etc [MS99].

6 Conclusion

The Ωmega system is an experiment in designing and integrating components for
a mathematical assistant system. It is still under development and in a rather
prototypical state. The components where we have made significant progress are:
the MathWeb architecture for distributed theorem proving by mathematical ser-
vices, the MBase knowledge base system, and the process of proof planning. This
progress has extended the reasoning capabilities of the Ωmega system which is now
well beyond the scope of monolithic automated deduction systems, as has been
demonstrated, e.g., in the case of limit theorems (described in this paper) [Mel98],
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completeness proofs for resolution-based systems, diagonalization proofs, or opti-
mization problems in an economics masters exam [KKS98].
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